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Abstract

Instruction tuning a large language model with
multiple languages can prepare it for multilin-
gual downstream tasks. Nonetheless, it is yet
to be determined whether having a handful of
languages is sufficient, or whether the benefits
increase with the inclusion of more. By fine-
tuning large multilingual models on 1 to 52
languages, we present a case study on BLOOM
to understand three pertinent factors affecting
performance: the number of languages, lan-
guage exposure, and similarity between train-
ing and test languages. Overall we found that 1)
expanding language coverage in multilingual
instruction tuning proves to be beneficial; 2)
accuracy often significantly boots if the test
language appears in the instruction mixture; 3)
languages’ genetic features correlate with cross-
lingual transfer more than merely the number
of language but different languages benefit to
various degrees.

1 Introduction

Many large language models (LLMs) have been
designed to handle many languages through multi-
lingual pre-training, like mGPT (Shliazhko et al.,
2022) and BLOOM (Scao et al., 2022), while some
other models only (officially) support a few, e.g. the
Llama series (Touvron et al., 2023; Grattafiori et al.,
2024). At the alignment stage, as a more affordable
route, researchers used multilingual instruction tun-
ing (mIT) to enhance the multilingualism of LLM
(Muennighoff et al., 2023). Recently, Chen et al.
(2024) compared monolingual and multilingual in-
struction tuning under a resource-fair scenario with
multiple LLMs. Kew et al. (2024) experimented
with English-centric LLMs such as Llama 2 (Tou-
vron et al., 2023) and Falcon (Almazrouei et al.,
2023) and found that mIT using as few as three
languages enables cross-lingual transfer. Similarly,

*Equal contribution.
†Work done while at the University of Helsinki.

Shaham et al. (2024) studied the same topic fea-
turing “just a pinch of multilinguality” of 2–4 lan-
guages. Moreover, Chirkova and Nikoulina (2024)
showed that instruction tuning in only English with
a carefully set learning rate enables responses in
four other test languages. We note the variations in
the choice of languages, base models, and testbeds
used in these studies. More importantly, while it
has been demonstrated that a handful of languages
elicit (zero-shot) multilingual responses, it does not
imply the optimal downstream task results, not to
mention to cater to each language.

To fill the gap, we perform instruction tuning on
the multilingual BLOOM model (Scao et al., 2022)
on a parallel instruction dataset named Bactrain-X
in 52 languages (Li et al., 2023). We progressively
add a language for each mIT run, resulting in 52
models in total,1 which are then evaluated on three
multilingual benchmarks. Patterns on BLOOM re-
veal that contrary to prior research, having more
languages beyond a handful can further improve
performance, although with diminishing returns
and some outlier cases. Our findings are summa-
rized as follows:

1. Cross-lingual transfer improves with more lan-
guages in mIT, but the optimal number of lan-
guages depends on the task and test language,
with varying behaviours across benchmarks
and languages.

2. Including a specific language in the instruc-
tion tuning data generally enhances its perfor-
mance, though outliers exist, and the benefits
from massive mIT are limited if a language
is not part of the tuning data, regardless of its
presence during pre-training.

1huggingface.co/collections/MaLA-LM → Lucky52. Fun
fact: Lucky 52 was a famous variety show in China in the
early 2000s. The naming denotes the 52 models fine-tuned on
1 to 52 languages.

https://huggingface.co/collections/MaLA-LM/lucky52-660e5fd24a2ced4b334d63d6
https://en.wikipedia.org/wiki/Lucky_52
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3. Correlations between language similarity and
performance vary, with genetic features being
more predictive than the number of languages.
Some languages, like Thai and Swahili, show
strong inter-language effects, while others,
like English and Chinese, have weaker cor-
relations.

Our study emphasizes the importance of a closer
look at the tasks, benchmarks, languages, and eval-
uation metrics. We advocate for more consistent
future studies focused on mIT. Further variables in-
clude but are not limited to base LLMs, pre-training
recipes and data. Comprehensive and consistent
investigations are crucial for advancing our under-
standing of mIT and its implications.

2 Scaling Instruction Languages

2.1 Increasing the Number of Languages

Our setup is supervised fine-tuning, where an in-
struction and a task input are fed to an LLM to
yield a response. We progressively include an extra
language in each training run to study the precise
effect the number of languages brings in. As the
number of languages expands, instruction data size
also grows—to mitigate this variable, we opt for
parallel instruction data in which English instruc-
tions are translated into other languages. This con-
trols that all models are trained with a comparable
amount of instruction information. Moreover, the
increase in data size also increases the number of
optimization steps when utilizing stochastic gradi-
ent descent to update the model parameters on the
same device. We express the number of updates
as U = ⌈N×L×E

B×W ⌉, where N is the instruction data
size, L is the number of languages, E is the num-
ber of epochs, B is the batch size, and W is the
number of GPUs. We increase W proportionally
to L to maintain a manageable range of updates.

2.2 Multilingual Instruction Data

We use the Bactrian-X dataset (Li et al., 2023) com-
prising 3.4 million instruction-response pairs with
an equal share in each of its 52 languages. We fine-
tune an LLM from 1 to 52 languages resulting in
52 models. The languages are added in a specific
order: en (English), zh (Chinese), and the rest in
alphabetical order. Refer to Appendix A for an
exhaustive list of languages and their 2-digit codes.
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Figure 1: Test performance across all languages; x-axis:
number of languages in mIT; y-axis: average accuracy.

2.3 Base Language Model Tuning

Multilingual language models can inherit distri-
bution biases present in the training data, which
may affect their capability across languages after
instruction tuning. We hence base our experiments
on BLOOM (Scao et al., 2022) which has been
developed with careful consideration in multiple
natural and coding languages. Its massive multi-
lingual tokenization support makes it well-suited
for studying a large number of languages in a fair
manner. In our specific application, we opt for the
BLOOM-7B1 variant with 7.1B parameters.

Training Details We use the transformers frame-
work (Wolf et al., 2019) with DeepSpeed integra-
tion (Rasley et al., 2020) for fine-tuning. We set
the learning rate to 3e-5 and the batch size to 4 per
device. Gradient accumulation, with a step size of
4, enables the aggregation of gradients over multi-
ple steps. The number of epochs is fixed at 3. The
maximum model length is set to 768, the same as
in Bactrian-X (Li et al., 2023). Models are trained
on a cluster with 4 AMD MI250X GPUs (in total 8
GPU dies) in each node. We adopt distributed train-
ing on multiple nodes ranging from 2 to 10 with
the increase in the number of languages, making
the global batch size range from 256 to 1280.

2.4 Benchmarks and Evaluation

We test on three multilingual benchmarks.
XCOPA (Ponti et al., 2020) is a multilingual dataset
for causal commonsense reasoning in 11 languages.
XStoryCloze (Lin et al., 2021) is a multilingual
dataset for commonsense reasoning in the story in
10 non-English languages. XWinograd (Tikhonov
and Ryabinin, 2021) is a multilingual compilation
of Winograd Schemas (Levesque et al., 2012) avail-
able in 6 languages. We run zero-shot prompting
via lm-evaluation-harness (Gao et al., 2023). Dif-
ferent models, trained with progressively added
languages, are evaluated on these benchmarks us-
ing accuracy (0-1) as the metric.



2577

XStoryCloze

0.50

0.60

0.70

0.80

0 10 20 30 40 50
en (IT) zh (IT) zh (base) en (base)

XWinograd

0.60

0.70

0.80

0.90

0 10 20 30 40 50
en (IT) zh (IT) zh (base) en (base)

XCOPA

0.50
0.55
0.60
0.65
0.70
0.75

0 10 20 30 40 50
zh (IT)          zh (base)

Figure 2: Accuracy for English and Chinese on XStoryCloze, XWinograd, and XCOPA.
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Figure 3: Accuracy for Quechuan, unseen both by the
base model and during IT.

3 Results and Discussions

3.1 Number of Languages
Overall pattern We first study the effect of the
number of languages on multilingual performance—
how much multilingualism do we want for instruc-
tion tuning an LLM, i.e., BLOOM-7B1 in our case
study? Figure 1 illustrates the average accuracy on
the three benchmarks with different numbers of lan-
guages in the instruction data. For XCOPA and XS-
toryCloze, there is a positive correlation between
the number of instruction languages and perfor-
mance; but for XWinograd, we observe fluctuating
results with a weaker trend. A notable drop appears
in the scatter plot across all benchmarks—the point
where Korean (kr) is added to the IT data. We in-
spected the training curve of the model trained with
Korean added to instruction data and found that the
training and validation loss decreases as training
goes on and the model converges as expected.

English versus Chinese We move on to two
specific languages, i.e. English and Chinese, as
displayed in Figure 2 together with base model
prompting performance. We notice a similar drop
in accuracy when Korean is added, but there is no
obvious benefit from cross-lingual transfer when
more languages are added. For English and Chi-
nese XStoryCloze, the highest accuracy is attained
much later when the 27th (Latvian, lv) or 29th
(Malaysian, ml) language is added, respectively.
Yet, interestingly, while instruction tuning sur-
passes the base model for English, it makes it worse
for Chinese. XWinograd exhibits a similar trend
that instruction tuning benefits English but drasti-
cally harms Chinese. In addition, the best IT perfor-

mance for both languages is observed when there
is only one language (English) in the instruction
data. Specifically, the result for Chinese XCOPA
peaks early when the 6th language (Bangla, bn) is
added, but later models with more languages no
longer improve.

Summary Instruction tuning with a few lan-
guages is useful for cross-lingual transfer, but hav-
ing more languages can further improve the aver-
age results when many languages are of concern.
However, distinct behaviours can be witnessed for
different benchmarks and individual languages, so
the optimal number of languages in mIT depends
on the task and test language.

3.2 Language Exposure

A test language can fall into one of the cases de-
pending on being seen or unseen during the pre-
training and instruction tuning phases: (1) unseen
by the base and during IT: qu (XCOPA). (2) seen
by the base but unseen during IT: ht (XCOPA) and
eu (XStoryCloze). (3) unseen by the base but seen
during IT: et, it, th, tr (XCOPA); my, ru (XSto-
ryCloze); ja, ru (XWinograd). (4) seen by the base
and during IT, e.g.: id, sw, ta, vi, zh (XCOPA); ar,
en, es, hi, id, sw, te, zh (XStoryCloze); en, fr, pt,
zh (Winograd). We are interested in understand-
ing model performance in the first three categories
where the number and closeness of mIT languages
may benefit or harm unseen languages.

Unseen by base, unseen during IT Only one
language is not covered by either pre-training or
instruction tuning: Quechuan (qu) in XCOPA. We
plot its performance across all data mixtures in
Figure 3. As the number of IT languages grows,
accuracy fluctuates around the base model perfor-
mance, showing a weak trend. This implies that
if a language has no presence at all, there is very
little transfer mIT can do.

Unseen by base, seen during IT We then in-
vestigate an important use of multilingual instruc-
tion tuning—to adapt the base LLM to unseen lan-
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Figure 4: Accuracy on XCOPA for various languages, unseen by the base model but seen during IT. ⋆ indicates the
point the test language starts to be included in the mIT data. In most cases, performance can benefit (et, it, th) from
the test language appearing in mIT despite outliers (tr).
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Figure 5: Accuracy for Haitian on XCOPA and Basque
on XStoryCloze, seen by base unseen during IT.

guages during pre-training. Figure 4 show the ac-
curacy of various languages that have not been
(intentionally) learned during pre-training but ap-
peared in instruction tuning (at some point), with
additional languages exhibiting similar trends in
Appendix B Figure 6. We find that in the major-
ity of scenarios, including a language in IT can
immediately aid the performance of that language
as anticipated. However, we also notice two inter-
esting cases: 1) for Turkish (tr) tested in XCOPA
(Figure 4), the accuracy is similar before and af-
ter introducing the language to the IT data; 2) for
Russian (ru) tested in XWinograd (Figure 6b), the
performance is below base model prompting even
after the language appears in mIT. Besides, cross-
lingual transfer is observed in mIT, for instance: the
performance of Estonia (et) and Italian (it) tested
in XCOPA can further grow after more languages
are added; the performance of Turkish (tr) tested in
XCOPA is already favourable without the language
itself.

Seen by base, unseen during IT Finally, Fig-
ure 5 displays the two languages in this category.
In both cases, IT is better than base model prompt-
ing, indicating that mIT can transfer to unseen IT
languages that have been pre-trained. Nonetheless,
increasing the number of languages during mIT
does not significantly bring benefits.

Summary By examining result patterns in ex-
haustive seen-unseen cases, we can infer that hav-
ing a particular language in instruction tuning data
is often beneficial for its performance, although
some outliers can be observed. Regardless of
whether a language is learned during pre-training,

if it does not appear in the IT data composite, the
benefit from massive mIT is usually limited.

3.3 Language Similarity

We conduct a post-hoc analysis on how language
closeness affects cross-lingual transfer. Instead
of studying the relation between the number of
fine-tuning languages and test set performance, we
define an aggregated similarity measure between
all languages present in a fine-tuning corpus and a
test language Ltest:

similaritytrain,test =
∑

L∈corpus sim(L,Ltest)

where sim(, ) is a similarity metric between two
languages. We measure “aggregated similarity” in-
stead of “average similarity” because we argue that,
given their giant sizes, LLMs have the capacity to
model all language data in the training set simulta-
neously.

We adopt different similarity measures based on
syntactic, geographic, phonological, genetic, inven-
tory, and featural distances scored by lang2vec
(Littell et al., 2017; Malaviya et al., 2017).2 In ad-
dition, we gathered from another source a language
closeness score derived from sound (consonants)
overlap, which is deemed to reflect genetic similar-
ity (Beaufils and Tomin, 2020).3 In total, we test
out seven measures, where the similarity score is
always normalized to between 0 and 1 to the low-
est and highest similarity. The choice of language
features is similar to a contemporaneous study on
language transferability and similarity (Philippy
et al., 2024). As a baseline comparison, we provide
Pearson correlation coefficients between the num-
ber of languages and performance: XStoryClose
in Table 1, XWingrad in Table 2, and XCOPA in
Table 3. Also, since empirically the addition of Ko-
rean leads to an outlying performance, we compute
coefficients without the particular checkpoint too.

For XCOPA and XStoryCloze, lang2vec ge-
netic features stand out, usually resulting in a
stronger correlation than simply the number of lan-

2github.com/antonisa/lang2vec
3elinguistics.net/language_evolution.html

https://github.com/antonisa/lang2vec
http://www.elinguistics.net/language_evolution.html
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ar en es hi id my ru sw te zh

num. lang. -0.07 0.15 0.46 0.51 0.53 0.75 0.81 0.56 -0.47 0.11
num. lang. w/o ko 0.08 0.41 0.73 0.66 0.63 0.75 0.86 0.56 -0.53 0.31

sound correspondence -0.06 0.15 0.48 0.52 0.57 0.82 0.83 0.67 -0.43 0.12
lang2vec featural -0.05 0.15 0.47 0.51 0.53 0.77 0.83 0.58 -0.46 0.13
lang2vec genetic 0.17 0.16 0.50 0.54 0.66 0.96 0.87 0.96 -0.26 0.37
lang2vec geographic 0.17 0.15 0.47 0.51 0.54 0.76 0.81 0.96 -0.48 0.37
lang2vec inventory -0.06 0.15 0.46 0.51 0.54 0.76 0.83 0.55 -0.46 0.13
lang2vec phonological -0.05 0.15 0.47 0.51 0.53 0.76 0.83 0.57 -0.45 0.13
lang2vec syntactic -0.05 0.15 0.47 0.51 0.53 0.78 0.82 0.57 -0.45 0.13

Table 1: Pearson correlation between XStoryCloze performance and mIT data similarity

en fr ja pt ru zh

num. lang. -0.02 0.01 0.62 -0.32 -0.07 0.49
num. lang. w/o ko -0.03 0.00 0.66 -0.35 -0.07 0.50

sound correspondence -0.01 -0.01 0.66 -0.33 -0.06 0.45
lang2vec featural -0.01 0.00 0.62 -0.31 -0.06 0.47
lang2vec genetic -0.02 -0.08 0.72 -0.35 -0.05 -0.31
lang2vec geographic -0.02 -0.01 0.62 -0.33 -0.07 -0.31
lang2vec inventory -0.01 0.00 0.62 -0.31 -0.06 0.48
lang2vec phonological -0.01 0.01 0.63 -0.32 -0.06 0.48
lang2vec syntactic -0.02 0.00 0.62 -0.32 -0.06 0.47

Table 2: Pearson correlation between XWinograd performance and mIT data similarity

et id it sw ta th tr vi zh

num. lang. 0.44 0.44 0.63 0.54 -0.80 0.53 0.45 -0.46 -0.20
num. lang. w/o ko 0.44 0.50 0.64 0.54 -0.80 0.53 0.46 -0.50 -0.39

sound correspond. 0.51 0.48 0.64 0.64 -0.83 0.62 0.45 -0.36 -0.20
l2v featural 0.46 0.45 0.63 0.56 -0.81 0.55 0.45 -0.44 -0.19
l2v genetic 0.67 0.58 0.67 0.93 -0.84 0.82 0.47 0.02 0.01
l2v geographic 0.43 0.46 0.64 0.93 -0.80 0.55 0.45 -0.45 0.01
l2v inventory 0.46 0.45 0.64 0.52 -0.80 0.55 0.45 -0.45 -0.19
l2v phonological 0.45 0.45 0.62 0.54 -0.80 0.55 0.44 -0.45 -0.19
l2v syntactic 0.45 0.45 0.63 0.54 -0.81 0.54 0.45 -0.45 -0.19

Table 3: Pearson correlation between XCOPA perfor-
mance and mIT data similarity

guages. While most languages display a positive
correlation with mIT language similarity or cover-
age, we notice that some are negatively affected:
ta, and vi in XCOPA, te in XStoryCloze, and pt in
XWinograd. Finally, across different test sets, be-
haviours could be diverging for the same language:
genetic similarity benefits ru in XStoryCloze but
has no correlation in XWinograd.

Summary Many factors contribute to the train-
test similarity and performance correlation in both
positive and negative ways: languages, test sets,
and similarity measures.

4 Conclusion

While instruction tuning of large multilingual mod-
els enables versatile language processing, it re-
quires careful handling of language-specific nu-

ances. This paper presents an experimental analy-
sis that controls the base model, instructions, and
training recipe to study the number, closeness, and
exposure of languages. Our findings, compared
with prior work, show that multilingual instruc-
tion tuning depends heavily on factors like base
models, data, tasks, and evaluation protocols. We
emphasize the need for more systematic studies to
validate the effectiveness and generalizability of
this approach.

Limitations

Our work studies multilingual instruction tuning
in 52 relatively high-resourced languages, which
might be limited in size to arrive at comprehen-
sive conclusions for thousands of living languages,
which are often under-served. We did not con-
duct a human evaluation due to budget constraints.
Future work could conduct a more systematic as-
sessment with more rigorously controlled variables
and heavier regularization during instruction tun-
ing to prevent base model knowledge and language
forgetting.
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A All languages

Apart from English and Chinese, data in the other 50 languages in Bactrian-X are added in alphabetical
order: af (Afrikaans), ar (Arabic), az (Azerbaijani), bn (Bengali), cs (Czech), de (German), es (Spanish),
et (Estonian), fa (Farsi), fi (Finnish), fr (French), gl (Galician), gu (Gujarati), he (Hebrew), hi (Hindi),
hr (Croatian), id (Indonesian), it (Italian), ja (Japanese), ka (Georgian), kk (Kazakh), km (Khmer), ko
(Korean), lt (Lithuanian), lv (Latvian), mk (Macedonian), ml (Malayalam), mn (Mongolian), mr (Marathi),
my (Burmese), ne (Nepali), nl (Dutch), pl (Polish), ps (Pashto), pt (Portuguese), ro (Romanian), ru
(Russian), si (Sinhala), sl (Slovenian), sv (Swedish), sw (Swahili), ta (Tamil), te (Telugu), th (Thai), tl
(Tagalog), tr (Turkish), uk (Ukrainian), ur (Urdu), vi (Vietnamese), and xh (Xhosa).

B Additional plots for languages unseen by base model but seen during IT
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(a) Performance on XStory Malaysian and Russian as well as XWinograd Japanese benefits from the test language changing
from unseen to seen in mIT.
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(b) Performance on XWinograd Russian does not benefit from the test language changing from unseen to seen in mIT.

Figure 6: Accuracy for various languages unseen by the base model but seen during IT. ⋆ indicates the point when
the test language starts to be included in the mIT data.
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