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Abstract

Large Language Models (LLMs) have demon-
strated powerful performance in sequential rec-
ommendation due to their robust language mod-
eling and comprehension capabilities. In such
paradigms, the item texts of interaction se-
quences are formulated as sentences, and LLMs
are utilized to learn language representations or
directly generate target item texts by incorpo-
rating instructions. Despite their promise, these
methods solely focus on modeling the mapping
from sequential texts to target items, neglecting
the relationship between the items in an interac-
tion sequence. This results in a failure to learn
the transition patterns between items, which
reflect the dynamic change in user preferences
and are crucial for predicting the next item. To
tackle this issue, we propose a novel frame-
work for mapping the sequential item texts to
the sequential item IDs, named ST2SI. Specifi-
cally, we first introduce multi-query input and
item linear projection (ILP) to model the con-
ditional probability distribution of items. Then,
we further propose ID alignment to address
misalignment between item texts and item IDs
by instruction tuning. Finally, we propose ef-
ficient ILP tuning to adapt flexibly to differ-
ent scenarios, requiring only training a linear
layer to achieve competitive performance. Ex-
tensive experiments on six real-world datasets
show that our approach outperforms the best
baselines by 7.33% in NDCG@10, 4.65% in
Recall@10, and 8.42% in MRR. 1

1 Introduction

Recommender systems aim to suggest items that
users may be interested in. Many effective rec-
ommendation methods have been applied in var-
ious applications such as advertising systems, e-
commerce websites, search engines, and stream-
ing services (Wu et al., 2023; Fan et al., 2023).

*Corresponding authors.
1Our implementation is available at: https://github.com

/zhaijianyang/ST2SI.

Among them, sequential recommendation (Kang
and McAuley, 2018a; Zhai et al., 2023; Zhang et al.,
2024), which aims to mine the dynamic changes in
user preferences, has become an important research
direction.

Traditional sequential recommendation models
transform items into IDs and learn item embedding
tables from user interaction sequences, including
Markov Chain models (Rendle et al., 2010a; He
and McAuley, 2016), CNN/RNN models (Hidasi
et al., 2015; Li et al., 2017), and self-attention mod-
els (Sun et al., 2019a; Kang and McAuley, 2018a).
Although ID-based methods are promising, their
inherent limitations make it challenging to transfer
knowledge to new domains. Furthermore, the de-
sign philosophy of ID-based methods in essence
deviates from the core idea of modern foundation
models (Bommasani et al., 2021; Yuan et al., 2023)
in the deep learning community — allowing the
pre-trained parameters to be adapted to multiple
downstream tasks. Therefore, some studies (Ding
et al., 2021; Wang et al., 2022) propose to leverage
the generality of natural language text, such as titles
and item descriptions, to acquire common knowl-
edge across different domains. The basic idea is
to employ text representations learned through pre-
trained language models (PLMs) (Sun et al., 2019b)
as the universal item representation. However, the
item representations learned by PLMs for recom-
mendation tasks are often sub-optimal, as they are
primarily designed for NLP tasks. Furthermore,
these item representations can only provide coarse-
grained (sentence-level) textual features and cannot
capture fine-grained (word-level) user preferences
(Li et al., 2023).

Recently, LLMs have demonstrated powerful po-
tential in capturing fine-grained user preferences
(Tang et al., 2023; Li et al., 2024). The basic idea
is to concatenate the item texts in an interaction se-
quence into a sentence and employ LLMs to learn
language representations for sequential recommen-

https://github.com/zhaijianyang/ST2SI
https://github.com/zhaijianyang/ST2SI
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Figure 1: We reframe the language modeling objec-
tive in the open domain as an item modeling goal to
capture transition patterns between items and address
inefficiencies and hallucinations in existing methods.

dation (Li et al., 2023; Tang et al., 2023), or di-
rectly generate the text for the next item by incor-
porating instructions (Zhai et al., 2023). Although
these methods leverage the powerful capabilities of
LLMs and have achieved good performance, they
still have the following limitations: (1) They only
focus on modeling the sequential texts to the target
item, neglecting the relationship between the items
in an interaction sequence, thus failing to capture
the transition patterns that reflect dynamic changes
in user preferences. For example, in an interaction
sequence: {A,B,C,D}, where each letter repre-
sents an item text, they typically adopt a modeling
approach like {A,B,C} → D, neglecting the tran-
sition patterns of A → B → C → D. (2) The
methods for learning language representations are
inefficient and cumbersome. Recformer (Li et al.,
2023) adopts a two-stage fine-tuning paradigm to
learn better user representations. Although LLM-
Rec (Tang et al., 2023) abandons the two-stage fine-
tuning, it requires selecting 1000 negative samples
for each target item, demanding substantial compu-
tational resources and yielding sub-optimal results.
(3) Generative recommendation methods transform
the recommendation task into an open-domain nat-
ural language generation task, which often leads to
issues of inefficiency and hallucinations during the
recommendation phase (Wu et al., 2023; Fan et al.,
2023).

For tackling the aforementioned issues, we pro-
pose an idea that predicts the next item ID after
each item text in an interaction sequence, rather
than learning a language representation or generat-
ing the target item text, as illustrated in Figure 1. In
our method, we retain the item text as input to take
advantage of the universal knowledge in LLMs and

to adhere to the spirit of foundation models. Fur-
thermore, we aim to directly generate item IDs to
avoid inefficiency and hallucination. However, to
develop our approach, we face the following chal-
lenges: 1) How to implement a modeling paradigm
that is both simple and efficient for mapping se-
quential item texts to sequential item IDs, thereby
mining transition patterns among items in interac-
tion sequences; 2) How to address the misalign-
ment between item texts and item IDs, given our
modeling objective is to predict the next item ID; 3)
How to flexibly adapt to diverse recommendation
scenarios, considering that different recommenda-
tion scenarios involve distinct item IDs.

To address these challenges, we reframe the lan-
guage modeling objective in the open domain as
an item modeling goal, and propose a novel frame-
work for mapping the sequence of item text to the
sequence of item IDs, named ST2SI. Specifically,
we first insert a query token after each item text as
an indicator for predicting the next item, referred
to as multi-query input. Then, we introduce item
linear projection (ILP) to model the conditional
probability distribution of the next item. Differ-
ent from previous generative recommendations, we
can directly generate item IDs instead of generating
tokens from the vocabulary based on ILP. Further-
more, we propose item ID alignment to address
the misalignment between item text and item ID
through instruction tuning. Finally, we propose
efficient ILP tuning to flexibly adapt to different
scenarios. All scenarios share the same LLM pa-
rameters, and achieving competitive performance
only requires training specific ILP. We evaluate
ST2SI on six real-world datasets, and the proposed
approach shows an average improvement of 7.33%
in NDCG@10, 4.65% in Recall@10, and 8.42% in
MRR compared to the best baseline methods. The
main contributions of this paper are summarized as
follows:

• We propose ST2SI, a novel framework for map-
ping a sequence of item texts to a sequence of
item IDs, which employs LLMs to mine tran-
sition patterns between items in interaction se-
quences.

• We introduce item linear projection to model the
conditional probability distribution of the next
item, achieving flexible and efficient generative
recommendations.

• We propose item ID alignment, addressing the
issue of misalignment between item text and item
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ID through instruction tuning.
• Extensive experiments are conducted to show

the effectiveness of our method, and the results
show that ST2SI exploits the powerful potential
of LLMs as the foundation model for sequential
recommendation, achieving competitive perfor-
mance with efficient ILP tuning.

2 Related work

Sequential Recommendation. Sequential rec-
ommendation aims to predict the next item based
on historical user interactions. Early works apply
the Markov Chain (Shani et al., 2005; Rendle et al.,
2010b) to model users’ historical interaction se-
quences. For deep learning methods, Convolutional
Sequence Embedding (Caser) (Tang and Wang,
2018) uses horizontal and vertical convolutional
filters to learn multi-level patterns and user prefer-
ences. GRU4Rec (Hidasi et al., 2015) introduces
Gated Recurrent Units (GRU) (Chung et al., 2014)
to model user sequential patterns. With the devel-
opment of the Transformer (Vaswani et al., 2017),
many studies widely use self-attention model for se-
quential recommendation, such as SASRec (Kang
and McAuley, 2018b) and BERT4Rec (Sun et al.,
2019b). To enrich item features, FDSA (Zhang
et al., 2019b) encodes items and side informa-
tion using different self-attention blocks, and in-
tegrates their representations in the final stage.
S3-Rec (Zhou et al., 2020) designs four auxiliary
self-supervised objectives, utilizing the principle
of maximum mutual information (MIM) to learn
multiple correlations. Although these approaches
achieve promising performance, they struggle to
learn transferable knowledge due to the dependence
on IDs and item embeddings which are specific
to items and datasets. Recently, researchers at-
tempt to employ textual features as transferable
item representations (Ding et al., 2021; Hou et al.,
2022). These methods first obtain item features
by encoding item texts with language models and
then learn transferable item representations with an
independent sequential model. However, indepen-
dent language understanding and sequential pattern
learning still limit the capacity of the model to learn
user interactions based on languages.

LLMs for Recommendation. LLMs have
emerged as powerful tools in the field of Natu-
ral Language Processing (NLP) and have recently
gained significant attention in the domain of Rec-
ommender Systems (Wu et al., 2023). The core

idea is to leverage the powerful language model-
ing capabilities of LLMs and their extensive gen-
eral knowledge to improve recommendation per-
formance. Recformer (Li et al., 2023) formulates
items as key-value attribute pairs, and then designs
a pre-training and two-stage fine-tuning framework
to learn language representations for sequential rec-
ommendation. However, this two-stage paradigm
is inefficient and cumbersome. LLM-Rec (Tang
et al., 2023) explores the ability of language mod-
els in multi-domain behavior modeling. However,
it requires selecting 1000 negative samples for each
target item, demanding substantial computational
resources and yielding sub-optimal results. In addi-
tion, some methods transform the recommendation
task into an open domain natural language genera-
tion task, generating recommended items directly
through instruction tuning. P5 (Geng et al., 2022)
first proposes a unified framework to integrate five
recommendation tasks via fine-tuning. Following
it, KP4SR (Zhai et al., 2023) introduces an external
knowledge base to improve recommendation per-
formance. InstructRec (Zhang et al., 2023) adapts
FLAN-T5 (Chung et al., 2022) model to several
downstream recommendation tasks by instruction
tuning with more diverse texts. However, genera-
tive recommendation is time-consuming when gen-
erating recommendation lists and may suffer from
hallucination issues. Furthermore, they only focus
on modeling the sequential texts to the target item,
neglecting the transition patterns between items in
the interaction sequence.

3 Methodology

In this section, we present ST2SI, which reframes
the language modeling objective in the open do-
main as an item modeling goal, and employs LLM
to mine transition patterns among items in the in-
teraction sequence.

3.1 Problem Setup and Formulation

A typical sequential recommendation scenario usu-
ally consists of a user set U and an item set V . For
each user u ∈ U , arranging the items v ∈ V inter-
acted with by u based on timestamps yields the his-
torical interaction sequence Su = {v1, v2, ..., vn},
where n is the length of the item sequence. The
interaction sequences of all users constitute a se-
quence set S = {Su | u ∈ U}. Additionally, each
item v in the item set has a unique item ID and
corresponding description text (e.g., title, brand,
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Figure 2: The overall framework of ST2SI. We first introduce multi-query input and item linear projection (ILP)
to mine transition patterns among items in interaction sequences (up). Then, we achieve alignment between item
text and item ID through instruction tuning (bottom-left). Finally, to flexibly apply to different recommendation
scenarios, we propose efficient ILP tuning (bottom-right).

category). We refer to each description text as item
text, denoted as Tv = {w1, w2, ..., wc}, where each
word wi is from a shared vocabulary, and c is the
text truncation length.

Based on the above symbols, our task is to pre-
dict the next potential interaction item vn+1 ac-
cording to the historical interaction sequence Su.
Unlike previous approaches, we take item text as in-
put, model the conditional probability distribution
of item IDs, and use item IDs as output.

3.2 Sequence Item Texts to Sequence Item IDs

3.2.1 Backbone
We employ an autoregressive language model as
the backbone, which intuitively aligns better with
our modeling objectives compared to the other two
types of LLMs (i.e., encoder-only and encoder-
decoder models). It utilizes uni-directional atten-
tion to the next token, generating the next result
by only considering previous information through
self-attention. For the backbone, during unsuper-
vised pre-training, a standard language modeling
objective is employed to maximize the following
likelihood (Radford et al., 2018):

L(T ) =
∑
i

logP (ti | t1, . . . , ti−1; Θ) , (1)

where T = {t1, . . . , tn} represents an unsuper-
vised corpus of tokens, and the conditional prob-
ability P is modeled using a neural network with
parameters Θ.

3.2.2 Multi-Query Input
Previous methods (Li et al., 2023; Tang et al., 2023)
concatenate the item texts in interaction sequence
into a single sentence, which is then input into the
LLM to learn a sequence representation. While
promising, they treat the interaction sequence as a
whole, overlooking the relationships between items
in the sequence. Our goal is to predict the next
item after each item in the interaction sequence,
thereby mining transition patterns between items.
Therefore, we insert a query token [Q] after each
item text in the sequence, serving as an indicator to
predict the next item.

As introduced in Section 3.1, we have the item
interaction sequence Su = {v1, v2, ..., vn} for
each user u, where n is the length of the item
sequence. Subsequently, by replacing each item
ID with its corresponding item text, we obtain
the textual sequence Tu = {T1, T2, ..., Tn}, where
Ti = {w1, w2, ..., wc}, wi is from a shared vocabu-
lary, and c is the text truncation length. Finally, by
inserting the query token [Q] after each item text,
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we obtain the multi-query input:

Xq = {T1, [Q], T2, [Q], . . . , Tn, [Q]}
= {T q

1 , T
q
2 , . . . , T

q
n},

(2)

where T q
i = {Ti, [Q]}, and Xq is a sequence

of words containing all item texts from the item
interaction sequence. [Q] serves as an indicator
and can be any special token different from item
text, either within or outside the vocabulary.

3.2.3 Item Linear Projection
In autoregressive language models, token linear
projection serves as the bridge between represen-
tation learning and token generation. Generally,
the last-layer hidden representation hli is linearly
mapped to obtain the corresponding token ID,
where i is the token position and l is the layer of
the language model. Subsequently, the token ID is
used to look up the dictionary to output the token,
or as further input for generating the next token.

Inspired by this, we introduce item linear pro-
jection to map the hidden representation at the [Q]
position to the target item ID, allowing us to look
up the corresponding item text for further input,
as illustrated in Figure 2. Unlike language mod-
els, where there is a one-to-one correspondence
between token IDs and embeddings, we do not
need to maintain an embedding table for item IDs.
By introducing ILP, we can transform the language
modeling objective into an item modeling objec-
tive. Specifically, given the interaction sequence of
texts Xq = {T q

1 , T
q
2 , . . . , T

q
n} and the correspond-

ing sequence of item IDs Su = {v1, v2, ..., vn}, our
modeling objective can be formulated as follows:

L(v) =
∑
i

logP (vi+1 | T q
1 , . . . , T

q
i ; Θ) . (3)

In our experiments, we can obtain hidden rep-
resentations hl ∈ Rdk×L at the final layer, after
inputting the multi-query input Xq into the LLM,
where dk is the embedding dimension in the LLM,
and L is the length of input tokens. Then, we feed
the hidden representations at each query position
into ILP to model the conditional probability distri-
bution of items:

hl = Backbone(Xq), (4)

pi = Softmax
(
Whlqi

)
, (5)

where hlqi ∈ Rdk is the hidden representation at
the i-th query position, W ∈ Rdk×N is the weight

matrix for ILP, N is the number of candidate items,
and pi ∈ RN is the probability distribution of the
target item at the i-th query position. Then, we
can obtain the Top-K recommendation list from the
probability vector pi.

3.3 ID Alignment

By introducing ILP, we transform the language
modeling objective in the open domain into an
item modeling goal, enabling us to mine transi-
tion patterns among items in interaction sequences.
However, this approach may lead to the issue of
misalignment between item text and item ID, as
our modeling objective is to predict the next item
ID. To address this issue, we propose ID alignment,
strengthening the understanding of LLM from item
text to item ID through instruction tuning. To be
more specific, we align [Q] and the correspond-
ing item ID. An example of the instruction is as
follows:

Instruction:
Please give the ID of the following item:

Qualcraft 2601 Wall Jack, Red [Q]

Target:
24

Intuitively, we should also implement alignment
from item ID to item text. However, to maintain
the generality of LLM, we do not maintain an item
embedding table. Tokens indicating numbers in the
vocabulary are not equivalent to item IDs in recom-
mender systems (e.g., 2601 in the above instruction
represents address, not an item ID). Fortunately,
we have implicitly modeled it in Section 3.2 since
the item text corresponding to the target item ID
is positioned after each query token. Finally, we
formalize the input of instruction tuning as:

XI = {TI , Tv, [Q]}, (6)

where TI represents the instruction text, and Tv

represents the item text corresponding to item v.

3.4 Learning Framework

3.4.1 Training
During training, we combine the multi-query in-
put Xq with the ID alignment instruction XI and
jointly optimize the model. They share the same
optimization target, which is the item ID. After ob-
taining the probability distribution pi for the target
item ID using Equations (4) and (5), we optimize
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the model using cross-entropy loss:

L = −
j∑

i=1

yi log (pi) , (7)

where j is the number of query tokens [Q], and yi
is the target item ID for the i-th query position.

3.4.2 Efficient ILP Tuning
Generally, LLMs have a significant number of pa-
rameters, and tuning all parameters when adapting
to new recommendation scenarios can consume
substantial computational resources and time. For-
tunately, there are many parameter-efficient tuning
methods available, such as LoRA(Hu et al., 2021),
etc. However, these methods are typically designed
for NLP tasks. They require the introduction of
additional parameters, involve complex operations,
and may lack flexibility.

In this paper, we propose a new parameter-
efficient tuning method specifically designed for
the ST2SI framework, namely efficient ILP tuning.
Our core idea is to leverage the strong generaliza-
tion capabilities of LLM and use it as a universal
foundation model for sequential recommendation.
When adapting to new scenarios, we freeze all pa-
rameters of LLM and train specific ILPs for dif-
ferent scenarios, as shown in the bottom-right of
Figure 2. In this way, we only need to train a linear
layer for each scenario, maximizing the savings in
computational resources and time. When switching
scenarios, we only need to replace the ILP, which
provides great flexibility.

4 Experiments

In this section, we conduct extensive experiments
to evaluate ST2SI. In the supplementary materials
C, we provide more detailed experimental setups
and an abundance of experimental results.

4.1 Experiments Settings

Datasets. To evaluate the performance of ST2SI,
we conduct pre-training and fine-tuning on differ-
ent categories of Amazon review datasets (Ni et al.,
2019). The statistics of datasets after preprocessing
are shown in Table 1.

Baselines. We compare the proposed ap-
proach with the following baseline methods:
GRU4Rec (Hidasi et al., 2015), SASRec (Kang
and McAuley, 2018a), BERT4Rec (Sun et al.,
2019a), FDSA (Zhang et al., 2019a), S3-Rec (Zhou

Datasets #Users #Items #Inters. Avg. n Density

Pre-training 284,708 89,452 2,271,330 7.98 8.9e-5
-Food 127,496 41,280 1,143,063 8.97 2.2e-4
-Cell 157,212 48,172 1,128,267 7.18 1.5e-4

Scientific 11,041 5,327 76,896 6.96 1.3e-3
Instruments 27,530 10,611 231,312 8.40 7.9e-4
Arts 56,210 22,855 492,492 8.76 3.8e-4
Office 101,501 27,932 798,914 7.87 2.8e-4
Games 11,036 15,402 100,255 9.08 5.9e-4
Pet 47,569 37,970 420,662 8.84 2.3e-4

Table 1: Statistics of the datasets after preprocessing.
Avg. n denotes the average length of item sequences.

et al., 2020), ZESRec (Ding et al., 2021), UniS-
Rec (Hou et al., 2022), Recformer (Li et al.,
2023), LLM-Rec (Tang et al., 2023).

Evaluation. Following the prior work (Li et al.,
2023), we evaluate our method using top-k Re-
call (Recall@k), top-k Normalized Discounted Cu-
mulative Gain (NDCG@k), and Mean Reciprocal
Rank (MRR), where k=10. We adopt a leave-one-
out strategy to evaluate the performance of each
method, a widely used approach in many related
works (Geng et al., 2022; Zhai et al., 2023). We
perform full ranking evaluation over the entire item
set instead of sample-based evaluation. The aver-
age score across all test sequences is reported as
the score of the method.

4.2 Overall Performance

We compare ST2SI with baseline methods on six
publicly available datasets and report the evaluation
results in Table 2.

For the baseline methods, we can see that the first
seven methods (i.e., GRU4Rec to UniSRec) show
similar overall performance across all datasets.
FDSA and S3-Rec, which leverage both item ID
and text features, achieve better results on the Arts
and Office datasets but perform poorly on the Sci-
entific dataset. This suggests that the importance
of text features varies for different datasets. ZES-
Rec and UniSRec utilize PLMs to extract text fea-
tures, enabling cross-domain transfer. However,
these features are suboptimal as PLMs are primar-
ily designed for NLP tasks. In contrast, Recformer
and LLM-Rec directly concatenate item text to
learn sequence representations, achieving better
results. This is because they can leverage not only
the general knowledge in LLMs but also explore
fine-grained user preferences.

ST2SIILP denotes training ILP parameters after
pre-training on the source domain dataset. The six
target domain datasets share the same backbone
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Dataset Metric GRU4Rec SASRec BERT4Rec FDSA S3-Rec ZESRec UniSRec Recformer LLM-Rec ST2SIILP ST2SI Improv.

Scientific
NDCG@10 0.0826 0.0797 0.0790 0.0716 0.0451 0.0843 0.0862 0.1027 0.1082 0.1063 0.1147 6.01%
Recall@10 0.1055 0.1305 0.1061 0.0967 0.0804 0.1260 0.1255 0.1448 0.1480 0.1379 0.1481 0.07%
MRR 0.0702 0.0696 0.0759 0.0692 0.0392 0.0745 0.0786 0.0951 0.1013 0.1016 0.1099 8.49%

Instruments
NDCG@10 0.0633 0.0634 0.0707 0.0731 0.0797 0.0694 0.0785 0.0830 0.0867 0.0858 0.0946 9.11%
Recall@10 0.0969 0.0995 0.0972 0.1006 0.1110 0.1078 0.1119 0.1052 0.1120 0.1109 0.1233 10.09%
MRR 0.0707 0.0577 0.0677 0.0748 0.0755 0.0633 0.0740 0.0807 0.0833 0.0829 0.0911 9.36%

Arts
NDCG@10 0.1075 0.0848 0.0942 0.0994 0.1026 0.0970 0.0894 0.1252 0.1308 0.1260 0.1385 5.89%
Recall@10 0.1317 0.1342 0.1236 0.1209 0.1399 0.1349 0.1333 0.1614 0.1654 0.1573 0.1709 3.33%
MRR 0.1041 0.0742 0.0899 0.0941 0.1057 0.0870 0.0798 0.1189 0.1246 0.1202 0.1334 7.06%

Office
NDCG@10 0.0761 0.0832 0.0972 0.0922 0.0911 0.0865 0.0919 0.1141 0.1240 0.1149 0.1258 1.45%
Recall@10 0.1053 0.1196 0.1205 0.1285 0.1186 0.1199 0.1262 0.1403 0.1495 0.1381 0.1514 1.27%
MRR 0.0731 0.0751 0.0932 0.0972 0.0957 0.0797 0.0848 0.1089 0.1192 0.1105 0.1213 1.76%

Games
NDCG@10 0.0586 0.0547 0.0628 0.0600 0.0532 0.0530 0.0580 0.0684 0.0791 0.0757 0.0914 15.55%
Recall@10 0.0988 0.0953 0.1029 0.0931 0.0879 0.0844 0.0923 0.1039 0.1220 0.1101 0.1334 9.34%
MRR 0.0539 0.0505 0.0585 0.0546 0.0500 0.0505 0.0552 0.0650 0.0738 0.0714 0.0866 17.34%

Pet
NDCG@10 0.0648 0.0569 0.0602 0.0673 0.0742 0.0754 0.0702 0.0972 0.0866 0.0927 0.1030 5.97%
Recall@10 0.0781 0.0881 0.0765 0.0949 0.1039 0.1018 0.0933 0.1162 0.1195 0.1123 0.1240 3.77%
MRR 0.0632 0.0507 0.0585 0.0650 0.0710 0.0706 0.0650 0.0940 0.0788 0.0897 0.1001 6.49%

Table 2: Performance comparison of different recommendation models. The best and the second-best performances
are denoted in bold and underlined fonts, respectively. “Improv.” indicates the relative improvement ratios of the
proposed approach over the best performance baselines.

Tuning
Methods

Variants
Scientific Instruments Arts

NDCG@10 Recall@10 MRR NDCG@10 Recall@10 MRR NDCG@10 Recall@10 MRR

Full
Parameter

(0) ST2SI 0.1147 0.1481 0.1099 0.0946 0.1233 0.0911 0.1385 0.1709 0.1334
(1) w/o Multi-Query 0.1102 0.1449 0.1049 0.0875 0.1136 0.0848 0.1331 0.1630 0.1262
(2) w/o ID Alignment 0.1078 0.1353 0.1044 0.0928 0.1193 0.0895 0.1354 0.1625 0.1315
(3) w/o (1)&(2) 0.1011 0.1258 0.0982 0.0860 0.1098 0.0834 0.1258 0.1512 0.1221
(4) w/ Pre-training 0.1111 0.1406 0.1099 0.0914 0.1175 0.0887 0.1367 0.1687 0.1315

ILP
Parameter

(0) ST2SIILP* 0.0961 0.1292 0.0916 0.0758 0.1022 0.0728 0.1170 0.1498 0.1112
(1) w/o Multi-Query 0.0931 0.1284 0.0878 0.0748 0.1014 0.0716 0.1150 0.1451 0.1097
(2) w/o ID Alignment 0.0922 0.1235 0.0878 0.0757 0.1020 0.0726 0.1125 0.1455 0.1065
(3) w/o (1)&(2) 0.0879 0.1183 0.0835 0.0730 0.0977 0.0700 0.1097 0.1379 0.1047
(4) w/ Pre-training (ST2SIILP) 0.1063 0.1379 0.1016 0.0858 0.1109 0.0829 0.1260 0.1573 0.1202

Table 3: Ablation analysis on three downstream datasets. The best and the second-best performance is denoted in
bold and underlined fonts, respectively.

parameters, with each dataset having separate ILP
parameters. It can be observed that by training only
the ILP, our method outperforms most baseline
methods (i.e., GRU4Rec to UniSRec) and achieves
results similar to Recformer and LLM-Rec. It is
worth noting that both Recformer and LLM-Rec
require training all model parameters. This indi-
cates that our method fully leverages the powerful
potential of LLMs as a universal foundation model
for sequential recommendation.

For training all parameters, the proposed ST2SI
achieves the best results across all datasets. Com-
pared to ILP tuning, directly training all parameters
consistently leads to better results, which is reason-
able. It also indicates that the foundation model
may not be powerful enough, leaving ample room
for improvement in multi-domain recommendation
tasks. Compared to all baselines, the proposed
method improves NDCG@10, Recall@10, and
MRR on average by 7.33%, 4.65%, and 8.42%,
respectively, over the second-best results.

4.3 Ablation Experiments

In this section, we conduct ablation studies on three
datasets to demonstrate the effectiveness of the
proposed method.

4.3.1 Key Components
We analyze how our proposed components influ-
ence the final sequential recommendation perfor-
mance. The results are shown in Table 3. We
introduce the variants and analyze their results re-
spectively.

(1) w/o Multi-Query: In this variant, we only in-
sert a query token [Q] at the last position of the for-
mula (2). From the results, it can be observed that
Multi-Query consistently improves performance,
indicating that mining transition patterns of items
in the interactive sequence is necessary.

(2) w/o ID Alignment: After removing ID Align-
ment in Section 3.3, recommendation performance
declines across all configurations. This indicates
that strengthening the understanding of item text to
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item id by LLM is beneficial for generating better
recommendation results.

(3) w/o (1)&(2): If both Multi-Query and ID
Alignment are removed simultaneously, the worst
results are obtained across all variants. This indi-
cates that each component is effective.

(4) w/ Pre-training: After pre-training on the
source domain datasets, completely opposite re-
sults are observed in the two tuning methods. We
can see that: 1) If training all parameters, pre-
training leads to suboptimal results. This sug-
gests that general knowledge is more advantageous
for improving performance in the target domain.
The source and target domains have significant
domain differences, and pre-training disrupts the
general knowledge in the LLM. 2) Even without
pre-training, training only ILP parameters can out-
perform many baseline methods in Table 2, indi-
cating that LLM itself has the potential to serve
as a universal foundation model for sequential rec-
ommendation. 3) If training only ILP parameters,
pre-training leads to better results. This indicates
that although the LLM possesses general knowl-
edge, it does not understand the recommendation
task, and we need to guide it. A more detailed
analysis of pre-training is provided in Appendix B.

4.3.2 More Attributes
In this section, we investigate the impact of dif-
ferent numbers of attributes on performance, and
the results are shown in Table 4. Following pre-
vious work (Hou et al., 2022; Li et al., 2023), we
concatenate multiple attribute texts as the item text.
It can be observed that, on the Scientific and Arts
datasets, adding the brand attribute improves per-
formance, but further adding the category attribute
leads to a performance decline in the Arts dataset.
On the Instruments dataset, adding the brand at-
tribute does not change performance, and continu-
ing to add the category attribute improves perfor-
mance. This indicates that our method can leverage
various attribute information of items to enhance
performance. However, not all attribute informa-
tion is useful, as some dataset attributes may harm
performance.

4.4 ILP Accuracy

To directly evaluate the ILP module, we present the
accuracy of ILP in mapping item text to its ID in
Table 5. The results indicate that the ILP can map
the item text to the correct ID in most cases, further
demonstrating the effectiveness of the ILP module.

Numbers
Scientific Instruments Arts

NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10

1 0.1147 0.1481 0.0946 0.1233 0.1385 0.1709
2 0.1170 0.1525 0.0946 0.1233 0.1401 0.1749
3 0.1165 0.1547 0.0959 0.1245 0.1390 0.1735

Table 4: Performance with different numbers of at-
tributes: 1 - title, 2 - title + brand, 3 - title + brand
+ category.

Dataset Scientific Instruments Arts Office Games Pet

Acc@1 0.9531 0.9150 0.9787 0.7771 0.9450 0.9444
Acc@5 0.9910 0.9954 0.9998 0.9613 0.9990 0.9952

Table 5: Accuracy of ILP in mapping item texts to IDs.

5 Conclusion

In this paper, we propose a novel sequential rec-
ommendation framework for maping sequential
item texts to sequential item IDs, named ST2SI.
The framework addresses the problems present
in existing methods in a simple and elegant man-
ner. We transform the language modeling objective
in the open domain into an item modeling goal
by introducing multi-query input and ILP, thereby
mining transition patterns among items in interac-
tion sequences. Then, we further propose item ID
alignment to address misalignment between item
text and item ID through instruction tuning. Fur-
thermore, we propose efficient ILP tuning to flex-
ibly apply to different recommendation scenarios.
Through extensive experiments, we show the ef-
fectiveness of our proposed ST2SI framework and
efficient ILP tuning.

Limitations and Future Work

Despite the promising results and advantages of-
fered by our proposed ST2SI, there are several
limitations that need to be addressed: 1) Scaling
this framework to millions or billions of items will
consume substantial storage and computational re-
sources. In the future, we are considering two
strategies to address this issue: firstly, replace tradi-
tional softmax with hierarchical softmax to signifi-
cantly reduce computational complexity. Secondly,
assign multiple IDs to each item rather than a sin-
gle ID. 2) The framework currently only utilizes
textual information of items and fails to mine the
multimodal preferences of users. In our upcom-
ing work, we plan to incorporate additional item
information, such as images, to further enhance
recommendation performance.
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A Detailed Experiments Settings

A.1 Datasets

To evaluate the performance of ST2SI, we conduct
pre-training and fine-tuning on different categories
of Amazon review datasets (Ni et al., 2019). The
statistics of datasets after preprocessing are shown
in Table 1.

For pre-training, two categories are selected
as training data including “Cell Phones and Ac-
cessories” and “Grocery and Gourmet Food”.
Datasets from these categories are used as source
domain datasets.

For finetuning, we select six categories includ-
ing “Industrial and Scientific”, “Musical Instru-
ments”, “Arts, Crafts and Sewing”, “Office Prod-
ucts”, “Video Games”, “Pet Supplies”, as target
domain datasets to evaluate ST2SI.

For pre-training and fine-tuning, we filter items
whose title is missing. Then we group the interac-
tions by users and sort them by timestamp ascend-
ingly.

A.2 Baselines

We choose two types of state-of-the-art methods
for comparison, including the powerful basic RS
methods and the RS methods that integrated side
information. The baseline methods are as follows:

• GRU4Rec (Hidasi et al., 2015) introduces Gat-
ing Recurrent Unit (GRU) to model user action
sequences for session-based recommendations.

• SASRec (Kang and McAuley, 2018a) uses a di-
rectional self-attentive model to capture item cor-
relations within a sequence.

• BERT4Rec (Sun et al., 2019a) employs a bi-
directional self-attentive model with the cloze
objective for modeling user behavior sequences.

• FDSA (Zhang et al., 2019a) uses a self-attentive
model to capture item and feature transition pat-
terns.

• S3-Rec (Zhou et al., 2020) pre-trains sequential
models with mutual information maximization
to learn the correlations among attributes, items,
subsequences, and sequences.

• ZESRec (Ding et al., 2021) encodes item texts
with a pre-trained language model as item fea-
tures.

• UniSRec (Hou et al., 2022) uses textual item rep-
resentations from a pre-trained language model
and adapts to a new domain using an MoE-
enhance adaptor.

• Recformer (Li et al., 2023) pre-trains and fine-
tunes a language model in a holistic approach for
item text encoding and sequential recommenda-
tion.

• LLM-Rec (Tang et al., 2023) explore the ability
of language models in multi-domain behaviors
modeling.

All baseline results are from Recformer(Li et al.,
2023), except for LLM-Rec. For a fair comparison,
we implement LLM-Rec using opt-125m(Zhang
et al., 2022). Differing from the original paper’s
implementation, we utilize Recformer’s two-stage
fine-tuning paradigm for the implementation of
LLM-Rec, as it yields better results.

A.3 Implementation Details
We implement our approach using the opt-125m
(Zhang et al., 2022) model from Huggingface (Wolf
et al., 2019). It is a language model with a decoder-
only structure consisting of 12 layers and a hid-
den layer dimension of 768. We set the maximum
length of the interaction sequence to 50 and the
maximum number of tokens for each attribute to
32. In all experiments, we use the item title as the
default attribute, i.e., item text, except for Section
4.3.2. We conduct experiments on two Tesla V100
GPUs, setting the batch size to 32 and the gradient
accumulation steps to 4. We optimize ST2SI with
Adamw (Loshchilov and Hutter, 2017) optimizer
and adopt early stop with the patience of 5 epochs
to prevent overfitting. When training all model
parameters, the learning rate is set to 5e-5. For
efficient fine-tuning of ILP, the learning rate is set
to 3e-4 when not pre-trained on the source domain
datasets and 1e-4 when pre-trained on the source
domain datasets.

B Pre-training Analysis

In this section, we investigate the impact of pre-
training datasets on the target domain dataset un-
der full parameter tuning and efficient ILP tuning.
Specifically, we aim to examine whether a uni-
versally pre-trained model on the source domain
dataset performs better than a model without pre-
training.

B.1 Full Parameters Tuning
In this part, we compare and analyze the impact
of pre-training on full-parameter fine-tuning, as
illustrated in Figure 3. Firstly, pre-training con-
sistently yields worse results compared to directly
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training all parameters. We attribute this to signifi-
cant domain differences between the pre-training
dataset and downstream data, disrupting the general
knowledge within the LLM. Secondly, following
pre-training on the Food dataset, improved results
are observed on the Scientific and Arts datasets
compared to the Cell dataset. This suggests a closer
semantic relationship between the Food dataset and
the Scientific/Arts datasets. Lastly, pre-training
across all datasets leads to suboptimal results, indi-
cating that increasing the scale of the pre-training
dataset does not necessarily result in performance
improvement. In summary, pre-training the LLM
on large-scale universal datasets, thereby acquiring
general knowledge across various domains, which
proves advantageous for enhancing performance
on downstream datasets.
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Figure 3: The impact of different pre-training datasets
on the target domain dataset when training all parame-
ters.

B.2 Efficient ILP Tuning

In this section, we compare and analyze the impact
of pre-training on ILP parameter fine-tuning, as
depicted in Figure 4. Firstly, we observe that even
without pre-training, training only ILP parameters
can outperform many baseline methods in Table 2,
which is remarkable. This indicates that the general
knowledge within the LLM can be directly applied
to the recommendation task. Secondly, as long as
pre-training is performed, the results consistently
outperform those without pre-training. This sug-
gests that, although the LLM possesses general
knowledge, it lacks an understanding of the rec-
ommendation task, necessitating pre-training for
better results. Lastly, we note that pre-training on
the Food dataset yields the best results across all
downstream datasets. This indicates a closer se-
mantic alignment between the Food dataset and
the downstream datasets, suggesting that a small
amount of high-quality pre-training data is suffi-
cient to make the LLM applicable to downstream

datasets across multiple domains.
Based on the analysis above, we believe that the

LLM has strong potential as a foundation model for
universal sequence recommendation. By training
only the ILP on specific datasets, we can flexibly
adapt it to new scenarios. In the future, we will ex-
plore the enhanced recommendation performance
of more powerful LLMs, such as LLaMA (Touvron
et al., 2023).
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Figure 4: The impact of different pre-training datasets
on the target domain dataset when training ILP parame-
ters.

B.3 Pre-training Epochs
We study the sequence recommendation perfor-
mance of efficiently tuning ILP for downstream
tasks through different pre-training epochs, and the
results are shown in Figure 5. We can observe that
for most datasets, optimal performance is achieved
after approximately 15 training epochs, and further
pre-training may compromise the performance of
downstream tasks. This suggests that pre-training
can help the LLM understand the recommendation
task, but additional pre-training may lead to over-
fitting and result in the loss of general knowledge,
thereby impairing the transferability of knowledge.
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Figure 5: The impact of different pre-training epochs
for efficient ILP tuning on the Food dataset.

C More Experiments Results

C.1 Different Models
In Table 6, we present experimental results for
more models. Due to time constraints and limited
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computational resources, we only conduct ILP tun-
ing on the opt-2.7b and llama-7b models. The ex-
perimental results show that a larger model does not
necessarily yield better results. This could be due
to the ILP parameters being trained from scratch,
where a larger model might lead to overfitting.

Scientific Instruments

NDCG@10 Recall@10 NDCG@10 Recall@10

Full
Parameter

opt-125m 0.1147 0.1481 0.0946 0.1233
opt-350m 0.1016 0.1285 0.0859 0.1106
opt-1.3b 0.1097 0.1431 0.0918 0.1201

Only
ILP

opt-125m 0.0961 0.1292 0.0758 0.1022
opt-350m 0.0824 0.1155 0.0672 0.0948
opt-1.3b 0.0900 0.1206 0.0776 0.1050
opt-2.7b 0.0876 0.1192 0.0756 0.1021
llama-7b 0.0882 0.1201 0.0734 0.1022

Table 6: Experimental results of different models.

C.2 Efficiency Analysis
In Table 7, we provide the training conditions and
inference efficiency of various models. We test
the inference speed of the models on a single GPU
with a batch size set to 1. Notably, the reasoning
speed of our method is several orders of magnitude
faster than methods such as LLaRA, because they
require beam search decoding, which consumes
a significant amount of computational time and
resources. The training time varies across different
datasets, and we have provided detailed training
logs in a GitHub repository.

Model Training 1 GPU Inference Time Inference Memory

opt-125m 2 V100 0.02s/Instance 0.97GB
opt-350m 2 V100 0.05s/Instance 2.50GB
opt-1.3b 4 V100 0.11s/Instance 9.89GB
opt-2.7b 4 V100 0.15s/Instance 19.99GB
llama-7b 8 V100 - OOM

Table 7: Training and Inference.

C.3 More Comparisons
In this section, we compare our method with more
baselines to demonstrate its superiority. Notably,
here we have a candidate set size of 20 because
some methods based on large language models,
such as TALLRec and LLaRA, are not suitable for
the full ranking setting, as they struggle to generate
item information across the entire item set.

Datasets. We conduct experiments using two
datasets preprocessed for LLaRA (Liao et al.,
2024), including: 1) MovieLens (Harper and Kon-
stan, 2015), a commonly-used movie recommenda-
tion dataset that contains user ratings and movie ti-
tles. 2) Steam (Kang and McAuley, 2018b), which

Dataset MovieLens Steam

# Sequence 943 11,938
# Item 1,682 3,581
# Interaction 100,000 274,726

Table 8: Statistics of Datasets.

encompasses user reviews for video games on the
Steam Store, in addition to game titles.

Baselines. We compare our approach with two
categories of baseline models, including: 1) Tradi-
tional Sequential Recommenders: GRU4Rec (Hi-
dasi et al., 2015), Caser (Tang and Wang, 2018),
and SASRec (Kang and McAuley, 2018a); 2) LLM-
based Models: Llama2 (Touvron et al., 2023), GPT-
4 (Achiam et al., 2023), MoRec (Yuan et al., 2023),
TALLRec (Bao et al., 2023), and LLaRA (Liao
et al., 2024).

Performance. In Table 9, we present a compar-
ison with more baselines, all of whose results are
directly sourced from LLaRA. We test with 20
different random seeds and report both the mean
and standard deviation. The experimental results
show that our method outperforms most baselines
and achieves performance comparable to that of
LLaRA.

MovieLens Steam
ValidRatio HitRatio@1 ValidRatio HitRatio@1

GRU4Rec 1.0000 0.3750 1.0000 0.4168
Caser 1.0000 0.3861 1.0000 0.4368

SASRec 1.0000 0.3444 1.0000 0.4010

Llama2 0.4421 0.0421 0.1653 0.0135
GPT-4 0.9895 0.2000 0.9798 0.3626
MoRec 1.0000 0.2822 1.0000 0.3911

TALLRec 0.9263 0.3895 0.9840 0.4637

LLaRA (GRU4Rec) 0.9684 0.4421 0.9975 0.4924
LLaRA (Caser) 0.9684 0.4737 0.9966 0.4874

LLaRA (SASRec) 0.9684 0.4421 0.9975 0.4949

ST2SI 1.0000 0.4734±0.0356 1.0000 0.4698±0.0100

Table 9: Comparison with more baselines. The best and
the second-best performances are denoted in bold and
underlined fonts, respectively.

https://github.com/zhaijianyang/ST2SI
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