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Abstract

Federated learning has emerged as a potential
solution to overcome the bottleneck posed by
the near exhaustion of public text data in train-
ing large language models. There are claims
that the strategy of exchanging gradients allows
using text data including private information.
Although recent studies demonstrate that data
can be reconstructed from gradients, the threat
for text data seems relatively small due to its
sensitivity to even a few token errors. However,
we propose a novel attack method FET, indi-
cating that it is possible to Fully Expose Text
data from gradients. Unlike previous methods
that optimize continuous embedding vectors,
we directly search for a text sequence with gra-
dients that match the known gradients. First,
we infer the total number of tokens and the
unique tokens in the target text data from the
gradients of the embedding layer. Then we de-
velop a discrete optimization algorithm, which
globally explores the solution space and pre-
cisely refines the obtained solution, incorpo-
rating both global and local search strategies.
We also find that gradients of the fully con-
nected layer are dominant, providing sufficient
guidance for the optimization process. Our ex-
periments show a significant improvement in
attack performance, with an average increase
of 39% for TinyBERT6, 20% for BERTbase and
15% for BERTlarge in exact match rates across
three datasets. These findings highlight seri-
ous privacy risks in text data, suggesting that
using smaller models is not an effective privacy-
preserving strategy.

1 Introduction

Large language models (LLMs) are facing a sig-
nificant challenge posed by the availability of text
data resources. However, federated learning (FL)
(Konečný et al., 2016; Bonawitz et al., 2019; Ryf-
fel et al., 2018; McMahan et al., 2017; Vanhaese-
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brouck et al., 2017; Zhao et al., 2018), which allows
using private data by keeping it local, could be a
potential solution to overcome the bottleneck. Typi-
cally, multiple clients and a server train a model co-
operatively in FL. In each global round, the clients
train local models using their private data and up-
load gradients to the server, while the server ag-
gregates the received gradients to build a global
model. FL not only enhances efficiency by paral-
leling the computations but also keeps data local as
a privacy-preserving measure. As a result, FL has
emerged as a new trend in various applications, par-
ticularly those involving extensive use of text data,
such as mobile keyboard predictions (Ramaswamy
et al., 2022; Hard et al., 2018) and financial risk
assessments (Byrd and Polychroniadou, 2021).

However, recent studies (Zhu et al., 2019; Zhao
et al., 2020; Geiping et al., 2020; Enthoven and
Al-Ars, 2022; Jeon et al., 2021; Yin et al., 2021;
Zhu and Blaschko, 2020; Xu et al., 2022; Geng
et al., 2021; Li et al., 2023; Yue et al., 2023; Wang
et al., 2023) demonstrate that private training data
may be reconstructed from gradients. In these at-
tacks, dummy data is randomly initialized and sub-
sequently optimized to minimize the gradient dis-
tance between the target and reconstructed data.
This method has demonstrated effectiveness in re-
constructing image data, enabling privacy breaches
even in high-resolution or large-batch scenarios.
However, applying this method to text data has
proven challenging in achieving precise reconstruc-
tion results, even for a single-batch or for short
sentences within 10 tokens (Zhu et al., 2019; Deng
et al., 2021). Moreover, the precision of reconstruc-
tion is crucial for recovering the semantic informa-
tion of text data, which is sensitive to errors. For
private data like phone numbers, mailing addresses,
and card IDs, allowed using in FL, even a slight
inaccuracy can result in complete failure. Recent
study TAG (Deng et al., 2021) adapts the image
reconstruction method to text data, combining both
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Figure 1: Illustration of FET attack scenarios and procedures. An attacker, either the server or a client eavesdropping
the target client, recovers the private text data following mainly three steps: formulation of a discrete optimization
problem, specification of the problem, and solving by the optimization algorithm.

L1 norm and L2 norm distance function to measure
the distance between the reconstructed text and
target text. LAMP (Balunovic et al., 2022) also ap-
plies the optimization-based method but introduces
a pretrained language model as prior knowledge,
achieving an improvement in performance. In light
of these findings, this paper proposes to pay more
attention on the precision of text reconstruction,
striving towards fully exposure of text data.

Reconstructing text from gradients is more chal-
lenging due to the vastness of vocabulary and the
discrete nature of text. Text is a sequence of tokens,
each drawn from an extensive vocabulary, such as
BERT vocabulary with 30522 tokens. Furthermore,
the variable length of text leads to an indeterminate
number of potential solutions. Existing methods
simplify the text reconstruction problem by opti-
mizing an embedding vector instead of text, how-
ever, at the expense of precision. The embedding
vector, extracted from the original text, may not
fully capture its semantic information. In other
words, even if we manage to obtain the true embed-
ding, it is not always feasible to recover the original
text. Given the critical importance of precision in
text reconstruction, we choose to optimize on text
space despite the inherent challenges.

In this paper, we propose a novel method named
FET, illustrated in Figure 1. To the best of our
knowledge, we have made the first attempt to op-
timize on the discrete text space instead of an em-
bedding space. Initially, we specify the problem
by inferring the total number of tokens and iden-

tifying the unique tokens from the gradients of
embedding layers. Subsequently, we design a dis-
crete optimization algorithm that consists of two
phases: exploration and fine-tuning. The explo-
ration phase, inspired by genetic algorithms (Baker
and Ayechew, 2003; R, 1976; Chatterjee et al.,
1996), updates a population of chromosomes to-
wards lower fitness values over generations, where
chromosomes represent possible solutions, and fit-
ness measures the optimization loss. The fine-
tuning phase follows if the exploration phase fails
to get the optimal solution, which initiates a cur-
rent solution by the outcome of the previous phase
and updates it iteratively. In each iteration, can-
didate solutions are generated by applying token
operations to the current solution, and the best from
these candidates is chosen to replace the current so-
lution. Distinct from previous methods that utilize
the sum of the gradient distances across all layers,
we focus exclusively on the fully connected layer.
Our observations indicate that the gradient distance
of the fully connected layer alone is sufficient to
guide the optimization process. Since gradient cal-
culations involve layer-by-layer backpropagation
of loss, focusing on the final layer also reduces
computational costs.

Based on our experimental evaluations, FET
demonstrates improved ROUGE scores and a
higher rate of exact matches, highlighting the pre-
cision of reconstructions when compared to state-
of-the-art methods. The exact match rate exceeds
50% on the CoLA and SST-2 datasets across all
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tested models including CNN-based, RNN-based
and Transformer-based language models, suggest-
ing the potential for fully exposure of text data
from gradients. Contrary to the prevailing view that
larger models’ gradients reveal more information
about the training data, our method performs better
on smaller model scales, indicating that privacy-
preserving strategies relying on extracting smaller
model scales may not be effective. Furthermore,
our findings show that gradients from the fully con-
nected layer alone are sufficient for data reconstruc-
tion.

Our main contributions are as follows:

• We made the first attempt to optimize directly
on the text space, rather than on the embed-
ding space. To achieve this, we designed a
discrete optimization algorithm that combines
global and local search strategies, enabling
effective convergence towards the optimal so-
lution for precise text reconstruction.

• We used the gradient distance of the fully con-
nected layer as the loss function. This not only
reduces computational costs but also demon-
strates that the gradient from the fully con-
nected layer alone contains sufficient informa-
tion for accurate text reconstruction.

• We implemented FET and conducted exten-
sive experimental evaluations. Our method
outperforms state-of-the-art approaches in
terms of ROUGE scores and exact match rates.
On CoLA and SST-2 datasets, exact match
rates exceed 50% for all tested models, re-
vealing that even smaller model scales are
vulnerable to data exposure from gradients.

2 Related work

In this section, we provide an overview of recon-
struction attacks from gradients on both image and
text data.

2.1 Image Reconstruction Attacks

Gradient exchanges posed significant data privacy
risks. To address these concerns, numerous stud-
ies focused on reconstructing private image data
from gradients, demonstrating the potential leak-
age of privacy. The pioneering attempt DLG, pro-
posed by Zhou et al (Zhu et al., 2019), formulated
the attack as an optimization problem, optimiz-
ing data to minimize the gradient distance. DLG

achieved pixel-wise accuracy for images. Subse-
quent studies improved this method by introducing
prior information, such as generative adversarial
networks (GANs) and total variation (TV). The In-
vGrad attack (Geiping et al., 2020), exploiting a
magnitude-invariant loss along with optimization
strategies based on adversarial attacks, could faith-
fully reconstruct images at high resolution, even for
trained deep networks. The GradInversion attack
(Yin et al., 2021) reconstructed high-resolution im-
ages from large batches (8 to 48 images) for large
networks like ResNets using group consistency reg-
ularization, where multiple agents starting from
different random seeds work together to find an
enhanced reconstruction result. The GIAS attack
(Jeon et al., 2021), inspired by the impact of reg-
ularization terms exploring data distribution, en-
hanced the effectiveness of reconstruction attacks
using a generative model pretrained on the data
distribution.

2.2 Text Reconstruction Attacks

In contrast to the progress made in image recon-
struction attacks, text reconstruction attacks have
received limited attention. DLG (Zhu et al., 2019)
made the initial attempt on text data, reporting a
token-wise accuracy on a limited dataset. TAG
(Deng et al., 2021) combined L1 norm and L2 norm
to measure gradient distances, noting that most gra-
dients gather around zero while a small proportion
have large values. However, both DLG and TAG
often fail to recover text data with correct order,
and the batch size of target data is limited to one.
Observing these limitations, LAMP (Balunovic
et al., 2022) incorporated a pre-trained LLM as
prior knowledge to guide the search towards more
natural text. LAMP alternated between continuous
and discrete optimization, with continuous opti-
mization minimizing the reconstruction loss on em-
bedding vectors and discrete optimization minimiz-
ing the perplexity calculated by the LLM. Unlike
optimization-based methods, FILM (Gupta et al.,
2022) identified a set of tokens from gradients and
generated sentences using beam search. FILM’s ap-
proach of identifying unique tokens from gradients
inspired our research. However, FILM primarily
focused on autoregressive pretrained language mod-
els did not prioritize precise reconstruction, which
is not the main focus of our work. In conclusion,
the current methods for text reconstruction attacks
struggle with achieving precise reconstruction.
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3 Problem Formulation

In this section, we describe the text reconstruction
problem by presenting the threat model and out-
lining the formulation of a discrete optimization
problem.

3.1 Threat Model
Attack scenario. In federated learning, C clients
collaboratively train a binary classification lan-
guage model with a server on their private text data.
In a global round, the server sends current global
model f with parameters θ to the clients. Client
c (c = 1, 2, . . . , C) initializes its local model with
the current global model, trains it on its private
data (xc,yc), and uploads gradients gc, where
xc = (xc1, x

c
2, . . . , x

c
n) is a text sequence, with

each token xci ∈ V (the tokenizer vocabulary) for
i = 1, 2, . . . , n , and yc denotes a label. Assume
that the server aggregates the gradients based on
FedSGD (Liu et al., 2020; Yang et al., 2019; Lin
et al., 2017; Yao et al., 2019). The attacker can
launch an attack at any round during training.

Attacker’s objective and capabilities. Con-
sider an attacker aiming at revealing the private
text xc from the gradients gc. The attacker has
access to the original gradients gc, the model f
with parameters θ, and the tokenizer with vocab-
ulary V . The attacker can be either the server or
client c′(c′ ̸= c) eavesdropping the communication
between server and client c.

3.2 Discrete Optimization Problem
For any input text sequence x, the attacker can
calculate the gradients with respect to fθ, given
the label yc. The discrete optimization problem is
formulated as

arg min
x∈V n

D(∂L(fθ(x),y
c)

∂θ
, gc). (1)

whereL denotes the loss function of model training,
and D denotes the distance function measuring gra-
dient distances. As the label can be enumerated in
binary classification, we assume the label is known,
following previous researches. Based on our obser-
vation, it is sufficient to match only the gradients
of the fully connected layer. L2 norm (Euclidean
distance), L1 norm (Manhattan distance) and co-
sine similarity are common choices for the distance
function. In this paper, our method does not rely
on a specific distance function and we have chosen
L2 norm function to test our algorithm.

4 FET Attack

In this section, we propose an attack method FET,
specifying the Problem (1) and solving it by de-
signing a tailored optimization algorithm presented
in Algorithm 1.

4.1 Inference from Gradients

Observing that the text length n and the m unique
tokens are not available, we follow the method in
(Melis et al., 2019) to get n and the m unique to-
kens building a new vocabulary W . The original
gradients are calculated based on the model pa-
rameters θ. Each non-zero row of the gradients
with respect to the word embedding layer shows
existence of a unique token, and we can identify
theses tokens. For modern Transformer-based lan-
guage models such as BERT (Devlin et al., 2018),
a positional embedding layer is included, where
the number of non-zero rows represent the text
length, i.e., the total number of tokens, including
repetitions. For a language model without a posi-
tional embedding layer, which is not mainstream,
the number of unique tokens gives a reference to
test different text lengths. With inference from gra-
dients, Problem (1) is specified with text length n
and a new vocabulary W .

Remark. To ensure that all text sequences in a
batch have the same length, language models apply
padding to the shorter sequences, adding extra to-
kens (usually special padding tokens) to match the
length of the longest sequence in the batch. This
uniform length allows for efficient parallel process-
ing within the model. We can only infer the final
length after padding through embedding gradients.

4.2 Discrete Optimization Algorithm

Problem (1) formulates a discrete optimization
problem as the input sequence x consists of dis-
crete tokens, making continuous optimization meth-
ods such as Adam and SGD unsuitable. To over-
come it, we develop a tailored discrete optimization
algorithm, comprising an exploration phase and
a fine-tuning phase. The exploration phase aims
at navigating the expansive solution space, result-
ing in a near-optimal solution. Subsequently, the
fine-tuning phase delves into refining the identified
solution for enhanced precision.

Exploration phase. We propose a customized
genetic algorithm in which each potential solution
is regarded as a chromosome. The objective is to
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identify the chromosome with the lowest fitness.
In the context of our Problem (1), a chromosome
in a form of an ordered integer list corresponds
to a candidate sequence x. The fitness of each
chromosome is assessed by calculating the gradient
distance.

The encoding process of a candidate text into
a chromosome follows 4 steps, as illustrated in
Figure 2: (1) initialize m empty lists, with each list
corresponding to a unique token in W ; (2) assign
the token indices 1, 2, . . . , n from the target text
to their respective lists based on the tokens they
represent; (3) for each list with more than one token
index, insert a connector between every pair of
consecutive integers; (4) concatenate all the lists
together in the order of their corresponding tokens.

text
{1,5}

reconstruction
{2}

on
{4}

attack
{3}

Target text

Index lists with
respect to each

token

Insert connectors

Encoded solution

text reconstruction attack on text

{3,4,2,1,6,5}

Number the
tokens 1:text 2:reconstruction 3:attack 4:on 5:text

{3} {4} {2} {1,6,5}

Connector: 6

Figure 2: Procedures of encoding a text into an integer
list, serving as a chromosome in the exploration phase.

Find exact solution

Initial solution
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no
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1 2 3 4
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1 2 3 4
1 3 4 2

1 2 3 4
1 4 3 4

no

yes Pass to the
next candidate
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Check if
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Check if
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Figure 3: Procedures of the fine-tuning phase gen-
erating candidates through token operations and
searching the optimal solution.

In the encoding phase, the text sequence is en-
coded into a sequence of unique integers, including
values from 1 to n (representing token positions
in the target text) along with additional connectors.
This ensures that each token in W appears in the

possible solution.

The algorithm initializes a population consisting
of these chromosomes randomly. Through succes-
sive generations, the population evolves towards
lower average fitness, indicating improvement in
the solutions. During each generation, genetic op-
erations such as “select”, “crossover”, and “mutate”
are applied to create new potential chromosomes.
These operations mimic the natural processes of
evolution, allowing the algorithm to explore the so-
lution space more effectively. Moreover, an elitism
preservation mechanism is employed, ensuring that
the best solutions from each generation are carried
forward to the next generation. However, the al-
gorithm may converge to a local optimum if the
solution space is extensive. The identified solution
still requires further improvement.

Fine-tuning phase. A candidate sequence with
gradients closed to the target gradients gc can be
transformed to target text within several steps of
token operations such as “swap”, “shift”, and “re-
place”. Given a target text, the top potential solu-
tions with the lowest losses under a fixed model
are those that can be transformed from the target
text with minimal token operations. Based on this
observation, we design the fine-tuning phase, pre-
sented in Figure 3, to enhance the precision of the
identified solution by the exploration phase.

The fine-tuning phase begins by setting the “cur-
rent solution” to the result of the exploration phase.
It then proceeds to refine the current solution
through token operations: “swap”, “shift”, and “re-
place”, generating a set of candidate solutions. The
current solution is updated to the best candidate
among them. During the iterative updates of the
current solution, each one is recorded to prevent
duplication. If a recorded solution is encountered,
the fine-tuning phase selects a sub-optimal candi-
date instead. It is worth noting that for target texts
without repeated tokens, each possible solution is
a permutation of the original token sequence. In
this case, the “swap” and “shift” operations are suf-
ficient and the “replace” operation is unnecessary.
The operations used in the exploration phase are
probabilistic, while each round in the fine-tuning
phase aim to exhaustively explore all candidates
that can be reached through a single operation.
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Algorithm 1 The discrete optimization algorithm
in FET.
Input: model: fθ; vocabulary: W ; text length:

n; max generations Ngen; max iterations Nit;
parameters: population size p, hall of fame h,
tournament size k, crossover rate p1, mutation
rate p2.

Output: Reconstructed text sequence x.
1: P ← initializePopulation(p), i← 0
2: while i < Ngen and d ̸= 0 do
3: i← i+ 1
4: E ← selectBest(P, h)
5: O ← tournament(P, k)
6: O ← crossover(O, p1) + mutate(O, p2)
7: P ← updatePopulation(O, E)
8: s, d← getSolution(P)
9: R ← [], i← 0

10: while i < Nit and d ̸= 0 do
11: i← i+ 1
12: S ← wordSwap(s) + wordShift(s) +

wordReplace(s)
13: s, d← getSolution(S)
14: while s ∈ R do
15: S.remove(s)
16: s, d← getSolution(S)
17: x← decode(s)
18: return x

5 Experimental Evaluation

In this section, we present and discuss the experi-
mental results of FET across various settings. We
compare FET with prior methods on three BERT
models of different parameter scales, tested on vari-
ous datasets. Additionally, we evaluate other model
architectures, test with batched data, and perform
an ablation study to examine the impact of differ-
ent phases and matching only fully connected layer
gradients.

5.1 Setup

Datasets. We evaluate our method on datasets
CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013) and Rotten Tomatoes (Pang and Lee, 2005),
with typical sequence lengths between 5 and 9, 3
and 13, and 14 and 27 words.

Models. We consider various language models.
Following LAMP, we compare FET attack with
the state-of-the-art methods on TinyBERT6 (Jiao
et al., 2019) , BERTbase (Devlin et al., 2018) and
BERTlarge, which follow the main stream architec-

ture of embedding layers, Encoders, and a classifier.
BERTbase has a parameter scale of 109.5 million.
TinyBERT6 is an extracted model from BERTbase,
featuring 6 hidden layers, and a parameter scale
of 67.0 million. BERTlarge has 24 hidden layers
and a parameter scale of 340 million. Addition-
ally, we test our method on TextCNN, LSTM, and
ALBERT, as representatives of CNN, RNN and
Transformers architectures, with comparable model
parameter sizes. The BERT tokenizer is used for
all the models.

Metrics. In alignment with prior works (Deng
et al., 2021; Balunovic et al., 2022), we use
ROUGE scores (Lin, 2004), specifically ROUGE-
1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L),
to evaluate the similarity between the target text
and the reconstructed text. R-1 and R-2 assess
unigram and bigram overlaps, respectively, while
R-L measures the longest common subsequence.
Additionally, we report the rate of exact matches
between the reconstructed text and the target text.
Since even minor errors can cause significant se-
mantic distortions, the exact match rate reflects the
attacker’s confidence in achieving an exact recon-
struction.

Attack settings. For simplicity, we consider a
federated learning setting with a single server and
a single client. The attacks are implemented in
Python on NVIDIA RTX 3090 GPU, using Py-
Torch (Paszke et al., 2019) for the implementa-
tion of models and DEAP (Fortin et al., 2012)
for that of key components inspired by genetic
algorithms (Baker and Ayechew, 2003; R, 1976;
Chatterjee et al., 1996). The genetic opera-
tors selection, crossover, and mutation are imple-
mented by the “selTournament," “cxUniformPar-
tialyMatched," and “mutShuffleIndexes" functions
in DEAP, respectively.

The max generations of the exploration phase
and the max iterations of the finetuning phase are
set as 100 and 20, respectively. For the exploration
phase, the genetic algorithm is configured with a
population size of 100, a tournament size of 2, a
crossover rate of 0.9, a mutation rate of 0.1, and a
hall of fame size of 5. These parameter values were
chosen through experimental trials and by referenc-
ing the parameters used in solving the Traveling
Salesman Problem (TSP), where the chromosome
is represented as a sequence of integers denoting
vehicles and cities. The exploration phase is termi-
nated once the same result has been consistently
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TinyBERT6 BERTbase BERTlarge

Datasets Methods R-1 R-2 R-L Exact R-1 R-2 R-L Exact R-1 R-2 R-L Exact

CoLA
TAG 36.5 2.1 32.9 0.0 77.3 11.9 54.3 3.0 84.5 12.5 56.4 3.0

LAMP 93.4 58.0 80.4 26.0 86.9 51.7 75.9 23.0 91.0 52.4 75.4 10.0
FET 99.0 93.4 96.0 90.0 95.7 72.9 84.1 62.0 94.5 56.5 76.6 45.0

SST-2
TAG 43.5 9.7 40.8 6.0 75.5 13.2 55.9 8.0 78.9 10.2 53.3 9.0

LAMP 93.0 59.4 79.0 32.0 86.7 60.2 78.8 43.0 88.5 55.9 76.5 46.0
FET 95.7 72.9 84.1 62.0 93.1 68.3 80.9 60.0 90.9 61.4 76.9 55.0

RT
TAG 21.3 0.7 16.9 0.0 59.8 3.0 32.8 0.0 73.6 4.4 36.8 0.0

LAMP 80.2 30.1 58.0 1.0 65.2 13.6 43.1 2.0 71.3 10.3 42.1 1.0
FET 86.0 42.9 62.1 24.0 75.6 19.3 45.5 6.0 72.0 11.0 39.6 3.0

Table 1: The comparison of FET with previous methods against TinyBERT6, BERTbase, and BERTlarge on CoLA,
SST-2, and Rotten Tomatoes (RT). R-1, R-2, R-L, and exact match rate metrics, averaged over 100 attacks, are
reported in percentages (%).

obtained for 10 consecutive generations. For the
fine-tuning phase, token operations are applied at
each iteration, while block shift iterations are con-
ducted every fifth iteration. For the comparison
experiments, the setup was consistent with TAG
(Deng et al., 2021) and LAMP (Balunovic et al.,
2022), and our results confirm the findings.

Comparison with state-of-the-art methods. We
compare FET attack with state-of-the-art meth-
ods on Transformer-based models. The experi-
mental results, as detailed in Table 1, FET sig-
nificantly outperforms the other methods in terms
of ROUGE scores and exact match rates. No-
tably, FET achieves the highest ROUGE scores
for TinyBERT6 and BERTbase on all datasets, with
significant improvements on CoLA and SST-2. For
BERTlarge, FET maintains strongest performance
on CoLA and SST-2, though its performance on
Rotten Tomatoes is comparable. Overall, FET
demonstrates superior performance in most sce-
narios. All methods tend to perform better with
smaller model scales and shorter sequences, which
may be attributed to the fact that optimization-
based approaches typically struggle with larger
search spaces, resulting in higher computational
costs and greater difficulty in achieving global op-
tima.

The increase of exact match rate demonstrates
the effectiveness of using discrete optimization.
Methods that focus on optimizing an embedding
vector have yielded negligible exact match rate
for any model in TinyBERT6, BERTbase, and
BERTlarge. LAMP, which alternates continuous
and discrete optimization, still fails to achieve a
commendable exact match rate. However, FET
gets a marked improvement in exact match rate by
optimizing on text space directly. FET excels in the

precise extraction of shorter texts, ensuring precise
and reliable results for the requirement of exact text
information.

Test for various model architectures. We con-
duct experiments for TextCNN, LSTM, and AL-
BERT models with comparable parameter sizes to
test the effectiveness of FET for various model ar-
chitectures. The experimental results in Table 2
demonstrate that FET can be effectively applied
across different types of models, including CNN-
based, RNN-based, and Transformer-based archi-
tectures. Notably, the attack is most effective on the
LSTM model, achieving the highest performance
across all datasets. This may suggest that RNN-
based models are more vulnerable to this type of at-
tack, potentially due to their sequential processing
structure, which could make them more susceptible
to perturbations in the input sequence.

Model Dataset R-1 R-2 R-L Exact

TextCNN
CoLA 99.2 96.9 96.5 88.0
SST-2 96.7 89.6 90.4 78.0

RT 82.3 47.7 56.8 17.0

LSTM
CoLA 99.9 99.9 99.9 99.0
SST-2 98.9 97.7 98.5 91.0

RT 94.4 84.2 90.7 47.0

ALBERT
CoLA 97.5 73.3 87.1 68.0
SST-2 92.3 67.4 81.0 64.0

RT 81.6 10.7 42.9 3.0

Table 2: The results of FET against TextCNN, LSTM,
and ALBERT on CoLA, SST-2, and Rotten Tomatoes
(RT). R-1, R-2, R-L, and exact match rates, averaged
over 100 attacks, are reported in percentages (%).

Test for batched data. We conduct experiments
for batch size 1, 2, and 4 and compare the results
of FET with LAMP, reported in Table 3. The ex-
periments are conducted on TinyBERT6 model on
CoLA dataset. To accommodate the larger search
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space in batch settings, we double the population
size and set the maximum iterations to 50.

Batch Size Method R-1 R-2 R-L Exact

1 LAMP 93.9 59.3 80.2 26.0
FET 99.0 93.4 96.0 90.0

2 LAMP 84.7 40.2 70.3 2.0
FET 69.0 55.8 70.7 7.0

4 LAMP 65.8 19.9 55.3 0.0
FET 55.7 23.1 42.7 0.0

Table 3: The comparison of FET with LAMP against
TinyBERT6 on CoLA with batch size 1, 2 and 4. R-1,
R-2, R-L, and exact match rate metrics, averaged over
100 attacks, are reported in percentages (%).

While larger search spaces naturally increase
the complexity of discrete optimization, which is
a challenge faced by all optimization-based meth-
ods, FET navigates this challenge reasonably well.
Although it doesn’t fully mitigate the complexity,
it still achieves solid results, with improvements in
R-2, R-L scores and exact match rates at batch size
2, and further enhancement in R-2 at batch size 4,
demonstrating its capability to handle batched data
comparably to state-of-the-art methods. Addition-
ally, a larger batch size offers a protective effect
from the perspective of privacy protection.

5.2 Ablation Experiments
We conduct ablation experiments on TinyBERT6,
isolating the exploration phase and the fine-tuning
phase, and present the ROUGE scores and exact
match rates in Table 4. The maximum generations
for the exploration phase and the maximum itera-
tions for the fine-tuning phase are consistent with
those used in FET. Additionally, we include a com-
parison with the approach that matches gradients
across all layers, highlighting the performance dif-
ferences between selective gradient matching and
full-layer gradient alignment.

Method R-1 R-2 R-L Exact Time
FET-exploration 97.8 78.0 88.1 69.0 20.20
FET-fine-tuning 98.5 90.6 94.7 77.0 37.19
FET-full-layer 99.4 97.9 98.5 96.0 115.25
FET 99.0 93.4 96.0 90.0 43.27

Table 4: The results of reconstruction attacks against
TinyBERT6 on CoLA with FET-exploration, FET-fine-
tuning, FET-full-layer, and FET. R-1, R-2, R-L, and
exact match rate metrics are reported in percentages (%)
and Time in seconds (s), all averaged over 100 attacks.

An standalone exploration phase can only get ap-
proximate solutions. Compared to the exploration

phase, an standalone fine-tuning phase can achieve
more precise reconstructions. By integrating these
two phases, FET experiences a performance im-
provement. Compared to FET-full-layer, which
matches gradients across all layers, the precision
of FET slightly decreases, but the efficiency signif-
icantly improves. The gradients from layers other
than the fully connected layer can be viewed as reg-
ularization terms, aiding the optimization algorithm
to converge in fewer iterations. However, the 90%
exact match rate indicates that matching only the
fully connected layer gradients is sufficient. The
ablation study demonstrates the effectiveness of
the integration of an exploration phase and a fine-
tuning phase and shows the efficiency improvement
by matching only fully connected layer gradients.

6 Conclusion

We propose FET that optimizes text sequences to
match gradients and demonstrate severe privacy
leakage of text data in FL. Our extensive experi-
ments show that FET enhances precision of text
reconstructions. Our work contributes the first at-
tempt on discrete optimization approach for the
gradient inversion of text data, showing the po-
tential of fully exposing private text data through
gradients.

Limitation. Our method faces challenges with
convergence as the solution space expands with
increasing batch sizes, a common difficulty for
optimization-based methods.

Ethical considerations. This paper discusses the
privacy risks of text data due to gradient leakage
in federated learning. While FET could potentially
be exploited by attackers, openly addressing and
discussing these privacy risks is essential for the
advancement of the field. We recommend the im-
plementation of defense strategies where necessary
to mitigate privacy concerns.

Acknowledgments

This research is supported by National Natu-
ral Science Foundation of China (NSFC Grant
No.12441101) and Beijing Municipal Science &
Technology Commission: New Generation of In-
formation and Communication Technology Innova-
tion - Research and Demonstration Application of
Key Technologies for Privacy Protection of Mas-
sive Data for Large Model Training and Applica-
tion (Z231100005923047).



2590

References
Barrie M. Baker and M. A. Ayechew. 2003. A genetic

algorithm for the vehicle routing problem. Comput-
ers & Operations Research, 30(5):787–800.

Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović,
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