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Abstract

Explainable artificial intelligence (XAI) aims
to make machine learning models more trans-
parent. While many approaches focus on gen-
erating explanations post-hoc, interpretable ap-
proaches, which generate the explanations in-
trinsically alongside the predictions, are rela-
tively rare. In this work, we integrate differ-
ent discrete subset sampling methods into a
graph-based visual question answering system
to compare their effectiveness in generating in-
terpretable explanatory subgraphs intrinsically.
We evaluate the methods on the GQA dataset
and show that the integrated methods effec-
tively mitigate the performance trade-off be-
tween interpretability and answer accuracy,
while also achieving strong co-occurrences be-
tween answer and question tokens. Further-
more, we conduct a human evaluation to as-
sess the interpretability of the generated sub-
graphs using a comparative setting with the ex-
tended Bradley-Terry model, showing that the
answer and question token co-occurrence met-
rics strongly correlate with human preferences.
Our source code is publicly available†.

1 Introduction

With the rise of foundational models such as
LLaVA (Liu et al., 2023b,a, 2024), GPT4 (Achiam
et al., 2023), Gemini (Anil et al., 2023), or
Llama (Touvron et al., 2023), the need for in-
terpretable and explainable Machine Learning
(ML) systems has become increasingly apparent,
which is reflected by the increasing number of
publications in eXplainable Artificial Intelligence
(XAI) (Mersha et al., 2024).

In this work, we focus on interpretable Graph-
based Visual Question Answering (GVQA), which
involves answering questions about images. Specif-
ically, we use scene graph representations of the vi-
sual input (Hudson and Manning, 2019) instead of

†https://github.com/DigitalPhonetics/
Intrinsic-Subgraph-Generation-for-VQA

the raw images, as proposed in the original versions
of Visual Question Answering (VQA) (Antol et al.,
2015; Agrawal et al., 2018). Scene graphs have
been successfully applied to VQA tasks (Hilde-
brandt et al., 2020; Damodaran et al., 2021; Liang
et al., 2021; Wang et al., 2023) and have shown
the potential to generate subgraphs as explanations
intrinsically (Tilli and Vu, 2024).

The GVQA approach by Tilli and Vu (2024)
discretely samples a subgraph based on Implicit
Maximum Likelihood Estimation (IMLE) (Niepert
et al., 2021) and compares the results to post-hoc
explainability methods with quantitative metrics,
i.e., Answer Token Co-occurrence (AT-COO) and
Question Token Co-occurrence (QT-COO), as well
as qualitatively through human evaluation. This
raises the question of how different intrinsic sub-
graph sampling methods compare to each other ,
and how the proposed metrics generalize in con-
texts without post-hoc methods.

Sampling a subset from a complex discrete dis-
tribution is ubiquitous in ML and has many ap-
plications. However, while these methods (Jang
et al., 2017; Maddison et al., 2017; Niepert et al.,
2021; Minervini et al., 2023; Ahmed et al., 2023)
have been proposed and applied in various fields,
they have never been explored in the multi-modal
context of GVQA. Hence, we pose the following
research questions:

RQ1 What is the effect of different discrete
subgraph sampling methods on question-
answering performance, as well as answer and
question token co-occurrences?

RQ2 Do the answer and question token co-
occurrence metrics generalize in a human eval-
uation when different discrete subgraph sam-
pling methods are used?

To address these research questions, we pro-
pose integrating AIMLE, SIMPLE, and GUMBEL
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SOFTSUB-ST into a GVQA system to compare the
effectiveness with IMLE, as introduced by Tilli and
Vu (2024). We evaluate the models’ performances
in terms of answer accuracy, AT-COO, and QT-
COO. To verify the effectiveness of the AT-COO
and QT-COO metrics when comparing different
discrete subgraph sampling methods, we conduct a
human evaluation to assess the interpretability of
the generated subgraphs in a comparative setting
with human evaluators.

Our contributions are as follows: (1) We demon-
strate that these methods effectively mitigate the
performance trade-off between interpretability and
answer accuracy, while also achieving strong an-
swer and question token co-occurrences. (2)
We show that the answer and question token co-
occurrence metrics strongly correlate with human
preferences, highlighting the effectiveness of the
metrics in capturing the relevant aspects of the ques-
tion answering process.

2 Methods

2.1 Top-k Subgraph Sampling

Interpretability Our model generates a subgraph
most relevant to a given question as an explanation
alongside the answer prediction. To achieve this,
we employ subgraph sampling during both training
and inference, a process complicated by the inher-
ent non-differentiability of sampling from discrete
distributions.

Top-k Sampling We integrate a top-k combina-
torial solver into our system, enabling it to identify
the most relevant nodes (subgraph) for a question.
This is achieved by deriving a discrete solution
from z ← topk(θ), z ∈ {0, 1}n, which is equiv-
alent to computing the Maximum A-Posteriori
(MAP) state, i.e., the most probable state

MAP(z) ≡ argmax
z

pθ(z) (1)

of an exponential family distribution, where z ∼
pθ(z). θ refers to the prior scores (computed by
our model) that parameterize the distribution pθ(z)
In our case, this is a conditional distribution based
on a top-k constraint, z ∼ pθ(z|

∑
i=1 zi = k).

Discrete Gradient Computation Computing the
gradient∇θL(f(z), ŷ) poses significant challenges
due to the discrete nature of z. Here, L denotes our
loss function, f(z) is the model’s output based on
the subgraph z, and ŷ represents the ground-truth

labels. We incorporate recent methods to approx-
imate ∇θL, which we will briefly outline below.
These methods have strong theoretical foundations
and are practically efficient. We select them be-
cause they provide stable, low-variance estimates
of the gradients and integrate seamlessly into end-
to-end optimization frameworks.

2.1.1 GUMBEL SOFTSUB-ST
The GUMBEL-SOFTMAX leverages the GUMBEL-
MAX trick (Papandreou and Yuille, 2011; Maddi-
son et al., 2014) to sample from a discrete prob-
ability distribution by perturbing the logits with
standard Gumbel noise. Specifically, given logits θ,
we draw gi ∼ Gumbel(0, 1) for each i and select

z = one_hot(argmax
i∈1,...,n

(θi + gi)) ∼ pθ, (2)

where one_hot converts the input into a one-hot
encoded vector, i.e. a binary vector. Since argmax
is not differentiable, the GUMBEL-SOFTMAX trick
relaxes it to a Softmax operation with y =
Softmax(θi + gi), using y as a continuous proxy
for the discrete z. Building on this, the GUMBEL

SOFTSUB-ST (Xie and Ermon, 2019) method ex-
tends the GUMBEL-SOFTMAX trick (Jang et al.,
2017; Maddison et al., 2017) to enable sampling
of relaxed top-k subsets, maintaining differentiabil-
ity and allowing for backpropagation through the
sampling step.

2.1.2 IMLE and AIMLE

IMLE (Niepert et al., 2021) with perturbation-based
implicit differentiation (PID) target distributions
generalizes the Straight-Through estimator (STE)
to more complex distributions. Instead of di-
rectly using the gradients ∇zL for backpropaga-
tion, IMLE leverages them to construct a target dis-
tribution q. This defines an implicit maximum like-
lihood objective, whose gradient estimator propa-
gates the supervisory signal upstream. More for-
mally, the gradient is approximated as

∇θL ≈
1

λ
[MAP(θ + ϵ)− MAP(θ′ + ϵ)] (3)

where ϵ ∼ p(ϵ) is drawn from a Gumbel(0,1) distri-
bution and θ′ = θ−λ∇zL(fu(z), ŷ). To efficiently
sample from pθ(z), Perturb-and-MAP (Papandreou
and Yuille, 2011) is applied with z = MAP(θ+ϵ). A
key idea is the construction of a target distribution
q based on the prior distribution p using PID

q(z, θ′) = p(z, θ − λ∇zL(fu(z), ŷ)) (4)
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Adaptive Implicit Maximum Likelihood Esti-
mation (AIMLE) (Minervini et al., 2023) ex-
tends IMLE by adaptively changing λ until the gra-
dient estimates meet a desired sparsity criterion.
This adaptation is guided by an update rule where
λ is adjusted according to the exponential moving
average of the gradient’s L0-norm, ensuring that
the gradient estimates achieve a desired level of
non-zero elements.

2.1.3 SIMPLE

Ahmed et al. (2023) address the challenge of gradi-
ent estimation for sampling from a k-subset distri-
bution, which is computationally intractable due to
the combinatorial nature of the problem. The gra-
dient depends on the marginals of the distribution
µ(θ), which are the partial derivatives of the log-
probability of the k-subset constraint. They pro-
posed SIMPLE, a method that efficiently computes
these marginals to approximate the gradient while
reducing the computational complexity compared
to exact methods. The gradient is approximated as

∇θL ≈ ∂θµ(θ)∇zL (5)

2.2 Graph-based VQA System
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Figure 1: The prior scores θ, which are based on the
question and node embeddings, are used to sample a
subgraph z that is then used to predict the answer.

We follow Tilli and Vu (2024) as our base sys-
tem architecture, integrating the subset sampling
methods described above to intrinsically sample a
subgraph. We replace the scene graph encoding
modules based on GloVe (Pennington et al., 2014)
embeddings to Contrastive Language-Image Pre-
Training (CLIP) (Radford et al., 2021) text token
embeddings. Additionally, we shift from percent-
age based top-k sampling to fixed top-k sampling
to better control the size of the explanation sub-
graph.

The sampling process of our approach is illus-
trated in Figure 1, where θ represents the prior
scores, computed as a scaled dot-product between
a representation of the question and the node em-
beddings of the graph. The variable z represents

the sampled subgraph, where each entry indicates
whether the corresponding node is included or ex-
cluded in the subgraph. As a result, we obtain
hard-attention masks, which are used to mask the
graph’s adjacency matrix and the node features.

3 Experimental Results

Setup We conduct experiments on the GQA
dataset (Hudson and Manning, 2019) using the
ground-truth scene graphs for the training and vali-
dation splits. All results are reported on the valida-
tion split, as scene graphs for the testdev split are
not available.

3.1 RQ1 – Quantitative Results
Due to the low question-answering performance
of GUMBEL SOFTSUB-ST (30.61± 2.39), we ex-
clude it from the results. The GUMBEL SOFTSUB-
ST estimator utilizes a relaxed approximation in
its sampling mechanism, which introduces addi-
tional bias and variance, which might be the reason
why it reduces the precision in selecting relevant
nodes within the subgraph compared to the other
methods.

The aggregated results of the experiments are
summarized in Table 1, while the table with indi-
vidual runs and detailed results can be found in
Appendix B, specifically in Table 4.

Method Accuracy AT-COO QT-COO

NONE 92.14±2.62 – –

AIMLE 93.34±0.99 92.66±3.23 80.86±6.84
SIMPLE 91.05±3.44 84.47±16.06 73.56±14.19
IMLE 81.13±8.07 65.15±17.45 72.88±11.59

Table 1: Mean and standard deviation for the perfor-
mance metrics of each method. The full table with
the detailed results for each run can be found in Ap-
pendix B Table 4.

We experimented with different top-k values,
batch sizes, and other hyperparameters to com-
pare the performance of the models in terms of
average answer accuracy, the AT-COO, and the
QT-COO (cf. Appendix B.1 for a formal defini-
tion). AIMLE achieved the highest answer accu-
racy across various top-k values, exceeding 94%,
closing the gap to the NONE baseline, where no
subgraph sampling is applied (the alternative non-
interpretable black-box approach).

Effect of Batch Sizes While Figure 2 shows a
negative trend in model accuracy with increasing
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batch sizes, Figure 3 indicates that the AT-COO
and QT-COO increase when training with larger
batch sizes. This suggests a trade-off between
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Figure 2: Model accuracy with respect to batch size.

the accuracy of the model and the quality of the
explanations, as larger batch sizes lead to better
co-occurrences but worse accuracy. SIMPLE un-
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Figure 3: AT-COO and QT-COO values with respect to
batch size.

derperformed compared to AIMLE with smaller
batch sizes, suggesting that SIMPLE is more sensi-
tive to this hyperparameter. This effect is also re-
flected in the AT-COO and QT-COO values, where
SIMPLE achieved lower answer and question co-
occurrences with smaller batch sizes.

We find that IMLE is an outlier in this regard, as
it achieves higher co-occurrences with batch sizes
of 128 and 256 than with 512. This may be due to
IMLE’s sensitivity to hyperparameters, particularly
its method-specific hyperparameter λ, and the need
for longer training to fully converge to the optimal
solution.

3.2 RQ2 – Human Evaluation
Design We recruited 60 participants through Pro-
lific (www.prolific.com). Each participant was
presented with 18 pairwise comparisons between
two explanatory subgraphs generated by two differ-

ent subset sampling methods and asked to choose
the preferred explanation.

Preference Estimation In total, we collected
1,080 pairwise comparisons, which were utilized
to apply an extended Bradley-Terry model (Hunter,
2004) to estimate the relative preferences for the
sampling methods. The extended version intro-
duces a parameter for ties, δ, which adjusts for the
likelihood of tied outcomes.

Results Due to all methods performing compara-
bly well regarding the AT-COO and QT-COO, we
observe a large number of ties between methods,
supported by the tie parameter δ = 0.45. To miti-
gate the effect of ties in the Bradley-Terry model,
we set the weight of ties to 1

6 . Thus, we empha-

Method Favored Ties Unfavored θ

AIMLE 226 339 155 0.17
SIMPLE 200 257 263 -0.07
IMLE 181 350 189 -0.1

Table 2: The individual effects parameters of the ex-
tended Bradley-Terry model.

size the cases where the participants favored one
method over another, rather than focusing on ties
where the preferred method was indistinguishable.
The individual effects parameters are shown in Ta-
ble 2. According to the Bradley-Terry model rank-
ing, AIMLE is favored over SIMPLE and IMLE,
while SIMPLE is favored over IMLE.

Ranking Consistency Analysis To verify
whether the AT-COO and QT-COO metrics
generalize to comparisons between intrinsic sub-
graph sampling methods – addressing RQ2 – we
correlated the Bradley-Terry model’s parameters
with the AT-COO and QT-COO metrics. The
results are shown in Table 3. We find that both

Metric Pearson’s r Spearman’s ρ Kendall’s τ

AT-COO 0.795 1.0 1.0
QT-COO 0.99 1.0 1.0

Table 3: Correlation scores between the Bradley-Terry
model’s parameter θ and the AT-COO and QT-COO
metrics.

metrics strongly correlate with θ, suggesting the
effectiveness of the AT-COO and QT-COO metrics.
Consequently, the ranking of the intrinsic subgraph
sampling methods according to the Bradley-Terry

www.prolific.com
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model aligns with the ranking according to the
AT-COO and QT-COO metrics.

4 Conclusion

We integrated and compared discrete subset sam-
pling methods — IMLE, AIMLE, SIMPLE, and
GUMBEL SOFTSUB-ST— to intrinsically gener-
ate explanatory subgraphs in a GVQA system. To
answer RQ1, we found that GUMBEL SOFTSUB-
ST degraded performance to a non-competitive
level, while the other methods achieved com-
petitive results compared to the black-box ap-
proach. Depending on the choice of hyperparam-
eters, AIMLE and SIMPLE achieved the highest
answer accuracies, AT-COO, and QT-COO scores,
while IMLE exhibited higher sensitivity to hyperpa-
rameter tuning.

In the human evaluation, that was conducted to
answer RQ2, AIMLE was most favored by par-
ticipants, followed by SIMPLE and IMLE, indicat-
ing that AIMLE is the most promising method, re-
quiring minimal tuning and performing well out-
of-the-box. For the other methods, more careful
hyperparameter selection is necessary to achieve
competitive results.

5 Limitations

The accuracy and reliability of the model are highly
dependent on the quality and quantity of the train-
ing data. Biases, inconsistencies, or missing data
can significantly affect the model’s results and ex-
planations. In our case, the provided ground-truth
scene graphs contain errors or inaccuracies, which
can negatively impact the system’s performance
and limit its applicability to real-world scenarios.

The fixed top-k sampling does not adapt to the
complexity of individual questions. In real-world
scenarios, the relevance of subgraph explanations
could vary significantly, requiring a more dynamic
top-k selection to better tailor explanations to the
complexity of the visual question. For some ques-
tion types, the explanations might be too simplis-
tic or overly complex, which may limit the inter-
pretability.

Human evaluation is inherently subjective,
which introduces variability in the assessment of
model explanations. Factors such as individual
preferences, prior knowledge, personal biases, in-
terpretation of explanations, or experience with
such systems can influence the evaluation results.

6 Ethics Statement

All participants provided informed consent prior to
their involvement in the study. We offered a com-
prehensive explanation of the task and research
goals and refrained from collecting any person-
ally identifiable information from the users. All
logs and survey responses were encrypted using
an anonymous hash derived from the participant’s
Prolific username. We confirmed the estimated
time in our pilot study to ensure that the selected
duration was below the median completion time.
The participants were compenstated for their time
and effort with a wage that exceeded the minimum
wage in the country of the study’s origin based on
the median completion time established through
the pilot study.
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A Background

A.1 Visual Question Answering

VQA is a task in the field of ML that involves a
system’s ability to answer questions about visual
content, typically images or videos. To generate
an answer, the model is required to process the
visual input as well as the natural language ques-
tion in form of text. For the visual modality, the
model processes the images to implicitly or ex-
plicitly identify objects with their corresponding
attributes, scene information, and relations among
objects. The most difficult aspect of the task is to
combine these two information resources and learn
to reason between the two modalities. VQA system
can be applied in various applications, including
assistive technologies or educational tools, offer-
ing insights into the interplay between language
understanding and visual perception.

A.2 Graph-based Visual Question Answering

Structured representations of images as scene
graphs make them particularly effective for answer-
ing questions that involve complex relationships
or require an understanding of spatial or semantic
interactions among multiple objects. The graph-
based approach in GVQA changes the reasoning
process to identify paths or subgraphs that capture
the information required to answer the question,
which has the potential to enhance the system’s
interpretability.

B Experimental Results

B.1 Metrics

Answer Token Co-Occurrences Let S =
{s1, . . . , sn} be the set of subgraphs, where si =
{vi1, . . . , vim} are node tokens for each subgraph
si. Let A = {a1, . . . , an} be the set of answer to-
kens, and let ai ∈ A be the specific answer token
for each subgraph si. Let I(a, s) be an indicator

function defined as

I(a, s) =

{
1 if a ∈ s

0 otherwise
(6)

Then the answer token co-occurrence can be com-
puted as

PA =
1

n

n∑

i=1

I(ai, si) (7)

Question Token Co-Occurrences Let S =
{s1, . . . , sn} be the set of subgraphs, where si =
{vi1, . . . , vim} are node tokens for each subgraph
si. Let Q = {q1, . . . , qk} be the set of question
tokens, and let Qi ⊆ Q be the subset of question
tokens related to the subgraph si. Define the indi-
cator function I(q, s) as

I(q, s) =

{
1 if q ∈ s

0 otherwise
(8)

Define the match ratio function R(Qi, s) as

R(Qi, s) =

∑
q∈Qi

I(q, s)
|Qi|

(9)

which computes the ratio of matching question to-
kens in Qi that are present in the subgraph s. Then
the question token co-occurrence can be computed
as

PQ =
1

n

n∑

i=1

R(Qi, si)

which computes the average match ratio across all
subgraphs.

B.2 Quantitative Results
Boxplots Figure 4 aggregates the results for each
method across different top-k values and batch
sizes in form of boxplots. The visualizations show
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Figure 4: Accuracy per method across different top-k
values and batch sizes.
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the volatility of the accuracy of different models
and indicate that AIMLE and SIMPLE are the most
stable methods, while IMLE requires more tuning
of hyper-parameters to achieve similar results.

C Human Evaluation

We implemented a web application to perform a
human evaluation. The instructions for the partic-
ipants can be found in Appendix C.1. The self-
assessment of their prior knowledge is displayed in
Appendix C.3.

C.1 Instructions

At the beginning of the web page, we provided the
participants with the following instructions.

The study contains 18 images for each partici-
pant. The image is not used as input to the model,
it is only displayed as a reference. Next to the orig-
inal image you can find the corresponding question
the model answered. The answer is displayed next
to the prediction field. We also included the anno-
tated ground-truth label for each question, i.e. the
correct answer given by the dataset. This states
what should have been the correct answer accord-
ing to the data. Some questions might be ambigu-
ous unfortunately, but this should be not evaluated
or considered in this study.

Below the original image, you can find the cor-
responing graphs. The full graph (nodes colored
in blue and green) is input to the model alongside
the question. The graph itself (all nodes colored in
green and blue combined) might not be a perfect
representation of the image. Nodes, which repre-
sent objects in the image, might be missing, or the
annotation (the label/name) might be misleading.
We display the edges between nodes in the visualiza-
tion of the graph, but we excluded the annotation
(the name of the relation). Edges represent rela-
tions between objects, e.g. a man holding a racket
would result in two nodes, man and racket, and
one edge (relation) holding between them.

We perform pair-wise comparisons between two
explainability methods. Their explanations are dis-
played next to each other. All nodes colored in
green are part of the subgraph that represents the
explanation of model. All nodes colored in blue are
excluded, so they are not part of the explanation.
The explanatory subgraph (nodes in green) should
support the predicted answer. To judge which ex-
plantion you prefer, you should take the question
and answer into account, and evaluate if the nodes

in green form a more valid explanation than the
other explanation.

We only compare explanations that are of the
same size, i.e. they contain equal number of nodes.
Hence, we do not want to judge, if the explana-
tory subgraph consists of too many (green) nodes,
but rather if the nodes included in the explana-
tion capture the relevant information to answer the
question. Please mark which of the explanations
you prefer for each given pair.

C.2 Compensation

We estimated the reward for completing the task
with a medium time of 15 min, above minimum
wage with £11.20/hr.

C.3 Demographics

We asked the participants to self assess their knowl-
edge about Artificial Intelligence (AI) and XAI on
a Likert (Likert, 1932) scale from 1 to 5, where 1
corresponds to no knowledge and 5 to very good
knowledge. Figure 5 visualizes the distribution of
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Figure 5: Likert scale responses to the questions about
AI and XAI.

the scores of the Likert scale responses. While
the majority of participants rated their knowledge
about AI and XAI as average, the participants were
generally more informed about AI than XAI.

The age distribution of the participants is shown
in Figure 6. The majority of participants were be-
tween 18 and 24 years old, with fewer participants
over 35 years old.

D Implementation Details

We implemented our models using PyTorch
2 (Ansel et al., 2024) and PyTorch Geometric (Fey
and Lenssen, 2019). For the subset sampling meth-
ods, we use the official implementions of IMLE and
AIMLE (Niepert et al., 2021; Minervini et al.,
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Method Top-k Accuracy Batch-Size N -Epochs AT-COO QT-COO λ τ

NONE

– 94.57 128 50 – – – –
– 92.49 256 50 – – – –
– 89.36 512 50 – – – –

AIMLE

2
94.26 128 50 90.67 76.31 tuned 1
93.45 256 50 92.62 71.06 tuned 1
92.90 512 50 96.90 66.49 tuned 1

3
94.22 128 50 91.49 81.11 tuned 1
93.65 256 50 93.78 80.44 tuned 1
91.81 512 50 94.59 84.47 tuned 1

4
94.17 128 50 84.55 75.02 tuned 1
93.74 256 50 93.30 86.38 tuned 1
91.05 512 50 89.13 76.25 tuned 1

5
94.61 128 30 94.10 84.45 tuned 1
93.51 256 50 90.81 80.85 tuned 1
92.52 512 50 94.59 84.46 tuned 1

6
94.18 128 50 91.30 88.49 tuned 1
93.34 256 50 94.41 84.61 tuned 1
92.68 512 50 97.64 92.44 tuned 1

SIMPLE

2
77.87 128 50 56.96 39.76 – –
91.04 256 50 66.91 56.42 – –
88.20 512 50 76.22 64.05 – –

3
89.63 128 50 48.82 50.99 – –
92.97 256 50 83.68 67.09 – –
92.23 512 50 95.40 74.90 – –

4
91.87 128 50 72.91 68.52 – –
93.46 256 50 92.28 74.15 – –
91.28 512 50 97.04 75.62 – –

5
91.57 128 50 60.12 59.73 – –
93.05 256 50 93.42 81.19 – –
91.53 512 50 98.17 85.54 – –

6
92.25 128 50 88.91 82.37 – –
90.52 256 50 94.54 82.52 – –
92.65 512 50 98.27 88.79 – –

IMLE

2
82.48 128 50 68.39 56.06 10 1
83.38 256 50 72.74 61.78 10 1
73.83 512 50 46.54 75.74 10 1

3
79.08 128 50 53.96 80.07 10 1
87.74 256 50 47.67 88.47 10 1
69.32 512 50 43.13 73.36 10 1

4
92.39 128 50 71.26 65.35 10 1
90.03 256 50 82.25 78.75 10 1
68.35 512 50 41.91 72.02 10 1

5
91.59 128 50 90.51 87.38 10 1
86.77 256 50 82.18 77.15 10 1
75.63 512 50 48.89 84.20 10 1

Table 4: Results of models trained with different top-k subset sampling methods across different batch sizes.
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Figure 6: Age distribution of the participants.

2023), in combination with SIMPLE and GUMBEL

SOFTSUB-ST by Qian et al. (2024).
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E Examples

Figure 7: User interface for the human evaluation of two explanatory subgraphs, in green, and excluded nodes, in
blue.
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