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Abstract
Emotion recognition in conversations (ERC)
has garnered significant attention from the
research community. However, due to the
complexity of visual scenes and dialogue con-
textual dependencies in conversations, previ-
ous ERC methods fail to handle emotional
cues from both visual sources and discourse
structures. Furthermore, existing state-of-
the-art ERC models are trained and tested
separately on each single ERC dataset, not
verifying their effectiveness across multiple
datasets simultaneously. To address these
challenges, this paper proposes an innova-
tive framework for ERC, called Dialogue
Scenes Understanding Enhanced Multi-modal
Multi-task Tuning (DialogueMMT). More con-
cretely, a novel video-language connector is
applied within the large vision-language model
for capturing video features effectively. Ad-
ditionally, we utilize multi-task instruction
tuning with a unified ERC dataset to en-
hance the model’s understanding of multi-
modal dialogue scenes and employ a chain-
of-thought strategy to improve emotion clas-
sification performance. Extensive experimen-
tal results on three benchmark ERC datasets
indicate that the proposed DialogueMMT
framework consistently outperforms existing
state-of-the-art approaches in terms of over-
all performance. Our code is available at
https://github.com/he2720/DialogueMMT.

1 Introduction

Emotion recognition in conversations (ERC) task
has become a popular research topic (Poria et al.,
2019b) due to its widespread potential in dialogue
systems (Ma et al., 2020), opinion mining (Cor-
tis and Davis, 2021), and recommender systems
(Zheng et al., 2020).

A substantial amount of work has been proposed
to address ERC and achieved significant break-

*Equal contribution
†Corresponding author

Figure 1: A conversation from MELD dataset with vi-
sual information and discourse dependencies.

throughs, however, these efforts still have limita-
tions. Specifically, prior research has focused either
on modeling the temporal dependencies of speakers
(Shen et al., 2021; Lee and Lee, 2022) and the rela-
tionships between utterances (Zhang et al., 2023a;
Li et al., 2023a) using only the textual modality,
ignoring the important role of visual modality in
emotion recognition, or innovating fusion methods
(Zhang and Chai, 2021; Hu et al., 2022c) and lever-
aging facial information (Yang et al., 2021; Shi and
Huang, 2023) to aid emotion recognition, while
neglecting the contextual dependencies. Moreover,
researchers have conducted preliminary studies on
multi-task learning for the ERC task, emphasizing
the improvement of performance on the main ERC
task by adding a single auxiliary task (Li et al.,
2020c; Zheng et al., 2023), while neglecting the
assistance of other tasks.

Following previous works, we present the fol-
lowing hypotheses: (1) Detecting the active speaker
information can help reduce noise caused by the
scene (Tao et al., 2021). (2) Performing facial emo-
tion recognition tasks can enhance the model’s per-
ception of visual emotional cues (Shi and Huang,
2023; Zheng et al., 2023). (3) Discourse structure
offers a straightforward way to capture the essential
information flow in a conversation (Zhang et al.,
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2023a; Li et al., 2023a). The motivation of this
work is to simultaneously handle different kinds
of auxiliary dialogue-related tasks to deliver extra
accuracy in the main task ERC. For example, as
seen in Figure 1, from Joey’s utterance alone, it is
not clear that there is a distinct ’Sadness’ emotion.
However, considering the contextual dependencies,
Joey is responding to Monica getting the job, ex-
pressing a kind of concern. Additionally, from the
visual information, Joey has a noticeable frown,
while Rachel’s expression shows surprise, which
can be considered noise for judging Joey’s emotion.
Then the question arises: how can we enable the
model to efficiently capture both visual and textual
cues simultaneously? Fortunately, recent works
have mapped images into text-like tokens, enabling
LLMs to emerge with the ability to comprehend im-
ages (Alayrac et al., 2022; Liu et al., 2023; Ye et al.,
2023; Zhu et al., 2023). Furthermore, Video-LLMs
have made strides in enabling interactions between
video and language (Lin et al., 2023; Zhang et al.,
2023b; Cheng et al., 2024), which provides the
foundation for leveraging the excellent capabili-
ties of large models to process visual and textual
information to enhance ERC performance.

To address these, we propose a dialogue scenes
understanding enhanced multi-modal multi-task
tuning framework named DialogueMMT for the
ERC task. The DialogueMMT adopts the large
vision-language model as the fundamental archi-
tecture that connects a vision encoder and an LLM
via a visual projector for general purposes and lan-
guage understanding. Firstly, the pre-trained CLIP
visual encoder provides the visual feature of the in-
put image or video frames, then we incorporate the
pre-trained Spatial-Temporal Convolution (STC)
Connector to capture the intricate spatial and tem-
poral dynamics of visual streams inspired by Cheng
et al. (2024). Before feeding into the language
model, a trainable projection matrix is applied to
convert visual features to language embedding to-
kens. Finally, the LLM uses the aligned features to
generate corresponding responses based on input
instructions.

Within the large vision-language model, Dia-
logueMMT undergoes multi-task instruction-based
fine-tuning to enhance the understanding of dia-
logue scenes in visual and textual simultaneously.
For visual dialogue scenes, active speaker detection
(ASD) (Roth et al., 2020; Michelsanti et al., 2021)
and facial expression recognition (FER) (Mollahos-
seini et al., 2017; Wang et al., 2020) are considered.

For textual dialogue scenes, the DialogueMMT
uses dialogue discourse parsing (DDP) (Shi and
Huang, 2019; Liu and Chen, 2021) to be aware of
discourse structural information by analyzing the
discourse dependencies between utterances. In this
paper, we unify three ERC datasets to conduct joint
fine-tuning, enabling the model to identify dialogue
emotions from diverse sources and a simple yet im-
pactful chain-of-thought strategy is added to the
instructions. Extensive experimental results con-
firm the effectiveness of our framework, notably
outperforming comparable state-of-the-art methods
on the multi-modal dialogue dataset MELD.

The main contributions of this work can be
summarized as follows:

• To the best of our knowledge, we are the
first to explore multi-modal LLM in the ERC task
and the first to tune the model with unified ERC
datasets for handling ERC across domains.
• We perform multi-modal multi-task tuning to
enhance the understanding of dialogue scenes
in visual and textual contexts. In the main task
ERC, we employ a chain-of-thought strategy that
first classifies sentiment polarity and then detects
precise emotion.
• The effectiveness of our method is validated
through experiments on three benchmark ERC
datasets, demonstrating superior performance
compared to most other state-of-the-art methods,
and achieving SOTA results on the multi-modal
ERC dataset.

2 Related Work

2.1 Emotion Recognition in Conversations

Unlike other sentiment analysis tasks (Zhou et al.,
2019; Hu et al., 2022b; Zhang et al., 2023c), ERC
task typically requires consideration of contextual
information (Poria et al., 2019b), the speaker states
(Li et al., 2020b), as well as the learning of emotion
representations (Fu et al., 2023).
Recurrence-based Models generally utilize se-
quential information in a dialogue to capture con-
textual features at different levels. Hazarika et al.
(2018) use gated recurrent units (GRUs) to capture
contextual features, named ICON. Majumder et al.
(2018) propose DialogueRNN which uses GRUs to
capture speaker, context, and emotion features. Ma
et al. (2021) design a Multi-View Network (MVN)
to model emotion representations of queries from
both word and utterance level views.
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Graph-based Models use GCNs to model the re-
lation between utterances and speakers or fuse
external knowledge. Zhang et al. (2019) intro-
duce a GCN model named ConGCN to leverage
both context- and speaker-sensitive dependencies.
Ghosal et al. (2019) design a DialogueGCN model
to learn the intra- and inter-speaker dependencies.
Shen et al. (2021) propose a Directed Acyclic Neu-
tral Network (DAG-ERC) to capture complex in-
teractions in a conversation. Zhang et al. (2023a)
introduce Dual Graph ATtention networks (Dual-
GATs) to concurrently consider the complementary
aspects of discourse structure and speaker-aware
context.
Transformer-based Models usually exploit gen-
eral knowledge in pre-trained language models.
Zhong et al. (2019) design a Knowledge-Enriched
Transformer (KET) that uses a context-aware effec-
tive graph attention mechanism to leverage com-
monsense knowledge. Li et al. (2020b) introduce a
transformer-based context-sensitive model named
HiTrans based on two hierarchical transformers. Li
et al. (2022) utilize an end-to-end model called
EmoCaps to extract emotional tendencies from
multi-modal features.
Multimodal-based Models use multi-modal fu-
sion to model different modals including tex-
tual, visual, and speech. Hu et al. (2021c) pro-
pose a Multimodal Fused Graph Convolutional
Network (MMGCN) that leverages both multi-
modal information and long-distance contexts. Hu
et al. (2022c) design a unified framework named
UniMSE, which injects acoustic and visual signals
into the T5 model to fuse multi-modal representa-
tions. Shi and Huang (2023) propose an attention-
based correlation-aware multi-modal fusion frame-
work named MultiEMO that effectively integrates
multi-modal cues.

2.2 ERC with Multi-task Learning
It has been confirmed that the benefit of using aux-
iliary tasks can be substantial (Caruana, 1997) and
the existing literature provides many ideas for the
auxiliary task selection. In the field of sentiment
analysis, multi-task learning has been successfully
applied (Yu and Jiang, 2016), and more recently,
an increasing number of works have begun to apply
multitask learning to the ERC task.

Li et al. (2020c) use speaker identification as
an auxiliary task to capture speaker-specific fea-
tures. Xie et al. (2021) leverage both common-

sense knowledge and sentiment lexicon to augment
semantic information. Gao et al. (2022) exploit
Emotion Shift Detection (ESD) as an auxiliary task
to assist in completing ERC. Zheng et al. (2023)
leverages an auxiliary frame-level facial expression
recognition task to obtain the emotion-aware visual
representation.

2.3 Large Vision-Language Models

Large Language Models (LLMs) have made great
progress in recent years, and visual instruction tun-
ing (Liu et al., 2023) has been proposed to extend
LLMs into Multimodal LLMs to perceive and un-
derstand visual signals.

Ye et al. (2023) introduce a visual knowledge
module and a visual abstractor module to equip
LLMs with multi-modal abilities. Zhu et al. (2023)
present MiniGPT-4 aligned a frozen visual encoder
with a frozen advanced LLM, using one projection
layer. Lin et al. (2023) establish Video-LLaVA,
utilizing a LanguageBind encoder to pre-bind vi-
sual signals into the language feature space. Cheng
et al. (2024) design VideoLLaMA2, which is built
upon its predecessor, incorporating a tailor-made
Spatial-Temporal Convolution connector for mod-
eling video data effectively.

3 Methodology

3.1 Problem Definition

Given a multi-turn corpus D = {d1, d2, ..., d|D|},
d is represented as a sequence of utterances
(ui, si)|i = 1, ..., N , where each utterance ui is
spoken by speaker si , and N denotes the total num-
ber of utterances. ERC aims to identify emotion
labels Y = y1, y2, ..., yN |yi ∈ Y for d where Y
represents the set of possible emotion labels. Note
that emotion labels are defined by an employed
dataset and each utterance is annotated with one
speaker’s identity.

3.2 Framework Overview

The overall framework of DialogueMMT is illus-
trated in Figure 2. Generally, the proposed frame-
work initially obtains visual features from the raw
visual signal (i.e., image or video) using a pre-
trained CLIP visual encoder V, which is capable
of mapping different modalities into the textual
feature space. After that, the visual features are
processed via the pre-trained spatial-temporal con-
volution (STC) connector. Subsequently, the uni-
fied visual representation is projected by a shared
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Figure 2: The overview of DialogueMMT framework.

projection layer P and then combined with tok-
enized textual queries and fed into a large language
model L to produce a response autoregressively.
In the stage of tuning, DialogueMMT undergoes
multi-task instruction-based low-rank adaptation
fine-tuning, including the main task ERC and three
auxiliary tasks that aim to enhance the understand-
ing of the dialogue scenes.

3.3 Visual Feature Extraction and Interaction

Aligned Visual Representation For the visual
modality, the goal of the framework is to project im-
age or video frame representations into the same di-
mension as the text embeddings enabling the large
language model to perceive and understand visual
signals. For a given video, DialogueMMT extracts
a fixed number of frames, and then each frame
goes through padding and resizing to a standardized
336x336 dimension. The image or video frames
XV are first encoded into features via the CLIP
(Radosavovic et al., 2020) visual encoder V, which
provides the visual representations HV = V (XV ).
Following Cheng et al. (2024), DialogueMMT ap-
plies the pre-trained STC connector, which has
two spatial interaction modules and one spatial-
temporal aggregation module, for spatial-temporal
representation learning. The STC connector con-
siders the operations of convolution or pooling to

maintain the spatial-temporal order in the output
visual tokens. In the spatial-temporal aggregation
module, a 3D downsample operator is used to com-
press spatial-temporal tokens. To complement the
information loss caused by the spatial-temporal
downsampling, a strong convolution block (Ra-
dosavovic et al., 2020) is inserted before and after
spatial-temporal downsampling. The final visual
feature can be formed as below:

fV = STC(HV ), HV = V (XV ) (1)

Finally, a trainable projection matrix W is ap-
plied to transform fV into visual query vectors
ZV , which have the same dimension as the word
embedding space in the large language model.
Modal Interaction In the forward pass, the visual

query vectors will be concatenated to text embed-
ding as the visual soft prompt and guide the LLM
to generate text conditioned on visual content. For-
mally, given a textual input XT and visual signals
XV , the visual input signals are encoded into a
sequence of tokens according to equation 2. The
concrete textual and visual instruction-following
data will be introduced in Section 3.4. In the fine-
tuning phase, the large language model predicts the
response Y = {wi}Li=1 conditioned on the multi-
modal input by maximizing the likelihood proba-
bility in equation 3, the model ultimately achieves
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Figure 3: The prompt and an example result for obtaining active speaker attributes in a video.

multi-modal dialogue scenes understanding capa-
bilities.

ZV = W · fV , ZT = T (XT ) (2)

P (Y |XV , XT ) =
L∏
i=1

pθ(wi|XV , XT , w < i)

(3)
where L is the length of the generated sequence,
and θ is a trainable parameter.

3.4 Multi-modal Multi-task Tuning
DialogueMMT experiences multi-task instruction-
based fine-tuning, serving a dual purpose: firstly,
fine-tuning on dialogue-related tasks enhances the
model’s multi-modal understanding of dialogue
scenes to improve the performance of detecting
dialogue emotion. Secondly, it activates and har-
nesses the general capabilities of DialogueMMT
across various tasks, demonstrating its versatil-
ity and adaptability in handling diverse dialogue-
related problems.
Main Task For the main task ERC, the first chal-
lenge is how to construct the conversational part in
the instruction-following data. It is widely recog-
nized that an excessively long context length con-
sumes a large amount of computational resources
and would lead to poorer model performance (Li
et al., 2023b). Take the IEMOCAP dataset (Busso
et al., 2008) as an example, the average number
of turns reached 49, which would result in very
lengthy instruction content. In addition, some con-
text is redundant and LLMs can detect the correct
emotion even when these redundancies are deleted.
Therefore, when constructing the conversational
part of the instruction, we set a maximum num-
ber of historical dialogue turns, taking the previous
m utterances before the target input. This can be
formally represented as:

begin = Max(cur_turn−m, 0), (4)

where begin denotes the starting index of the given
dialog, cur_turn represents the index of the input

utterance, and m is the maximum number of histor-
ical dialogue turns. The detailed experiments of m
will be explained in the Appendix A. Besides, an
index identifier < ui > is added before each utter-
ance to represent its position in the dialogue, and
it also serves as an entity in the DDP task. Finally,
the input dialog in instruction is formed as (e.g.,
m=5):

### contex t :
<u2>speaker1 : "Oh, I know . "
<u3>speaker2 : " I kinda f e e l l i k e i t ’ s
my f a u l t . "
<u4>speaker3 : "Kind of ? I f you j u s t kept
t h i s to you r se l f none of t h i s would ’ve
happened . "
<u5>speaker2 : "Well , I ’m keeping so many
th ings to myself these days , something
was bound to s l i p out ! "
<u6>speaker3 : "Well , I th ink i t ’ s very
brave what you sa id . "
### inpu t :
<u7>speaker1 : " All r i gh t , I can ’ t s i t
here anymore . I have to walk p laces . "

Secondly, we adopt a simple chain-of-thought
(CoT) (Wei et al., 2022) strategy, where the Di-
alogueMMT avoids directly detecting specific emo-
tions but instead first determines the sentiment po-
larity, and then based on the sentiment polarity,
the model categorizes the specific emotion. This
strategy aims to reduce the number of classification
categories and improve the model’s performance in
specific emotion classification. Eventually, to en-
able the model to detect emotions in conversations
from multiple data sources simultaneously, we com-
bine the training sets of the three ERC datasets into
a unified dataset, while mapping semantically sim-
ilar emotions to a single emotion. For example,

’Joy’ ’Happy’, and ’Joyful’ are mapped to ’Joyful’;
’Anger’, ’Angry’, and ’Mad’ are mapped to ’Angry’.
Visual Dialogue Scenes Tasks As shown in Fig-
ure 1 and 2, in environmental scenes, there are of-
ten other individuals besides the speaker, and these
individuals may influence the judgment of the cur-
rent utterance’s emotion. To mitigate this issue,
the model is required to identify the active speaker
in the current dialogue scene. Consequently, we
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construct active speaker recognition data on the
MELD dataset (Poria et al., 2019a) which provides
raw video data to perform active speaker detection
(ASD) task. Specifically, we leverage the exist-
ing multi-modal visual large model VideoLLaMA2
(Cheng et al., 2024) as the strong teacher, to cre-
ate instruction-following data involving the gender,
age, appearance, attire, and actions of the active
speaker as shown in Figure 3. Building on the iden-
tification of active speakers, we aim for making
emotional judgments based on visual information,
and therefore, the model is also prompted to deter-
mine the emotion expressed by the current speaker
based on visual information. Furthermore, we inte-
grate the facial expression recognition (FER) task
with an additional facial expression library to en-
hance the perception of facial expressions to help
utterance-level emotion recognition.
Textual Dialogue Scenes Task Inspired by recent
research (Zhang et al., 2023a; Li et al., 2023a) that
applies conversational discourse structure to ERC,
we regard the dialogue discourse parsing (DDP)
task as assisting in the textual understanding of
conversation context. For DDP task, we follow
Wang et al. (2024) by using graph instruction tun-
ing to bolster the ability of DialogueMMT to un-
derstand dialogue structure. Specially, for target
dialogue discourse, a structured format verbalizing
strategy is used to transform the graph into a sim-
ple code-like format. For the fundamental format,
all entities (i.e., utterance indexes) are listed as a
sequence with variable entity_list, while all triples
(i.e., relations) are listed as a sequence with vari-
able triple_list. The 16 discourse dependency types
described in Asher et al. (2016) are utilized.

4 Experimental Settings

To verify the effectiveness of the proposed Dia-
logueMMT, three public ERC datasets are utilized
for benchmarking. The specifics of the datasets are
outlined in Table 1. In addition, the details regard-
ing the auxiliary task datasets, evaluation metrics,
and experimental results will be included in the
Appendix C.

4.1 Datasets

MELD (Poria et al., 2019a) dataset derives from
the TV series Friends, including multi-person con-
versations among nine main characters. Each ut-
terance has an annotated emotion label including
Neutral, Joy, Surprise, Sadness, Anger, Disgust,

and Fear.
EmoryNLP (Zahiri and Choi, 2017) is also
sourced from the TV series Friends. Different from
MELD, its emotion labels are not provided but ut-
terances can be categorized into seven distinguish-
able classes including Neutral, Joyful, Peaceful,
Powerful, Scared, Mad, and Sad.
IEMOCAP (Busso et al., 2008) contains approxi-
mately 12 hours of videos of dyadic conversations
from actors’ performances, either improvisations
or scripted scenes, which are segmented into 151
dialogues. There are 6 emotion labels including
Happy, Sad, Angry, Frustrated, Excited, and Neu-
tral.

Datasets
Conversations Utterances

Labels
Avg.

Train Val Test Train Val Test Turns
MELD 1038 114 280 9989 1109 2610 7/3 10
EmoryNLP 659 89 79 7551 954 984 7/3 12
IEMOCAP 108 12 31 5163 647 1623 6/3 49

Table 1: The statistical information of three ERC
datasets.

4.2 Baselines

The baselines we will use are divided into the fol-
lowing four categories based on different model
structures:
Recurrence-based: BC-LSTM (Poria et al., 2017),
DialogueRNN (Majumder et al., 2018), Dialogue-
CRN (Hu et al., 2021a), SACL-LSTM (Hu et al.,
2023).
Graph-based: DialogueGCN (Ghosal et al., 2019),
DAG-ERC (Shen et al., 2021), SKIER (Li et al.,
2023a), DualGATs (Zhang et al., 2023a).
Transformer-based: DialogueXL (Shen et al.,
2020), TODKAT (Zhu et al., 2021), CoG-BART
(Li et al., 2021), SPCL+CL (Song et al., 2022).
Multimodal-based: MM-DFN (Hu et al., 2022a),
UniMSE (Hu et al., 2022c), MultiEMO (Shi and
Huang, 2023), FacialMMT (Zheng et al., 2023).

4.3 Evaluation Metrics

For ERC task, following previous works (Hu et al.,
2021a, 2023), the accuracy and weighted-F1 score
are reported to measure the overall performance.
Also, the F1 score per class and macro-F1 score are
reported to evaluate the fine-grained performance.
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Models
MELD EmoryNLP IEMOCAP Avg.

Acc w-F1 Acc w-F1 Acc w-F1 Acc w-F1
Recurrence-based
BC-LSTM† (Poria et al., 2017) 65.87 64.87 40.85 36.84 63.08 62.84 56.60 54.85
DialogueRNN† (Majumder et al., 2018) 65.96 65.30 43.66 37.54 64.85 64.65 58.16 55.83
DialogueCRN† (Hu et al., 2021a) 66.93 65.77 41.04 38.79 67.39 67.53 58.45 57.36
SACL-LSTM (Hu et al., 2023) 67.51 66.45 42.21 39.65 69.08 69.22 59.60 58.44
Graph-based
DialogueGCN† (Ghosal et al., 2019) 63.62 62.68 36.87 34.63 62.49 62.11 54.33 53.14
DAG-ERC (Shen et al., 2021) 63.75 63.36 39.64 38.29 66.54 66.53 56.64 56.06
SKIER▲ (Li et al., 2023a) - 67.39 - 40.07 - - - -
DualGATs▲ (Zhang et al., 2023a) - 66.90 - 40.69 - 67.68 - 58.42
Transformer-based
DialogXL (Poria et al., 2017) - 62.41 - 34.73 - 65.94 - 54.36
TODKAT▲ (Zhu et al., 2021) 67.24 65.47 42.38 38.69 61.11 61.33 56.91 55.16
CoG-BART† (Li et al., 2021) 64.95 63.82 40.97 37.33 65.02 64.87 56.97 55.34
SPCL+CL† (Song et al., 2022) 64.36 64.93 40.32 39.45 66.71 66.93 57.13 57.10
Multimodal-based
MM-DFN (Hu et al., 2022a) 62.49 59.46 - - 68.24 68.18 - -
UniMSE (Hu et al., 2022c) 65.09 65.51 - - 70.56 70.66 - -
MultiEMO (Shi and Huang, 2023) - 66.74 - - - 72.84 - -
FacialMMT‡ (Zheng et al., 2023) - 66.58 - - - - - -
DialogueMMT (Ours) 71.19 70.66 45.02 40.36 72.58 72.71 62.93 61.24

Table 2: The overall performance (%) of all the compared baselines and our DialogueMMT on three ERC datasets.
The best results are highlighted in bold. ’-’ means that the results are unavailable from the original paper. We refer
to the results from Hu et al. (2023) with the marker †. The underline refers to the second-best performance. The ▲
refers to the model using the external knowledge or dialogue structure. The ‡ refers to the model using multi-task
learning.

(a) MELD
Models Neu. Sur. Fea. Sad. Joy. Dis. Ang. Avg.
DialogueCRN 79.72 57.62 18.26 39.30 64.56 32.07 52.53 49.15
SACL-LSTM 80.17 58.77 26.23 41.34 64.98 31.47 52.35 50.76
Ours 82.55 63.59 33.68 49.02 66.75 38.76 62.39 56.68
Improve ↑ 2.38 ↑ 4.82 ↑ 7.45 ↑ 7.68 ↑ 1.77 ↑ 6.69 ↑ 9.86 ↑5.92

(b) EmoryNLP
Models Joy. Ang. Pea. Neu. Sad. Pow. Fea. Avg.
DialogueCRN 54.42 36.44 10.18 53.83 25.74 4.55 37.49 31.81
SACL-LSTM 54.78 37.68 11.66 55.42 25.83 5.43 37.11 32.56
Ours 56.17 43.62 4.80 55.41 33.90 6.84 36.70 33.92
Improve ↑ 1.39 ↑ 5.94 ↓ 6.86 ↓ 0.01 ↑ 8.07 ↑ 1.41 ↓ 0.79 ↑ 1.36

(c) IEMOCAP
Models Joy. Sad. Neu. Ang. Exc. Fru. Avg.
DialogueCRN 54.28 81.34 69.57 62.09 67.33 64.22 66.47
SACL-LSTM 56.91 84.78 70.00 64.09 69.70 65.02 68.42
Ours 64.10 83.51 71.37 68.70 72.20 69.99 71.65
Improve ↑ 7.19 ↓ 1.27 ↑ 1.37 ↑ 4.61 ↑ 2.50 ↑ 4.97 ↑ 3.23

Table 3: Fine-grained results (%) of DialogueMMT and
compared methods for all emotion categories. Bold font
denotes the best performance.

4.4 Implementation Details

DialogueMMT uses Mistral-7B-Instruct1 as the
backbone model and CLIP ViT-L/14 with 336
resolutions2 as the visual encoder. To accelerate
the training, we utilize FlashAttention (Dao et al.,
2022) and BFloat16 techniques, leveraging low-

1https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

2https://huggingface.co/openai/
clip-vit-large-patch14-336

rank adaptation (LoRA) (Hu et al., 2021b) to per-
form parameter-efficient learning with rank = 128
and lora_α = 256. The optimizer is AdamW
(Loshchilov and Hutter, 2017) in all stages with
initial learning rates of 2e-5. The frames of the
input video is 8 and the max context of the dialog
is 20. The maximum length is set as 2048. For the
auxiliary tasks and the ERC task, the global batch
size is set to 16. The DialogueMMT is trained on
2 × 48G Nvidia A40 GPUs.

5 Results and Analysis

5.1 Comparison with Baseline Models
The overall performance of all the compared base-
lines and DialogueMMT on the three ERC datasets
is reported in Table 2.

It shows that the proposed DialogueMMT ob-
tains the best accuracy score and weighted-F1
score on MELD over comparison methods and
exceeds most methods on EmoryNLP and IEMO-
CAP. Specifically, DialogueMMT outperforms the
strongest baseline (i.e., SACL_LSTM) by 3.33%
and 2.80% on accuracy score and w-F1 score
across three datasets. Particularly, DialogueMMT
achieves an absolute improvement of 3.68% in
terms of the accuracy score and a 3.27% abso-
lute improvement in the average weighted-F1 score

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
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over other state-of-the-art methods on MELD. Al-
though compared to DualGATs on EmoryNLP
and MultiEMO on IEMOCAP, the weighted-F1
score decreases by 0.33% and 0.13% respectively,
there is a significant improvement on the other two
datasets.

Modality
3-cls 7-cls

Acc w-F1 Acc w-F1
Visual 53.22 48.25 49.16 39.83
Text 72.34 72.61 65.06 64.74

Visual & Text 77.43 77.30 71.19 70.66

Table 4: Experimental results (%) of sentiment (3-cls)
and emotion (7-cls) classification of DialogueMMT
with different modality settings on MELD. Here, ’Vi-
sual’ refers to the results of emotion recognition in the
active speaker detection task.

5.2 Fine-grained Results
The fine-grained results on the three datasets are
reported in Table 3 to validate the effectiveness of
the proposed model in minority and semantically
similar emotions.

Notably, DialogueMMT obtains 5.92%, 1.36%,
and 3.23% absolute improvements in terms of
the macro-F1 on MELD, EmoryNLP, and IEMO-
CAP respectively. Specifically, on MELD, Di-
alogueMMT surpasses SACL_LSTM by 7.45%
in minority emotion Fear and outperforms
in semantically-similar emotions pairs Anger
and Disgust by 9.86% and 6.69% respec-
tively. On EmoryNLP, DialogueMMT surpasses
SACL_LSTM by 8.07% and 1.41% weighted-F1
in the minority classes Sad and Powerful respec-
tively. On IEMOCAP, DialogueMMT outperforms
the SACL-LSTM in semantically similar emotion
pairs Joyful and Excited by 7.19% and 2.50%.

Dataset
3-cls 7(6)-cls

Merge
Acc w-F1 Acc w-F1

MELD 77.43 77.30 71.19 70.66 69.58
EmoryNLP 58.44 58.72 45.02 40.36 45.02
IEMOCAP 84.84 84.93 72.58 72.71 72.58

Table 5: Experimental results (%) of sentiment (3-cls)
and emotion (7(6)-cls) classification of ERC. ’Merge’
refers to the accuracy of correctly determining both the
sentiment and the emotion.

5.3 Modality Settings and Categories
Modalities: The comparison of DialogueMMT
with modality settings on MELD is drawn in Ta-

Figure 4: The emotion distribution of the unified dataset.

ble 4. From Table 3 we can see that the textual
modality of utterances plays a major role in ERC,
while the complementary cues from visual modal-
ity can bring considerable improvements over the
text-based DialogueMMT.
Categories: The results of DialogueMMT on sen-
timent analysis and emotion detection on three
datasets are illustrated in Table 5. It can be ob-
served that the merge scores on IEMOCAP and
EmoryNLP are consistent with the emotion clas-
sification accuracy. In contrast, unlike the other
two datasets where each emotion is expressed with
a single sentiment polarity, MELD includes two
distinct polarities of Surprise. According to our
statistics, for the 281 utterances in the test set la-
beled as Surprise, 144 are correctly identified in
terms of both sentiment and emotion, 38 are en-
tirely misclassified, 42 have the wrong sentiment
polarity but the correct emotion and 57 have the
correct emotional polarity but the wrong emotion.

5.4 Cross Domain Evaluation

To demonstrate the cross-domain capability of our
model, we conduct experiments involving fine-
tuning on single datasets and testing on three
datasets. The specific details are provided in the
Appendix B.

5.5 Ablation Study

In this section, we conduct ablation studies to in-
vestigate the effects of critical modules in our Dia-
logueMMT, shown in Table 7.
Impact of STC: To study the effect of the STC
connector, we implement DialogueMMTw/o STC ,
replacing the adopted STC connector with a simple
linear layer. Experimental results show that the
performances of DialogueMMTw/o STC decrease
on both MELD and EmoryNLP, with a slight im-
provement on IEMOCAP. Since MELD is the only
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Case ID Target Utterances Golden Prediction

1
For God’s sake, mom, three years.

Nobody comes back after three years! It’s insane!
Negative, Angry Negative✓, Frustrated✗

2
So when do you imagine you gave them to me?

In the morning or in the afternoon?
Negative, Angry Neutral✗, Neutral✗

3
Wow!

A lipper from Chipper.
Positive, Peaceful Positive✓, Joyful✗

Table 6: Examples of utterances from the IEMOCAP, MELD, and EmoryNLP datasets for the error analysis.

dataset containing video information, the results
on MELD validate the effectiveness of the STC
connector module.
Impact of Auxiliary Tasks: To analyze the
impact of each auxiliary task, we imple-
ment DialogueMMTw/o Aux, where Aux ∈
[FER,ASD,DDP ]. From the experimental re-
sults, we observe that removing any auxiliary task
results in lower performance in overall perfor-
mance. Additionally, when removing the DDP
task, which aims to enhance text-level dialogue
scenes understanding, resulted in the lowest per-
formance. This can be explained by the fact that
all datasets used dialogue information, whereas
MELD contained video information, and therefore,
for datasets that contain only textual information,
FER and ASD tasks do not always work.
Impact of CoT: To study the contribution of
the chain-of-thought strategy, we implement
DialogueMMTw/o CoT by removing the first step
of determning sentiment polarity. Experimen-
tal results demonstrate that the performances of
DialogueMMTw/o CoT drop the most considerably
among all modules, highlighting the crucial impor-
tance of determining sentiment polarity first.

Component MELD EmoryNLP IEMOCAP Avg.
DialogueMMT 70.66 40.36 72.71 61.24
- w/o STC 69.39 38.60 72.79 60.26
- w/o FER 69.76 39.01 72.32 60.36
- w/o ASD 70.35 38.54 72.74 60.54
- w/o DDP 69.54 38.33 72.44 60.10
- w/o CoT 69.13 35.56 69.84 58.18

Table 7: Experimental results (%) of ablation study.

5.6 Error Analysis
Table 6 shows three utterances sampled from
the IEMOCAP, MELD, and EmoryNLP datasets
with their golden labels and prediction from Dia-
logueMMT.

First, The unbalanced distribution of classes is
the primary cause of errors. It is clear from Fig-
ure 4 that Neutral sentiment comprises the largest

proportion of all sentiments accounting for 37.07%,
which leads to the proposed DialogueMMT tends
to misclassify utterances of other emotions to Neu-
tral. Case #1 illustrates this situation, where the
model incorrectly identifies Angry as Neutral. Al-
though the DialogueMMT framework improves the
misclassification of similar emotions compared to
previous methods, the test results indicate that mis-
classifications of similar emotions still exist. As
shown in Case #2, the model correctly identified the
sentiment polarity but incorrectly classified Angry
as Frustrated. Case #3 comes from the EmoryNLP
dataset, the model classified the emotion of the ut-
terance as Joyful rather than Peaceful, which are
semantically similar emotion pairs. This is partly
due to the fact that Peaceful has a much smaller
proportion in the combined dataset compared to
Joyful. The case study and the supplement for error
analysis will be shown in the Appendix C.3.

6 Conclusion

In this paper, we propose a novel framework for the
task of ERC, named DialogueMMT, in which the
large vision-language model with a video-language
connector is employed for effectively capturing
visual and textual emotion cues. Additionally, we
utilize the multi-task instruction tuning to enhance
the understanding of multi-modal dialogue scenes.
Extensive experimental results on three benchmark
ERC datasets demonstrate the effectiveness and
superiority of the proposed DialogueMMT.

7 Limitations

Although the DialogueMMT performs satisfacto-
rily in ERC, it still has the following limitations.
Firstly, this work focuses on the textual and visual
modalities and has not yet delved into audio modal-
ity. Secondly, the auxiliary tasks directly affect the
accuracy of the main task, which requires the per-
formance of discourse parsing and detecting emo-
tion in visual signals to be more accurate. Thirdly,
the unified ERC dataset results in some emotions
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having a smaller proportion, which leads to poorer
performance in classifying those categories.
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Figure 5: A minimal working example to demonstrate
how to place two images side-by-side.

A Maxmum Historical Context Length

To determine the length of the optimal turns m, we
set a range of maximum context thresholds from
low to high on three datasets (i.e. m ∈ [5, 10, 12,
15, 20, All]). Here, 12 is the average conversation
length in the MELD dataset, and ’All’ indicates
using the entire conversation content. In the experi-
ments, we use zero-shot evaluation on the valida-
tion set without fine-tuning the model. The goal
of this experiment is not only to find the optimal
maximum turns length but also to confirm the poor
performance of current Multimodal LLMs in ERC.

The final experimental results are shown in the
Figure 5. From the line chart, we observe that when
the maximum historical turns is 20, the weighted
F1 score and accuracy score on EmoryNLP achieve
the best results and the average performance is op-
timal. When the maximum is 5, the performance
of MELD achieves the best, and when the maxi-
mum is 15, the best performance is achieved on the
IEMOCAP dataset. Since our goal is to enable the
model to simultaneously recognize dialogue emo-
tions in all three datasets, we ultimately choose
m = 20 as the maximum historical turns.

B Cross Domain Evaluation

To evaluate the effectiveness of the proposed Dia-
logueMMT fine-tuned with the unified ERC dataset
(represented as DialogueMMTUnified), we con-

duct single corpus fine-tuning and cross-domain
evaluation (each benchmark represents one dia-
logue domain) DialogueMMTSingle for compar-
ison. Among the three ERC datasets, only MELD
contains both video data and textual information,
therefore, we fine-tune MELD with the auxiliary
datasets for the cross-domain experiments. The
experimental results are drawn in Table 8.

From the experimental results, we observe that
the DialogueMMTSingle shows comparable perfor-
mance on MELD to that of DialogueMMTUnified.
However, the performance drops significantly on
the other two datasets, especially the IEMOCAP
dataset, where the performance in sentiment and
emotion classification drops by 27.78%, 36.64%
in terms of accuracy score and 26.38%, 46.06%
in terms of w-F1 score. This can be attributed to
the fact that EmoryNLP and MELD come from
the same TV show and thus have similar dia-
logue structures and content, whereas IEMOCAP
comes from a completely different source. Through
comparative experimental results, we validate that
the model fine-tuned on a unified ERC dataset
demonstrates comparable performance and better
cross-domain dialogue emotion recognition capa-
bility compared to the model fine-tuned on specific
datasets.

Dataset
3-cls 7(6)-cls

Acc w-F1 Acc w-F1
MELD 77.17 (↓0.26) 76.97(↓0.33) 70.73(↓0.46) 70.06(↓0.60)

EmoryNLP 54.18(↓4.26) 53.27(↓5.45) 39.74(↓5.28) 33.18(↓7.18)
IEMOCAP 57.06(↓27.78) 58.55(↓26.38) 36.12(↓36.46) 26.65(↓46.06)

Table 8: Experimental result (%) of sentiment (3-cls)
and emotion (7(6)-cls) classification with the model fine-
tuned on MELD with auxiliary tasks.

Tasks Datasets Visual Dialogue
Main Task

ERC
MELD ✓ ✓

EmoryNLP ✗ ✓

IEMOCAP ✗ ✓

Auxiliary Tasks
FER AffectNet ✓ ✗

ASD MELD ✓ ✗

DDP STAC ✗ ✓

Table 9: Modalities used in datasets for different tasks.
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Figure 6: A specific case demonstrating the performance of DialogueMMT across various tasks.

Models Neu. Joy. Sad. Sur. Fea. Dis. Ang. Acc.
VTFF (Ma et al., 2023) 65.00 88.40 60.80 64.80 65.60 53.00 61.20 64.80

DialogueMMT 53.90 83.00 65.40 57.54 70.78 70.97 59.45 65.26

Table 10: Experimental results (%) of FER on AffectNet. The best results are highlighted in bold.

C Auxiliary Tasks

C.1 Datasets and Evaluation Metrics

STAC (Asher et al., 2016) is the first corpus for
multi-party dialogue discourse parsing, built on
1.2k strategic conversations where participants en-
gage in discussions while playing an online game.
Molweni (Li et al., 2020a) follows the same anno-
tation scheme as STAC and the data are sourced
from the Ubuntu Chat Corpus, where people dis-
cuss technical topics about the Ubuntu system.
AffectNet (Mollahosseini et al., 2017) is the largest
facial expression database in the wild, which con-
tains more than 42,000 facial images collected from
the internet with eight classes.
Evaluation Metrics For FER, the accuracy score
per class and mean average score are reported to
evaluate the fine-grained performance. For DDP,
we adopt the micro averaged F1 score of “Link”
and “Link+Rel.” as the evaluation metric. “Link”
denotes link prediction, and “Link+Rel.” stands for
a prediction that the dependency link and relation
type are correct at the same time.

Each dataset includes visual information as well
as dialogue information, as illustrated in Table 9.

C.2 Results

Facial Expression Recognition The results of
FER are drawn in Table 10. We choose a rela-

Link Link + Rel.
Deep Sequential (Michelsanti et al., 2021)

STAC 72.80 54.80
Molweni 77.40 54.30
Discourse Parser (Liu and Chen, 2021)

STAC 75.50 57.20
Molweni 80.20 56.90
DialogueMMT

STAC 69.28 52.05
Molweni 81.62 54.97

Table 11: Micro-F1 scores (%) of link and relation
prediction. The best results are highlighted in bold.

tively advanced method VTFF (Ma et al., 2023)
for the FER task that has been developed recently
to compare with the proposed DialogueMMT. It
can be observed that the overall performance of
DialogueMMT surpasses that of the currently more
advanced VTFF. It is worth noting that, in the ex-
perimental results for fine-grained expressions, Di-
alogueMMT significantly outperforms the compar-
ison method in recognizing Fear and Disgust. It
should also be mentioned that these two emotions
have a smaller distribution in the MELD dataset,
where previous models performed poorly in identi-
fying them but the proposed DialogueMMT shows
a notable improvement in recognizing these two
emotions.
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Dialogue Discourse Parsing The results of DDP
are shown in Table 11. From the experimental
results, The DialogueMMT demonstrates compa-
rability on the Molweni dataset but shows lower
performance compared to the other two methods
on the STAC dataset. This can be attributed to the
fact that we remove dialogues with a total number
of turns exceeding 20 in the STAC dataset, whereas
the Molweni dataset does not contain any dialogues
with a total number of rounds exceeding 20.
Active Speaker Detection Since the instruction-
following data for the ASD task originates from the
teacher model and does not have standard evalua-
tion metrics, we only report the results for emotion
classification. The classification results are pre-
sented in the main text Table 4.

Figure 7: The normalized confusion matrices for Di-
alogueMMT on MELD. The X-axis denotes the label
frequency and each cell (i, j) represents the percentage
of class i classified as class j.

C.3 Case Study and Error Analysis
Supplementation

Case Study Figure 6 shows one dialog sampled
from the MELD dataset. Despite the presence
of multiple characters in the example video data,
the proposed model correctly identifies the active
speaker and provides accurate descriptions. Af-
ter manual evaluation, we believe that the model

generates the inter-sentence dependencies of the di-
alogue well, with only minor errors. Additionally,
based solely on the visual modality, the model fails
to identify the emotion expressed by the speaker
correctly. However, on the main ERC task, the
model accurately detects the sentiment and emo-
tion of the target utterance.
Error Analysis Supplementation For further sup-
plementation of the error analysis and to better
understand the main contributions of our work, we
present the normalized confusion matrices for Dia-
logueMMT and its variants on MELD in Figure 7.
From the diagonal elements of the matrices, Dia-
logueMMT reports better true positives against oth-
ers on most fine-grained emotion categories. Com-
pared with other ablated variants, DialogueMMT
achieves the best result in the Fear emotion cate-
gory, which has the smallest proportion and allevi-
ates the issue of a smaller proportion of emotional
categories being easily misclassified as Neutral. Al-
though DialogueMMT makes significant improve-
ments, the inherent problem of uneven distribution
of emotion labels has not yet been fully resolved.
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