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Abstract

Knowledge distillation (KD) is an effective
model compression method that can transfer
the internal capabilities of large language mod-
els (LLMs) to smaller ones. However, the
multi-modal probability distribution predicted
by teacher LLMs causes difficulties for stu-
dent models to learn. In this paper, we first
demonstrate the importance of multi-modal dis-
tribution alignment with experiments and then
highlight the inefficiency of existing KD ap-
proaches in learning multi-modal distributions.
To address this problem, we propose Ranking
Loss based Knowledge Distillation (RLKD),
which encourages the consistency of the rank-
ing of peak predictions between the teacher
and student models. By incorporating word-
level ranking loss, we ensure excellent com-
patibility with existing distillation objectives
while fully leveraging the fine-grained infor-
mation between different categories in peaks
of two predicted distribution. Experimental re-
sults demonstrate that our method enables the
student model to better learn the multi-modal
distributions of the teacher model, leading to a
significant performance improvement in vari-
ous downstream tasks.1

1 Introduction

In recent years, large language models (LLMs,
Brown et al. 2020; Zeng et al. 2023; OpenAI 2023;
Touvron et al. 2023; Yang et al. 2023; Jiang et al.
2024) have demonstrated their great power to solve
natural language processing tasks. Existing re-
search (Kaplan et al., 2020; Wei et al., 2022) shows
that language models tend to perform better as
the number of parameters increases. However, the
training and deployment of large scale models in-
volve high costs, coupled with less usability and
flexibility. Therefore, model compression tech-

*Corresponding Author.
1Our code is available at https://github.com/Pty72/RLKD.

niques (Zhu et al., 2023) for LLMs are drawing
more and more attention.

Knowledge distillation (KD, Hinton et al. 2015)
is one of the representative approaches for model
compression. It facilitates efficient knowledge
transfer to smaller student models by using the full
probability distribution output from teacher models
as a guiding signal during optimization. Therefore,
designing better distillation objectives that make
it more efficient for student models to learn the
overall probability distribution of teacher models
is the focus in KD research.

Particularly for LLMs, the lengthy and complex
probability distribution causes more learning dif-
ficulties. Due to the diversity of natural language,
the predicted probability distribution of LLMs is
often multi-modal (quantitative analysis results are
shown in Appendix A), which contains multiple
potential correct predictions for a given input. Con-
sequently, improving the learning of multi-modal
distribution becomes the focus of LLMs’ KD.

To achieve this goal, previous studies have al-
ready explored several distillation objectives for
LLMs. Conventional KD (Hinton et al., 2015) uses
forward Kullback-Leibler divergence (KL) as the
optimization objective. However, KL predisposes
to the mode-averaging problem (Wen et al., 2023),
whereby student models tend to learn too smooth
distributions (as shown in Figure 1). Therefore,
more recent work (Gu et al., 2023; Tan et al., 2023)
has employed reverse KL (RKL) instead of KL,
claiming that this optimization objective can bet-
ter focus on peak predictions. Nevertheless, opti-
mizing RKL tends to get an overconcentration of
the probability predictions of the student model in
some specific intervals (as illustrated in Figure 1).
Then, Wen et al. (2023) propose using symmetric
divergences as the distillation objective to alleviate
mode problems caused by KL and RKL. In con-
trary, Wu et al. (2024b) verify through theory and
experiments on toy data that KL and RKL do not
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Figure 1: An theoretical example illustrates the situa-
tions that can arise when using KL or RKL as distillation
objective to fit multi-modal distribution.

suffer from the above issues, and they instead share
the same optimization objective in KD of LLMs.

However, despite the demonstrated effectiveness
of the distillation objectives proposed in the afore-
mentioned work in fitting multi-modal distribu-
tions, either through theoretical or toy experiments,
they do not specifically showcase the learning ca-
pability of student models for multi-modal distri-
butions. We still have no idea whether these distil-
lation objectives truly enhance the learning ability
of student models for multi-modal distributions in
real-world tasks, hence making it difficult to ascer-
tain the source of the improvements in downstream
tasks.

In order to address the above issues, we propose
in this paper Ranking Loss based Knowledge Dis-
tillation (RLKD) for LLMs. We first verify the
relationship between multi-modal predictions and
model performance, and experimentally demon-
strate the problems of existing distillation objec-
tives in fitting multi-modal distributions. In re-
sponse to the identified problems, we introduce the
word-level ranking loss, which is based on Spear-
man’s rank correlation coefficient (SRCC), to op-
timize the degree of consistency in the order of
peak predictions between the teacher and student
models. In particular, we convert the learning of
multi-modal distributions during the KD process
into the learning of the top-k sampling (Holtzman
et al., 2020) order. Through ranking loss, we ensure
excellent compatibility with existing distillation ob-
jectives while fully leveraging the fine-grained in-
formation between different categories predicted by
two distribution peaks. Additionally, we verify and
demonstrate through real-scenario experiments the
impact of introducing ranking loss into KD on the
learning ability of student models for multi-modal
distributions.

Experimental results indicate that the quality of
multi-modal predictions is closely related to the per-
formance of the model, while existing distillation

objectives lack the ability to fit multi-modal dis-
tributions effectively. Subsequently, our proposed
method effectively enhances the student model’s
learning ability to predict multi-modal distributions
during the distillation process and exhibits good
compatibility with existing distillation objectives.
We also validate the ranking loss on diverse datasets
from multiple tasks, showing significant improve-
ments in downstream KD tasks.

In general, our main contributions are as follows:

1. We propose a word-level ranking loss for KD
of LLMs, that significantly improves the stu-
dent model’s multi-modal distribution learn-
ing ability and performance on downstream
tasks.

2. We analyze the importance of multi-modal
distribution alignment through experiments.
Additionally, we verify the shortcomings of
existing methods in peak prediction learning
and achieve significant improvements with
our proposed method.

2 Related Work

2.1 KD of LLMs

Nowadays, many LLMs are no longer open source
due to commercial and other considerations. There-
fore, based on the open-source nature of the model,
KD of LLMs is frequently categorized into white-
box KD (Gu et al., 2023; Tan et al., 2023; Wen et al.,
2023; Ko et al., 2024; Wu et al., 2024a) for open-
source LLMs (Touvron et al., 2023; Yang et al.,
2023; Jiang et al., 2024) and black-box KD (Zhou
et al., 2023; Chen et al., 2024) for closed-source
LLMs (Brown et al., 2020; OpenAI, 2023).

In this work, we focus on white-box KD since
the findings can be more applicable. The process
of white-box KD is similar to traditional KD, often
utilizing a teacher-student framework to learn the
rich probability distribution of the teacher model
through soft labels.

2.2 White-Box KD Objectives

KD based on KL works well in previous mod-
els and tasks. For prediction of individual to-
kens, the formula is expressed as: DKL(P ||Q) =∑

i P (i) log(P (i)/Q(i)), where P and Q are pre-
dicted distributions by the teacher and student mod-
els, respectively. Then, Kim and Rush (2016) pro-
pose SeqKD, wherein the results of the teacher
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model’s beam search are employed as an approx-
imation for the sequence-level KL. To minimize
the KL divergence, Q(i) needs to be as large as
possible when P (i) is large, but the value of Q(i)
has little impact when P (i) is small. Therefore,
Q(i) is likely to be assigned a disproportionately
high probability value when P (i) is very small, as
shown in Figure 1.

To make the student model pay more attention
to peak predictions, more studies (Gu et al., 2023;
Tan et al., 2023) use RKL as the distillation objec-
tive, expressed by the formula: DRKL(P ||Q) =∑

iQ(i) log(Q(i)/P (i)). RKL ensures that Q(i)
is not assigned an unreasonably high probability
when P (i) is small. However, when P (i) is large,
both large and small values of Q(i) result in a low
DRKL value. This can lead to the student model
missing some peaks in a multi-modal distribution
during learning, as shown in Figure 1.

To avoid the mode problems with KL and RKL,
Wen et al. (2023) introduce symmetric divergence
functions to seek a balance between these two ex-
tremes, such as Jensen-Shannon Divergence (JSD)
and Total Variation Distance (TVD). They also ex-
tend these word-level objectives to sequence-level.

Unlike the above, Wu et al. (2024b) argue that
the predicted distribution of LLMs does not meet
the conditions of continuity and standard Gaus-
sian distribution. They theoretically and practically
demonstrate that KL and RKL actually share the
same optimization objective in LLMs’ KD. Addi-
tionally, they point out that KL and RKL follow
different optimization paths, with one fitting from
the head part first and the other from the tail part
first, and propose dynamically combining KL and
RKL into Adaptive Kullback-Leiber (AKL).

Inspired by existing research, we aim at explor-
ing a KD objective that yields better multi-modal
learning ability. However, we first need to validate
the following two questions:

1. Does enhancing the learning of multi-modal
distributions benefit the performance of stu-
dent models?

2. Can existing distillation objectives ensure stu-
dent models learn well from multi-modal dis-
tributions in KD of LLMs?

3 Preliminary

3.1 Metrics

The purpose of enhancing the ability to learn multi-
modal distributions is to make the peak predictions
of student and teacher models closer. Therefore,
we first need to define the criteria for evaluating
the similarity of the peak predictions of two mod-
els. Since top-k sampling is the most common
sampling strategy in language models, and peak
predictions well correspond to the results of top-k
sampling. Hence we convert the measurement of
the consistency of multi-modal predictions into the
measurement of the consistency of top-k sampling
results.

In this paper, we introduce two metrics to as-
sess the consistency of top-k sampling results. We
use the consistency rate (CR) and the mean over-
lap rate (MOR) of the predicted top-k samples on
the test set to evaluate how similar the peak pre-
dictions of the two models are. Specifically, CR
measures the percentage of cases where the two
models make identical top-k predictions, including
both the categories and their order. The overlap rate
(OR) measures the proportion of shared categories
in the top-k predictions of both models, ignoring
the order and position. MOR is the average OR
across the whole test set.

3.2 Motivation for Multi-Modal Distribution
Learning

We believe that peak predictions reflects the per-
formance of language models, not just top-one pre-
diction. Through experiments in this section, we
demonstrate that the quality of peak predictions
and the model’s capabilities are highly correlated,
thereby demonstrating the value of learning multi-
modal distributions in the enhanced KD process.

For experiments, we select several models with
significant performance gaps and a shared vocabu-
lary. These models come from two families: Llama-
2 released by Touvron et al. (2023) and OpenELM
released by Mehta et al. (2024). We use models
with parameter sizes of 270M, 450M, 1B, 3B, 7B,
13B and 70B. Clearly, within the above models,
models with larger parameter sizes exhibit stronger
performance.

Among them, the 70B model has significantly
more parameters and better performance compared
to the other models, thus we can consider it as
the ground truth. We use CR and MOR on test
set to evaluate how closely the peak predictions
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Figure 2: The degree of consistency between different models and the peak predictions of the 70B model. The
horizontal axis represents the range of top-k predictions. For better presentation, we set the vertical axis as the
difference between the CR or MOR of the current model and the corresponding results of the 13B model.

of the other models align with those of the 70B
model. This allows us to verify the relationship
between model performance and the quality of peak
predictions.

For the test set, we sample 5,000 slices from
SlimPajama (Soboleva et al., 2023). The visualised
experimental results are in Figure 2, and we also
show the specific numerical results in Appendix B.

Analysis The experimental results indicate that
the closer a model’s peak prediction consistency is
to the strongest model, the better its performance.
Thus, there is a direct correlation between the qual-
ity of peak predictions and model performance, not
just the top-one prediction. Therefore, enhancing
learning about multi-modal distributions is crucial
during the KD process of LLMs.

3.3 Validation for Existing KD Objectives

We evaluate existing distillation objectives through
experiments to determine if they enable student
models to learn the multi-modal distributions of
teacher models effectively during the KD process.

We respectively verify the similarity between
the student model after distillation training and the
teacher model’s peak predictions under different
distillation objectives to judge their learning per-
formance on multi-modal distributions. Similarly,
we evaluate the top-k prediction results over mul-
tiple ranges using CR and MOR. Since this paper
focuses on distillation objectives for soft labels, the
loss in all distillation experiments in this paper only
includes soft targets.

To enhance the validity of the conclusion, we
also conduct verification in real scenarios. We use
Llama-2-7B (Touvron et al., 2023) and TinyLlama-
1.1B (Zhang et al., 2024) as teacher and student
models, SlimPajama as the train set. Similar to

the conventional settings, we use a learning rate
and batch size that align with the practical pre-
training task. Since we are assessing learning abil-
ity, we validate on the training data that has already
been learned to evaluate the extent to which the
student model’s peak predictions after KD matches
the teacher model. In particular, to make the dif-
ferences in the multi-modal distribution learning
ability of different distillation objectives more con-
vincing, we increase the number of training epochs
to 20.

The experimental results are shown in Figure 3,
and more specific experimental setups and numeri-
cal metrics can be found in Section 5.3.

Analysis Based on the results in Figure 3, ex-
isting distillation objectives show no significant
disparity in their impact on the ability to learn
multi-modal distributions. This further confirms
Wu et al.’s (2024b) view that KL and RKL share the
same optimization objective in KD of LLMs. But
more importantly, even after 20 epochs of training,
student models still exhibit deficiencies in learning
multi-modal distributions under the existing distil-
lation objectives. Therefore, further exploration is
necessary to identify distillation metrics that can en-
hance the model’s capability to learn multi-modal
distributions.

4 Method

Existing distillation objectives bring the two distri-
butions closer by minimizing the distance between
the teacher’s and the student’s predicted distribu-
tions. Although these distillation objectives can
align the student’s predicted distribution with the
teacher’s after a sufficient number of steps in the-
ory, their efficiency in learning multi-modal dis-
tributions in practical scenarios still needs further
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Figure 3: Degree of agreement between student model and teacher model peak predictions after 20 epochs under
existing KD objectives.

improvement. Consequently, we aim to introduce
additional optimization objectives to enhance the
learning of peak predictions.

The direct optimization objective of the exist-
ing distillation objectives is the distance between
two distributions. The methods for calculating
the distance of these distillation objectives differ,
but they compute the same objects, as Llogits =∑

i distance(P (i), Q(i)). Therefore, existing dis-
tillation objectives only calculate the distance be-
tween each individual category, without utilizing
the relationship among categories, as the black
lines shown in Figure 4.

P(i) P(j) P(k)

Q(i) Q(j) Q(k)

Figure 4: Comparison of computational objects on peak
predictions. The black lines represent existing distilla-
tion objectives and the red lines represent our method.

In this work, we enhance the learning of peak
predictions in KD of LLMs by introducing a new
optimization objective of word-level ranking loss.
The new optimization objective focuses on the pre-
diction order of high probabilities between student
and teacher models, enabling the student model
to match the teacher model on critical predicted
categories.

Our specific approach focuses on the top-k pre-
dicted tokens from both the teacher and student
models. We calculate the consistency by comparing
the probability order of these tokens in the teacher
model with the probability order in the student

model. This method straightforwardly enhances
the consistency of top-k predictions between two
multi-modal distributions, thereby strengthening
the alignment of peak predictions between the stu-
dent and teacher models. Importantly, the computa-
tional objects of our ranking loss are the probability
values in the prediction sequences of the union of
the teacher’s and student’s top-k predictions, not
just the teacher’s top-k predictions. This ensures
that the excessively high predictive probability in
the student model are also reasonably optimized.

Our approach allows that during the optimization
process, the calculation of peak predictions is not
limited to comparisons within a single category.
As the red lines shown in Figure 4, Q(i) needs
to be compared with Q(j) and Q(k) based on the
ranking position of P (i) in the teacher’s predictions
to minimize the ranking loss.

We consider Spearman’s rank correlation coef-
ficient (SRCC) as the target for the measurement
of ranking consistency. Compared to the Pearson
coefficient, which also measures order consistency,
SRCC only considers the consistency in the order
of two sets of arrangements, without taking into
account the correlation of the actual element values.
We prefer that the ranking loss focuses more on the
consistency of the predicted categories and proba-
bility values are non-linear relationships, therefore
we select SRCC as the optimization objective for
ranking loss, as

LRanking = 1−ρsrcc(p, q) = 1−Cov(Rp, Rq)

σRp · σRq

(1)

where p and q are subsets of distributions P and Q,
respectively, and each subset represents the proba-
bility values on the respective distributions for the
union of top-k predictions. Rp denotes the rank
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index of p, σRp is the standard deviation of Rp, and
Cov(Rp, Rq) is the covariance of Rp and Rq.

Although sorting operations are theoretically
non-differentiable, existing work (Blondel et al.,
2020; Ramzi et al., 2023) has implemented differ-
entiable ranking operator suitable for stochastic
gradient descent. Several studies (Huang et al.,
2022; Rudd et al., 2022; Wang and Zheng, 2023)
have used SRCC as an optimization objective in
other research areas based on such operators.

Overall, our method fully utilizes the peak pre-
dictions information from both the teacher and
student models. Compared to previous methods
that calculate loss within a single category, our ap-
proach further optimizes using probability values
between categories. As shown in Figure 4, when
combined with existing objectives, the fused ob-
jective allows the student model to more compre-
hensively learn the peak predictions of the teacher
model from two different perspectives, showing
excellent compatibility.

5 Experiments

In this section, we verify the effectiveness of our
method on the pre-training and downstream tasks.

5.1 Baselines

To validate the effect of ranking loss, we introduce
some distillation objectives that also focus on soft
label learning as baseline methods.

Supervised Fine-Tuning(SFT) We verify the
effectiveness of KD by comparing with direct fine-
tuning.

Word-Level Distillation We choose four word-
level distillation objectives that are used more fre-
quently in recent work: KL, RKL, JSD and TVD.
Afterwards, we validate the boosting effect of rank-
ing loss when combined with these base distillation
objectives.

SeqKD (Kim and Rush, 2016) This method is
representative of sequence-level distillation, which
approximates sentence-level KL as fine-tuning on
teacher-generated data.
f -DISTILL (Wen et al., 2023) We compare

with the sequence-level KL in f -DISTILL (abbre-
viated as FD). Similar to SeqKD, FD also relies on
teacher-generated data, but adopts soft labels for
training. In particular, we have not compared with
other methods in f -DISTILL because they rely on
sampling directly from the student model, which
is not as effective without pre-distillation (Shleifer

and Rush, 2020).
Adaptive Kullback-Leiber divergence (AKL,

Wu et al. 2024b) For the calculation process of
AKL, we use the same experimental setup as in the
original paper. We set the hyperparameter µ as 0.5
and the gap function ϵ(p(z), q(z)) = |p(z)− q(z)|.

5.2 Datasets and Models

Dataset used in the pre-training task:
SlimPajama (Soboleva et al., 2023) A high-

quality pre-training dataset with a mixture of data
in reasonable proportions. We test the CR and
MOR on the training set to assess how efficiently
the student model learns the multi-modal predictive
distribution.

Datasets used in downstream tasks:
GSM8K (Cobbe et al., 2021) A high-quality

mathematical reasoning dataset, each entry has a
complete reasoning process, making it very suit-
able for KD tasks. It contains 8.5k challenging
grade school math word problems. We follow the
dataset’s original test set division, with 1,319 sam-
ples as the test set and the rest as the training set.
We use answer accuracy as the evaluation metric.

databricks-dolly-15k (Conover et al., 2023) A
directive fine-tuning dataset covering various tasks.
We randomly select 14,000 samples for the train-
ing set and 800 samples for the test set. We use
ROUGE scores (Lin, 2004) as the evaluation metric
to test the generative performance.

Xsum (Narayan et al., 2018) An extensively
used text summarization dataset. We randomly
select 20,000 samples for the training set and 1,000
samples for the test set. Evaluation is also con-
ducted through ROUGE scores.

For all KD tasks, we employ Llama-2-7B
(Touvron et al., 2023) as the teacher model and
Tinyllama-1.1B (Zhang et al., 2024) as the student
model. Prior to distillation, we have fine-tuned the
teacher models on the respective datasets to adapt it
to the tasks. Except in the GSM8K task, we directly
use gsm8k-rft-llama7b2-u13b model released by
Yuan et al. (2023) due to its excellent performance.

More details can be found in Appendix B.

5.3 Results in the Pre-Training Task

In pre-training task, we investigate the impact of
introducing ranking loss on improving the align-
ment of top-k predictions between student and
teacher models. The reason for the validation on
pre-training task rather than downstream tasks is
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Loss Perplexity↓ CR↑ (%) MOR↑ (%)
top1 top2 top3 top4 top5 top3 top5 top10 top20

Start 10.83 75.52 41.17 18.59 7.44 2.76 69.14 67.84 67.19 66.05
KL 7.85 89.44 62.27 35.96 17.88 7.97 81.10 78.07 75.19 72.05
KL+R 7.81 90.59 69.08 44.54 25.21 12.65 86.00 85.04 83.39 76.75
RKL 8.25 90.03 61.67 34.65 16.95 7.41 79.70 76.66 74.07 71.51
RKL+R 7.99 90.29 67.27 41.94 22.74 10.99 84.75 83.56 81.76 75.50
JSD 8.23 89.98 63.14 36.79 18.81 8.60 81.07 78.10 75.24 72.35
JSD+R 8.01 90.15 69.03 45.48 26.46 13.70 86.60 86.02 84.79 76.94
TVD 8.54 88.66 58.77 32.27 15.34 6.55 78.77 75.80 73.25 70.58
TVD+R 7.92 89.87 67.65 43.21 24.09 12.68 85.62 84.89 83.43 76.34
AKL 7.93 90.36 63.21 36.44 18.14 8.04 81.08 77.95 75.08 72.34
AKL+R 7.86 90.50 68.49 43.64 24.39 12.14 85.60 84.54 82.69 76.31

Table 1: Learning situation of multi-modal distribution for data already learned in the pre-training task. "+R"
represents that we have added an additional fixed-ratio ranking loss.
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Figure 5: Improvement in the learning ability of multi-modal distributions for existing distillation objectives by
introducing ranking loss in the pre-training task. We average the results of the five distillation objectives before and
after adding the ranking loss. The red area indicates the improved parts.

that student model can be easier to capture task-
specific peak predictions patterns on a single task,
thereby approaching the distribution of the teacher
model more closely. Inversely, the richness of cate-
gories and types in pre-training data makes it more
likely that the proximity between the student and
teacher model predictions is a result of KD training.

Training With the same experimental setup as
in Section 3.3, we test the effectiveness of these
five distillation objectives combined with ranking
loss. For ranking loss, we align predictions of
the top 15 between student and teacher models.
We employ a fixed ratio for loss allocation, as
Ltotal = 2 · LRanking + Llogits. The choice of rank-
ing ranges and the allocation of losses is discussed
in Appendix D. For the convenience of subsequent
ablation analysis, in addition to the multi-modal dis-
tribution similarity, we also evaluate the perplexity
and CR of the top-1 prediction. The experimental
results are presented in Table 1, while more detailed
training information can be found in Appendix B.
We also present extra experiments in Appendix E
to verify the generalization ability of our method.

Results Table 1 shows the various metrics mea-
sured on the learned data for the student model
before training and after KD training with different
objectives. The results indicate that when com-
bined with ranking loss, all five different objectives
significantly improve the student model in terms of
the multi-modal consistency metric with the teacher
model during the distillation process. Moreover,
while the similarity of the multi-modal distribu-
tion improves, the top-1 accuracy and perplexity
performance are not negatively affected and even
show slight improvements. To make the metrics
for the similarity of multi-modal distributions more
intuitive, we present visualized results in Figure 5,
which show the improvement of ranking loss in a
clearer manner. Compared to the mean scores of
original objectives, our method improves the CR
metric by approximately 30% to 95% across dif-
ferent ranges, and the OR metric is improved by
about 50% to 120% across different ranges.

Overall, our approach significantly improves the
efficiency of aligning multi-modal predictions be-
tween the student and teacher models during the
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Method GSM8K Dolly Xsum
Correct_Num Score R-1 R-2 R-L R-1 R-2 R-L

Teacher 682 51.71 33.55 17.70 31.55 41.18 18.81 34.39
SFT 227 17.21 23.60 10.18 22.29 33.27 11.84 26.57
SeqKD 200 15.16 22.73 9.64 21.20 34.78 13.20 28.64
Rank-5 229 17.36 25.74 12.39 23.77 34.71 12.53 28.18
Rank-15 236 17.89 26.13 12.27 24.16 34.93 12.55 28.25
KL 219 16.60 23.09 10.12 21.82 34.62 13.06 28.24
KL+R 267(+48) 20.24 24.72 11.47 23.44(+1.62) 35.41 13.61 28.93(+0.69)
RKL 132 10.01 23.84 10.19 22.55 32.97 11.41 26.72
RKL+R 191(+59) 14.48 26.27 12.44 24.40(+1.85) 35.20 12.83 28.60(+1.88)
JSD 160 12.13 25.41 11.50 23.67 35.13 13.33 28.51
JSD+R 227(+67) 17.21 26.60 12.62 24.81(+1.14) 35.18 13.18 28.71(+0.20)
TVD 0 0.00 26.21 12.25 24.68 34.84 12.74 28.45
TVD+R 240(+240) 18.20 27.28 13.44 25.35(+0.67) 35.84 13.59 29.40(+0.95)
FD 194 14.71 23.29 9.64 21.91 34.27 12.69 27.94
FD+R 265(+71) 20.09 25.19 11.66 23.40(+1.49) 35.37 13.17 28.88(+0.94)
AKL 215 16.30 24.59 10.56 23.20 34.19 12.79 27.96
AKL+R 235(+20) 17.82 26.86 13.51 25.16(+1.96) 35.09 13.34 28.68(+0.72)

Table 2: Experimental results on test set of downstream tasks. "+R" represents that we have added an additional
fixed-ratio ranking loss. "R-1", "R-2", and "R-L" are abbreviations for ROUGE-1, ROUGE-2, and ROUGE-L,
respectively. We have also marked the improvement after combining the original objectives with ranking loss in
parentheses for the most important metrics in the table.

distillation process. Furthermore, for the five dif-
ferent distillation objectives, ranking loss demon-
strates stable and effective improvements, showcas-
ing its excellent compatibility with all these com-
monly used KD objectives.

5.4 Results in Downstream Tasks

Although experiments in pre-training task fully
validate that our method achieves the motivation
of improving multi-modal prediction distribution
learning during the KD process, its effectiveness
in improving the performance of the student model
after distillation still requires further verification.
Therefore, we conduct thorough validation of our
method on datasets from multiple different down-
stream tasks to demonstrate its contribution to im-
proving the performance of the student model.

Training We conduct experimental verification
on all baselines and downstream task datasets, and
introduce ranking loss on various baselines contain-
ing word-level distillation objectives. Specifically,
we also conduct experiments with only ranking loss
to evaluate the impact of peak alignment on down-
stream task effectiveness, as "Rank-k" to align top-
k predictions. For fused loss, we align predictions
of top-5 between teacher and student models to en-
hance applicability on downstream tasks. We use
the same loss allocation ratio as the pre-training
task. We also discuss the choice of ranking ranges
and the allocation of losses in detail in Appendix
D, including fixed-rate and dynamic-rate losses al-

locations. The experimental results are presented
in Table 2, more detailed training information can
be found in Appendix B.

Results The experimental results show the
scores of the student models after training with
the baseline method and our method, where the
highest scores for each metric of each task are
achieved by our method. The table also shows
the improvements after combining our proposed
ranking loss with existing word-level distillation
objectives. This combination enhances the perfor-
mance of existing methods on nearly all metrics,
with significant improvements on most. Specifi-
cally, after introducing the ranking loss, most of
the accuracy improvements of the student model
on the GSM8K test set are over 20% compared to
original objective, most ROUGE-L scores on the
Dolly test set improves by over 1.0 point, and most
ROUGE-L score on the Xsum test set improves by
over 0.7 points. Especially, when only using the
ranking loss, our method learns only the peak pre-
dictions, which account for only about 0.0001% of
the total categories, yet surpasses most existing dis-
tillation objectives in evaluations across multiple
tasks. This not only demonstrates the importance
of learning peak predictions, but also showcases
the outstanding performance of our method in peak
predictions alignment.

In summary, experiments on downstream tasks
validate that our method significantly improves the
performance of student model in the KD process.
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Compared to other optimization objectives of soft
labels, our method demonstrates excellent compet-
itiveness and compatibility. In addition, the con-
sistent performance improvements across different
datasets confirm the generality and robustness of
our approach.

6 Further Analysis

6.1 Ablation Study

In this section, we use further ablation analysis
to reveal whether the performance improvement
brought by our method is due to the enhanced abil-
ity of multi-modal distribution learning during the
KD process.

Based on the respective results and analysis in
Section 5.3 and 5.4, we can conclude a prelimi-
nary ablation conclusion that the improvement in
the ability to learn multi-modal distributions and
the enhancement in downstream task performance
are indeed attributed to the introduction of ranking
loss.

Furthermore, we can observe in Table 1 that
although the improvement of the top prediction
accuracy is modest by introducing the ranking loss,
the peak prediction alignment at other positions
is significantly improved. Therefore, ranking loss
does not have a significant impact on the actual
learning efficiency of the top-1 prediction.

However, in downstream tasks, we use a greedy
decoding strategy, which should not exhibit better
performance when there is no significant improve-
ment in the consistency of the top prediction. In
fact, the reason is that in downstream tasks, we
make the student model learn task-related predic-
tion patterns more efficiently by enhancing its abil-
ity to learn from multi-modal distributions. There-
fore, our method achieve better performance with
the same number of training steps.

Based on the above analysis, we can more confi-
dently get the conclusion that ranking loss primar-
ily improves the fitting of multi-modal distributions,
with modest impact on the alignment of top-one
predictions. Therefore, the existing objectives with-
out the addition of ranking loss can be regarded as
an ablation of the ability to learn multi-modal dis-
tributions, leading to worse results. This further
shows the importance of aligning multi-modal pre-
dictive distributions in KD of LLMs.

6.2 Case Study

Based on the results in Table 2, under our experi-
mental setup, the accuracy of TVD on GSM8K is
0. In fact, this is due to TVD’s inadequacy in peak
predictions learning, which leads to its failure to
grasp the answering norms of GSM8K.

We conduct a case study within this interesting
phenomenon in Appendix G to further analyze and
demonstrate the importance of peak predictions
learning.

7 Conclusion

In this paper, we propose ranking loss based knowl-
edge distillation, a new objective function that im-
proves the efficiency of aligning peak predictions
of student and teacher models during white-box
KD. We verify the importance of aligning multi-
modal distributions through experiments and high-
light the inefficiency of existing KD objectives in
learning multi-modal distributions. Most impor-
tantly, we propose a word-level ranking loss to the
existing KD objectives for more efficient alignment
of multi-modal distributions. Our extensive exper-
iments clearly demonstrate that our method effec-
tively improves the multi-modal distribution align-
ment between teacher and student models, leading
to significant performance gains in different down-
stream tasks.

Limitations

Due to the extensive experiments have been con-
ducted in this paper and the limitations of com-
putational resources, we only perform distillation
experiments on models within the Llama (Touvron
et al., 2023) architecture. However, the existing
generative models often have similar structures,
and the Llama model family is one of the most
widely used, making this study still highly appli-
cable. We will also conduct experiments on other
model families as future work.

Additionally, we encourage combining our pro-
posed method with existing distillation objectives
to achieve optimal performance. Although this
introduces additional computation, this burden be-
comes negligible due to existing operators and our
code optimization (only adding about 1% extra
training time). We show the time consumption in
Appendix C.
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A Proportion of Multi-Modal
Distributions

Obviously, the diversity of natural language leads
to the prediction of language models exhibiting
a multi-modal characteristic. In this section, we
quantitatively demonstrate through experiments the
proportion of the multi-modal distribution in the
overall prediction distribution, further proving the
necessity of enhancing the ability to learn multi-
modal distributions during the KD process.

Top-p sampling (Holtzman et al., 2020) com-
bined with sampling temperature is a commonly
adopted method for LLMs, ensuring both the reli-
ability and diversity of sampling results. We ver-
ify the proportion of multi-modal predictions (i.e.,
cases where the number of sampled results for the
next acceptable token is greater than one) in all
predictions made by Llama-2-7B (Touvron et al.,
2023) using this sampling method on 5,000 sam-
ples (containing approximately 3M tokens) from
SlimPajama (Soboleva et al., 2023). We use the
common top-p sampling setting of p = 0.9 and test
the results with several commonly used sampling
temperatures, as shown in Figure 6.

According to the results in Figure 6, when the
sampling temperature is high, most prediction dis-
tributions exhibit multi-modal characteristics. Even
when the sampling temperature is low, multi-modal
distributions still account for a significant portion.
Therefore, it is essential to strengthen the student
model’s ability to learn from multi-modal distribu-
tions during the KD process.

B Details of Experiments

To enhance the reproducibility of our experiments,
we use open-source models and datasets in our
experiments, and we also detail the information of
the experimental setup in this section.

Models For specific information of models,
we use Llama-2 (Touvron et al. 2023, Meta li-
cense) model family, OpenELM (Mehta et al.
2024, apple-sample-code-license) model fam-
ily, TinyLlama-1.1B-intermediate-step-1431k-3T

Multi-modal Unimodal

62 . 1 7%

37 . 83%

(a) temperature = 1.0

Multi-modal Unimodal

52 . 1 9%47 . 8 1%

(b) temperature = 0.8

Multi-modal Unimodal

38 . 7 3%

6 1 . 2 7%

(c) temperature = 0.6

Figure 6: The results of the proportion of multi-modal
predictions on the test set.
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(Zhang et al. 2024, Apache License 2.0) and gsm8k-
rft-llama7b2-u13b (Yuan et al. 2023) which is
based on Llama-2-7B. Notably, we select a stronger
model as the teacher model for GSM8K because
the test of GSM8K requires completely accurate
results, and a teacher model with a low accuracy
rate can provide very limited guidance.

Datasets For specific information of datasets,
we use SlimPajama (Soboleva et al. 2023, Apache
License 2.0), GSM8K (Cobbe et al. 2021, MIT Li-
cense), databricks-dolly-15k (Conover et al. 2023,
CC BY-SA 3.0 license) and Xsum (Narayan et al.
2018, MIT License).

Hardware Environment All the experiments
are conducted in two or four A100 GPUs with
80GB of VRAM each, and each individual exper-
iment takes no more than 2 hours to complete.
Based on our experimental observations, we be-
lieve that using either two GPUs with 40GB (via
DeepSpeed, Rasley et al. 2020) each or a single
GPU with 80GB of VRAM is also sufficient.

Training Parameters For all training process
in our experiments, we use the AdamW optimizer
(Loshchilov and Hutter, 2019). We set the learning
rate to 2e-5 and gradient clipping threshold to 1.0.
In the experiments involving KD, the distillation
temperature are set to 1.0. For the pre-training task,
we set the training epoch to 20, each epoch contains
25 steps, sequence length to 400, and each step
contains 0.1M tokens. For downstream tasks, we
set batch size to 64 and train 2 epochs on GSM8K
which contains less data, 1 epoch for others. And
the sequence length is set to 2048 in all downstream
tasks. Due to the large volume of our experiments,
it is not feasible to run multiple times for each
individual experiment. But to ensure consistency
and comparability, all comparative experiments in
our study are conducted with the same random seed
72.

Test Setting We use greedy decoding strategy in
the testing of all downstream tasks.

Code Details For the code implementation of
ranking loss, we utilise the differentiable ranking
operator of torchsort2 library, which is a python im-
plementation of the differentiable ranking method
proposed by Blondel et al. (2020). For the computa-
tion of the ROUGE score, we performed it through
rouge3, a python library.

Others We show in Table 3 the numerical results

2https://github.com/teddykoker/torchsort
3https://github.com/pltrdy/rouge

of the experiments in Section 3.2.

C Analysis of Computational Efficiency

We list the elapsed time for distillation training two
epochs on GSM8K for some of the distillation ob-
jectives, as shown in Table 4. Based on the results,
we can find that the introduction of ranking loss has
a very minimal impact on computational burden,
which can be ignored. Additionally, when using
only ranking loss, the computational efficiency is
improved by eliminating the need for softmax
operation on output logits.

D Analysis of Hyperparameter

There are two hyperparameters in our experiments,
the optimised range of ranking loss and the propor-
tion of the loss allocation.

For the range of ranking loss, we perform a num-
ber of experiments upfront to determine the value
of the take that works best on the downstream KD
tasks. Indeed, optimising the top predictions from 5
to 15 works well and is in line with our motivation
for proposing ranking loss. For the pre-training
task, due to the large number of calculations that
need to be performed, we recommend setting range
k to 15 because a larger range makes the sorting
operator of the differentiable more stable.

And for downstream tasks, we recommend tak-
ing the range k to be 10-15 when using ranking loss
alone, and k to be 5 for mixing with other distilla-
tion objectives such as KL. Because when mixing
losses, other distillation objectives can bring the
two distributions closer together on a broader scale,
and a smaller range k helps the ranking loss focus
more on peak prediction to achieve better perfor-
mance. In addition, small changes to this range
have a small effect on the results, and dynamic
value of the range tends to create a computational
burden during batch calculations, so we do not
dynamically adjust this hyperparameter. We also
present the results on GSM8K in Table 5 after ap-
plying different k values to partial distillation ob-
jectives, to further validate the above conclusions.

For the losses allocation method, we have found
in experiments that the ratio of ranking loss to other
distillation objectives is better when the ratio is 1
to 3. Besides, small changes have little effect on
the KD effect, so we suggest to adopt this lossed
allocation directly, as Ltotal = 2 · LRanking + Llogits.
As shown in Figure 4, LRanking and Llogits align two
distributions from different perspectives, thus we

https://github.com/teddykoker/torchsort
https://github.com/pltrdy/rouge
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Model Size CR↑ (%) MOR↑ (%)
top1 top2 top3 top4 top5 top3 top5 top10 top20

13B 82.47 50.54 26.40 12.42 5.39 75.30 73.94 73.36 72.27
7B 79.74 47.02 23.29 10.40 4.28 73.08 71.66 71.11 69.95
3B 74.44 39.60 17.81 7.22 2.70 67.81 66.47 65.74 64.43
1B 70.84 35.57 14.83 5.54 1.95 64.72 63.51 62.95 61.85
450M 67.02 31.08 11.95 4.11 1.34 61.11 59.85 59.25 58.21
270M 64.51 28.44 10.30 3.33 1.05 58.76 57.50 56.95 55.91

Table 3: The numerical results of the experiments in Section 3.2, showing the degree of agreement in peak predictions
between the different models and the 70B model.

Loss Total Training Time (s)
KL 1424

KL+R 1441 (+1.19%)
Rank-15 1370 (-3.79%)

Table 4: The computation time for KD with different
losses on GSM8K for 2 epochs with 2 A100 GPUs.

believe static allocation is appropriate.
Moreover, we also propose a dynamic allocation

of losses for asymmetric KL and RKL. We employ
OR of top-k predictions from both the teacher and
student models as an indicator of the understand-
ing of current input by the student model. With
this indicator, we are able to guide the focus of stu-
dent learning towards peak predictions of teacher
model, particularly when the gap between the peak
predictions of the student model and the teacher
model is excessive. And the optimization efforts
will naturally gravitate towards refining global in-
formation when peak predictions have aligned. For
each individual prediction, the mixed loss can be
expressed by following formula, as

Ltotal = 2 · LRanking +
|pk ∩ qk|

k
· Llogits (2)

where pk is the index set of the top-k tokens in
P , the value of k is consistent with the range of
ranking loss. Under the same experimental setup
as in Section 5.4, we show the effect of dynamic
loss allocation on KL and RKL in Table 6.

Experimental results show that our dynamic allo-
cation strategy achieves better scores on most tasks,
further improving the effectiveness of distillation
training. Other distillation objectives do not show
head or tail bias, and in experiments it is found that
fixed ratios of losses work better, so there is no
need for dynamic losses allocation.

E Supplementary Experiments in the
Pre-Training Task

We have shown the improvement in learning ca-
pability brought by our method in the main text.
Additionally, we consider it necessary to show re-
sults on the test set data to prove the generalization
ability of our method. Hence, we conduct extra
experiments in this section to demonstrate the per-
formance of our method on the test set.

Training We change the training steps to 2000,
set the number of epochs to 1, and configure the
batch size to approximately 0.5M tokens. Fi-
nally, we validate the performance on the out-of-
distribution test dataset. The remaining training
settings are consistent with those in Section 5.3.
The experimental results are presented in Table 7.

Results The results in Table 7 show that our
method also effectively improves the consistency
of peak predictions between the student model and
the teacher model on out-of-distribution data dur-
ing the KD process. These results demonstrate the
generalization ability of our method and comple-
ment the experimental results in the main text.

F Validation Experiment of Different
Ranking Objectives

We have explained in Section 4 the reason for
choosing SRCC instead of the Pearson correlation
coefficient as the optimization objective for ranking
loss. Because SRCC is more suitable for calculat-
ing ranking loss in scenarios involving discrete and
non-linear language model output logits.

In this section, we demonstrate the performance
differences between applying these two sorting ob-
jectives on the GSM8K dataset (with the same ex-
perimental setup as in the main text) to show that
SRCC indeed performs better in practical applica-
tions.
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Value of k 5 10 15 20 25 30
Rank-k 229 240 236 246 236 223
KL+R 267 264 243 240 237 229

RKL+R 191 171 168 176 151 159
TVD+R 240 236 216 228 233 222

Table 5: The number of correct instances in the test set of GSM8K when using different ranking consistency
computation objectives as the optimization target.

Method GSM8K Dolly Xsum
Correct_Num Score R-1 R-2 R-L R-1 R-2 R-L

Teacher 682 51.71 33.55 17.70 31.55 41.18 18.81 34.39
KL 219 16.60 23.09 10.12 21.82 34.62 13.06 28.24
KL+R 267(+48) 20.24 24.72 11.47 23.44(+1.62) 35.41 13.61 28.93(+0.69)
KL+R(Dynamic) 280(+61) 21.23 25.51 12.10 24.02(+2.20) 35.51 13.62 29.10(+0.86)
RKL 132 10.01 23.84 10.19 22.55 32.97 11.41 26.72
RKL+R 191(+59) 14.48 26.27 12.44 24.40(+1.85) 35.20 12.83 28.60(+1.88)
RKL+R(Dynamic) 204(+72) 15.47 26.40 11.98 24.34(+1.79) 35.46 13.40 29.04(+2.32)

Table 6: Comparison of dynamic allocation loss and fixed-rate allocation loss. "+R" represents that we have added
an additional fixed-ratio ranking loss. "+R(Dynamic)" means that we have added an additional dynamic-ratio
ranking loss.

According to the results shown in Table 8, the
average performance of SRCC is better than that
of the Pearson correlation coefficient, which is con-
sistent with our theoretical estimation.

G Case Study

In this section, we conduct a case study based on
our experimental results on GSM8K. We select
several cases and demonstrate the generated results
before and after introducing ranking loss to some
distillation objectives, as shown in Table 9, Table
10 and Table 11.

Based on the results, we can see that after adding
the ranking loss, the student model’s choice of
words and reasoning align more closely with the
teacher model when answering questions. This
also means that the peak predictions of the student
model and the teacher model are more consistent.

Additionally, before introducing the ranking loss,
TVD does not allow the student models to learn the
answering pattern of GSM8K well, leading to auto-
mated evaluations failing to match the answers and
resulting in a score of 0. After introducing the rank-
ing loss, this deficiency is significantly improved,
resulting in a good score.
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Loss Perplexity↓ CR↑ (%) MOR↑ (%)
top1 top2 top3 top4 top5 top3 top5 top10 top20

Start 10.93 75.37 41.07 18.57 7.48 2.77 69.14 67.84 67.19 66.04
KL 10.22 78.46 45.62 22.31 9.62 3.95 72.21 70.84 70.03 68.81
KL+R 10.34 78.44 46.95 23.80 11.06 4.58 73.36 72.39 71.79 70.23
RKL 10.69 78.17 45.21 21.66 9.48 3.86 71.73 70.39 69.70 68.49
RKL+R 10.72 78.24 46.53 23.33 10.72 4.84 73.02 72.08 71.51 69.08
JSD 10.35 78.54 45.85 22.59 10.16 4.16 72.29 70.92 70.15 68.89
JSD+R 10.76 78.25 46.72 23.81 11.14 4.67 73.40 72.63 72.10 70.22
TVD 10.45 78.60 45.71 22.08 9.81 4.53 71.99 70.69 69.85 68.56
TVD+R 10.71 78.31 47.02 23.65 10.90 5.14 73.31 72.58 72.01 70.32
AKL 10.34 78.35 45.69 22.42 10.05 3.99 72.25 70.91 70.18 68.97
AKL+R 10.44 78.35 46.81 23.59 10.89 4.63 73.21 72.28 71.70 70.16

Table 7: Multi-modal distribution learning situation on the pre-training task test set, which contains 5,000 slices.

Objective Rank-5 Rank-15 KL+R RKL+R JSD+R TVD+R FD+R AKL+R Avg.
Pearson 246 229 230 147 233 202 250 223 220.00
SRCC 229 236 267 191 227 240 265 235 236.25

Table 8: The number of correct instances in the test set of GSM8K when using different ranking consistency
computation objectives as the optimization target.
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Question
Greta and Celinda are baking cookies. Greta bakes 30 cookies and Celinda bakes
twice as many. If the pair eat 10 of the cookies while they are cooling and put
the rest in a box, how many cookies are there in the box?

Ground truth

Celinda bakes 30 cookies * 2 = «30*2=60»60 cookies. So in total, Celinda
and Greta bakes a total of 30 + 60 = «30+60=90»90 cookies. After eating
some of the cookies, they have 90 baked cookies 10 eaten cookies =
«90-10=80»80 cookies in the box. #### 80

Teacher
Celinda bakes 30 x 2 = «30*2=60»60 cookies. The total number of cookies is 30
+ 60 = «30+60=90»90 cookies. After they eat 10, there are 90 - 10 = «90-10=80»80
cookies in the box. #### 80

KL
Celinda bakes 30 x 2 = «30*2=60»60 cookies. The total number of cookies baked is
30 + 60 = «30+60=90»90 cookies. Greta and Celinda eat 10 + 10 = «10+10=20»20
cookies. There are 90 - 20 = «90-20=70»70 cookies in the box. #### 70

KL+R

Greta bakes 30 cookies and Celinda bakes twice as many, so Celinda bakes
2*30 = «30*2=60»60 cookies. The total number of cookies baked is 30+60 =
«30+60=90»90 cookies. The pair eats 10 of the cookies while they are cooling, so
there are 90-10 = «90-10=80»80 cookies in the box. #### 80

RKL

Celinda bakes 30 * 2 = «30*2=60»60 cookies. The total number of cookies baked is
30 + 60 = «30+60=90»90 cookies. The number of cookies that the pair eat is 30 + 10
= «30+10=40»40 cookies. There are 90 - 40 = «90-40=50»50 cookies left in the box.
#### 50

RKL+R

Greta bakes 30 cookies and Celinda bakes 2*30 = «30*2=60»60 cookies.
The total number of cookies is 30+60 = «30+60=90»90 cookies. The pair eat 10
of the cookies while they are cooling so there are 90-10 = «90-10=80»80 cookies in
the box. #### 80

TVD
Celinda bakes 30 x 2 = «30*2=60»60 cookies. The total number of cookies baked is
30 + 60 = «30+60=90»90 cookies. The total number of cookies in the box is 90 x 10
= «90*10=900»900 cookies.

TVD+R

Greta bakes 30 cookies and Celinda bakes twice as many, so Celinda bakes
2*30 = «2*30=60»60 cookies. The total number of cookies baked is 30+60
= «30+60=90»90 cookies. The pair eat 10 of the cookies while they are cooling,
so there are 90-10 = «90-10=80»80 cookies in the box. #### 80

Table 9: Case 1. In this case, the thought processes of the existing distillation objectives are incorrect, leading to the
generation of incorrect calculation formulas. The introduction of the ranking loss corrects the faulty calculation
thinking, making the distillation objectives closer to the teacher model.
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Question

Rani is obsessed with sports cars. She wonders what the faster car ever made
can go so she looks it up. What she finds out is that the fastest car was 1.25
times faster than the 2nd fastest car. The 2nd fastest car was 5 times faster than
the average car. The average car can go 120 Miles per hour. How fast does
the faster car go?

Ground truth
The 2nd fastest car can go 600 MPH because 5 x 120 = «5*120=600»600
The faster car can go 750 MPH because 1.25 x 600 = «1.25*600=750»750 #### 750

Teacher
The 2nd fastest car goes 120*5=«120*5=600»600 mph
The faster car goes 600*1.25=«600*1.25=750»750 mph #### 750

KL

The 2nd fastest car is 1.25 times faster than the average car so it goes 1.25*120 =
«1.25*120=150»150 Miles per hour
The average car can go 120 Miles per hour so the faster car goes 150-120 =
«150-120=30»30 Miles per hour #### 30

KL+R

The 2nd fastest car is 5 times faster than the average car, so it goes 120 Miles
per hour * 5 = «120*5=600»600 Miles per hour.
The fastest car is 1.25 times faster than the 2nd fastest car, so it goes 600 Miles
per hour * 1.25 = «600*1.25=750»750 Miles per hour. #### 750

RKL
The 2nd fastest car was 5*120=«5*120=600»600 Miles per hour.
The fastest car was 600*1.25=«600*1.25=750»750 Miles per hour. The faster car was
750-120=«750-120=630»630 Miles per hour. #### 630

RKL+R
The 2nd fastest car was 5 times faster than the average car, so it was 5*120 =
«5*120=600»600 Miles per hour. The fastest car was 1.25 times faster than the
2nd fastest car, so it was 1.25*600 = «1.25*600=750»750 Miles per hour. #### 750

TVD
The 2nd fastest car was 5 times faster than the average car so it was 5*120 =
«5*120=600»600 Miles per hour The fastest car was 1.25 times faster than the
2nd fastest car so it was 1.25*600 = «1.25*600=750»750 Miles per hour

TVD+R

The 2nd fastest car is 5 times faster than the average car, so it can go 120
Miles per hour * 5 = «120*5=600»600 Miles per hour. The fastest car is 1.25
times faster than the 2nd fastest car, so it can go 600 Miles per hour * 1.25 =
«600*1.25=750»750 Miles per hour. #### 750

Table 10: Case 2. In this case, both KL and RKL lead to incorrect understanding of the problem statement, which
is successfully corrected after introducing the ranking loss. Although TVD arrives at the correct answer, it does
not know how to output it in the GSM8K format. After introducing the ranking loss, it can output the result in the
correct format.
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Question
An 8-year old child wants to buy a toy car which costs $12. He already has
$4 savings. How many days will it take him to save the remaining amount
of money if he promises to save $2 daily from his allowance?

Ground truth
The boy still needs $12 - $4 = $«12-4=8»8. If he saves $2 per day then it will
take him $8 / $2/day = «8/2=4»4 days to save the remaining amount. #### 4

Teacher
The child needs to save $12 - $4 = $«12-4=8»8 more. He will need $8 / $2 =
«8/2=4»4 more days to save up enough money.#### 4

KL
The child needs to save $12 - $4 = $«12-4=8»8 more. He will save $8/day * 7 days =
$«8*7=56»56 in total. It will take him $56 / $2/day = «56/2=28»28 days to save the
remaining amount of money.#### 28

KL+R The child needs to save $12 - $4 = $«12-4=8»8 more. He will save $8 / $2 =
«8/2=4»4 days.#### 4

RKL
The child will save $12 - $4 = $«12-4=8»8 in 8 days. It will take him 8 days to
save $8.#### 8

RKL+R The child needs to save $12 - $4 = $«12-4=8»8. He will have to save for
8 / 2 = «8/2=4»4 days.#### 4

TVD
The child will need to save $12 - $4 = $«12-4=8»8. It will take him 8 / 2 =
«8/2=4»4 days to save the remaining amount of money.

TVD+R The child needs to save $12 - $4 = $«12-4=8»8. He will save $8 / $2 =
«8/2=4»4 days.#### 4

Table 11: Case 3. As same as Case 2, in this case, both KL and RKL lead to incorrect understanding of the problem
statement, which is corrected after introducing the ranking loss. Moreover, TVD can output the result in the correct
format after introducing the ranking loss.
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