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Abstract

Decoder-only Large Language Models
(LLMs) have demonstrated exceptional
performance in language generation, ex-
hibiting broad capabilities across various
tasks. However, the application to label-
sensitive language understanding tasks
remains challenging due to the limitations
of their autoregressive architecture, which
restricts the sharing of token information
within a sentence. In this paper, we address
the Multi-Intent Detection (MID) task and
introduce MIDLM, a bidirectional LLM
framework that incorporates intent number
detection and multi-intent selection. This
framework allows autoregressive LLMs to
leverage bidirectional information awareness
through post-training, eliminating the need for
training the models from scratch. Comprehen-
sive evaluations across 8 datasets show that
MIDLM consistently outperforms both exist-
ing vanilla models and pretrained baselines,
demonstrating its superior performance in the
MID task.

1 Introduction

In task-oriented dialogue (TOD), accurately dis-
cerning user intent from utterances remains a
fundamental challenge. Traditionally, it has been
assumed that each utterance conveys a singular
intent (Goo et al., 2018; Coucke et al., 2018;
Mansour and Haider, 2021). While this assump-
tion simplifies design, it overlooks the complex-
ity of real-world communication, where users fre-
quently express multiple intentions within a single
spoken or written statement (Gangadharaiah and
Narayanaswamy, 2019). As a result, research has
increasingly focused on MID, which aims to ad-
dress this gap by enabling the recognition and pro-
cessing of multiple intents within a single interac-
tion (Qin et al., 2021; Yin et al., 2023, 2024a).

*Corresponding author.

Despite the growing interest in MID, resources
in this area remain limited. Most studies rely
on the MixATIS and MixSNIPS datasets (Qin
et al., 2020), which were adapted from the single-
intent ATIS (Mansour and Haider, 2021) and
SNIPS (Coucke et al., 2018) datasets to incorpo-
rate multiple intents. However, these datasets pri-
marily use only four types of coordinating con-
junctions: “and,” “and then,” “and also,” and “,”
(comma). This limited variety in connective ex-
pressions raises concerns about the validity of
evaluations conducted using these datasets. To ad-
dress the limitation, Yoon et al. (2024) recently
introduced BlendX, a series of datasets designed
to offer greater diversity in coordinating conjunc-
tions and soft links. These datasets build upon
existing multi-intent resources, referred to as the
MixX series, but provide more varied connec-
tive expressions. For instance, an utterance like
“give me the round trip flights from Cleveland
to Miami, and give me the fares for round trip
flights from Cleveland to Miami” in the MixX
datasets was restructured in BlendX to “give me
the fares and round trip flights from Cleveland
to Miami,” while maintaining the same intents:
{atis flight, atis airfare}. This makes the MID
dataset more representative of real-world interac-
tions and pushes forward research in the field.
However, the benchmarks developed thus far pri-
marily focus on vanilla (e.g., BiLSTM-based)
models or pretrained (e.g., BERT-based) models
(Cheng et al., 2023; Cai et al., 2022), leaving the
application of LLMs largely unexplored.

Pretrained on vast amounts of data, LLMs
have made significant strides in language gener-
ation by effectively leveraging in-context learn-
ing (Peng et al., 2023; Jiang et al., 2023; Touvron
et al., 2023; Geogle., 2023). A straightforward
method to adapt LLMs to language understand-
ing tasks is through in-context learning with few-
shot prompt templates. However, this approach



2617

may not perform as expected when dealing with
label-sensitive tasks, especially when the prompt
length exceeds predefined limits. Additionally, the
autoregressive architecture of LLMs restricts the
sharing of token information within a sentence,
unlike encoder-only models. Although training a
bidirectional LLM from scratch is possible, it is
often unaffordable for individuals or small insti-
tutions with limited resources. To address these
challenges, we introduce MIDLM, a bidirectional
LLM framework that integrates intent number
detection and multi-intent selection. This frame-
work enables autoregressive LLMs to leverage
bidirectional information awareness through post-
training, eliminating the need for training mod-
els from scratch. Our model outperforms strong
baselines across 8 datasets, setting a new bench-
mark for MID using LLM-based methods. Further
experiments revealed varying model performance
depending on different intent numbers and data ra-
tios, as well as the model’s adaptability in transi-
tioning from the MixX datasets to the more com-
plex BlendX series, demonstrating the robustness
and potential of MIDLM.

To summarize, our contributions can be out-
lined as follows: (1) We introduce the first ap-
proach to integrating LLMs into the MID domain,
using a novel post-training bidirectional LLM
framework that effectively reconciles the rich in-
formation in LLMs and adapts it in a bidirec-
tional manner. (2) Our extensive evaluation across
8 datasets demonstrates that our model outper-
forms both vanilla models and pre-trained base-
lines, achieving superior performance in the MID
task. (3) Additional experiments demonstrate the
adaptability of our model, highlighting its capa-
bility to handle varying numbers of intents and
different data ratios, as well as its smooth transi-
tion from the MixX datasets to the more complex
BlendX datasets.

2 Related Work

Background: MID is typically considered a
subtask of multi-intent spoken language under-
standing (SLU), a widely studied but complex
problem that treats intent detection and slot fill-
ing as a joint optimization task, leveraging their
interdependence to enhance overall model perfor-
mance. Within the MID domain, several advanced
methods have emerged recently, including token-
level voting (Qin et al., 2021), chunk-level detec-

tion (Yin et al., 2024a), and multi-task classifi-
cation (Cheng et al., 2023). In line with current
trends, we adopt the multi-task classification ap-
proach in this paper due to its practicality and ef-
fectiveness.

Resources: The resources available for MID are
notably limited. MixATIS and MixSNIPS (Qin
et al., 2020) have played a pivotal role in sup-
porting nearly every experiment in MID. How-
ever, Larson and Leach (2022) highlight several
limitations in these datasets. For example, they in-
clude only up to three intents per utterance, and
the distribution of inputs with different numbers
of intents follows a fixed ratio of 3:5:2. More-
over, the datasets predominantly rely on the con-
junction “and” (and its variations) to merge multi-
ple utterances into a single statement. Addition-
ally, a comma (“,”) is used exclusively to con-
catenate three utterances, which may lead to bi-
ases such as models over-fitting to the frequency
of “and” or interpreting a comma as indicating ex-
actly three intents. To address these limitations,
Yoon et al. (2024) introduced BlendX, an up-
graded suite of datasets. BlendX leverages Chat-
GPT and a similarity-based strategy for utterance
selection, incorporating a broader range of coordi-
nating conjunctions and soft links. This provides a
more realistic and varied setting for models while
keeping human labeling costs low.

LLMs for Understanding Tasks: The evalua-
tion of LLMs’ understanding capabilities often re-
lies on in-context learning through few-shot tem-
plates (Hendrycks et al., 2021) or downstream su-
pervised fine-tuning (Yin et al., 2024b). However,
these approaches become less effective when deal-
ing with label-sensitive tasks and cannot be easily
extended with existing model architectures.

3 Approach

As illustrated in Figure 1, our approach introduces
an intuitive post-training framework that enables
autoregressive LLMs to share bidirectional infor-
mation. It includes both a semantic-level intent
number detection and an intent selection, facilitat-
ing more effective detection of multiple intents.

3.1 Problem Definition

Given an input sequence x = (x1, ..., xn), the
problem is framed as a multi-label classification
task. The goal is to predict a set of intent labels
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Figure 1: The MIDLM framework illustrated with a multi-intent SLU example. By transitioning from a causal
attention to global attention, MIDLM can leverage bidirectional information within an utterance.

o = (o1, ..., om), where n represents the length of
the discourse and m denotes the number of distinct
intents within the given discourse.

3.2 Bidirectional Information Flow

In our approach, we introduce a novel Bidirec-
tional Information Flow that replaces the vanilla
causal attention mechanism used in existing LLMs
with context-aware bidirectional attention during
the post-training stage. This allows the model to
retain the rich knowledge acquired during pre-
training while facilitating unrestricted information
exchange among all sequence tokens.

Vanilla LLMs typically use a causal mask M
in autoregressive frameworks to prevent future to-
kens from influencing the generation of present
tokens, enforcing a strict left-to-right information
flow. In a standard masked attention mechanism,
the attention scores A are computed as follows:

A = softmax
(
QKT

√
dk

+M
)
V (1)

where Q, K, and V represent the query, key, and
value, and dk is the dimension of the key vectors.

Traditionally, the M is defined as:

Mij =

{
0 if i ≥ j

−∞ if i < j
(2)

where i represents the position of the token cur-
rently attending, and j represents the position of
the token being attended to in the sequence.

This limitation can hinder performance in lan-
guage understanding tasks, where understanding

the context from both preceding and following to-
kens is crucial. To address this, we focus on an
attention mechanism by setting all elements of the
utterance M to zero. The post-training attention
computation becomes:

Mij = 0 ∀i, j ∈ {1, . . . , n} (3)

Ap = softmax
(
QKT

√
dk

)
V (4)

3.3 Intent Number Detection
Intent number detection aims to determine the to-
tal number of distinct intents within a user’s ex-
pression. This can be formulated as follows:

yI = Aggregated(H) (5)

K = Classifier(yI) (6)

where H denotes the hidden states from the final
layer corresponding to the input token sequence
(token length: l, hidden dimension: s). yI repre-
sents the aggregated token-level logits with shape
(1, s), where s corresponds to the size of the intent
vocabulary. K denotes the total number of pre-
dicted intent labels obtained by the classifier.

3.4 Multi-Intent Selection
The most probable intents are selected based on
their corresponding scores, as described by the fol-
lowing equation:

oI = TopK(yI) (7)

where oI = {o1, o2, . . . , om} represents the final
predicted intent labels, and m denotes the number
of selected intents.
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3.5 Joint Training
To achieve synchronized model refinement, we
employ joint optimization for the dual tasks of in-
tent classification and intent number detection.

For the intent classification loss Lintent, it can be
computed as follow:

Lintent = −
M∑
i=1

[
yi log(σ(pi))+

(1− yi) log(1− σ(pi))
] (8)

where M is the total number of possible intents, pi
represents the predicted logits for the i-th intent,
yi is the binary indicator for the presence of the i-
th intent, and σ(·) denotes the sigmoid activation
function applied to the logits.

For the intent number loss Lnum, it can be com-
puted as follows:

Lnum = −
C∑
i=1

1(y = i) log(p̂i) (9)

where C is the maximum number of possible in-
tent occurrences, y is the true number of intent
occurrences in the sentence, and p̂i represents the
model’s predicted probability for the number of in-
tent occurrences being i.

The overall loss L combines both losses, and the
hyperparameters α and β are generally set to 1, but
further analysis of different weightings is provided
in Section 5.3:

L = αLintent + βLnum. (10)

4 Experiments

4.1 Dataset
We evaluate the experiment on 8 datasets from
both the BlendX and MixX series, as summarized
in Table 1. These datasets cover a diverse range of
user intents, allowing for a comprehensive assess-
ment of MID models across various domains.

4.2 Baselines
Following Yoon et al. (2024), we compare our
method with the following baselines: (1) TFMN
(Cheng et al., 2023): The vanilla baseline first
predicts the number of intents, k, in a multi-
intent utterance, and then selects the top-k intents
based on the predicted probability. (2) SLIM (Cai
et al., 2022): A pretrained baseline that decom-
poses multi-label classification into a set of binary

Dataset Intents Training Test
BlendATIS 18 20,250 1,125
MixATIS 18 18,000 1,000
BlendSNIPS 7 50,625 2,615
MixSNIPS 7 45,000 2,500
BlendBanking77 77 36,390 2,021
MixBanking77 77 32,340 1,795
BlendCLINC150 147 54,896 2,977
MixCLINC150 147 48,824 2,638

Table 1: Statistics of datasets used in the experiment.

classification tasks, using the sigmoid function
to estimate the probability of each intent and se-
lecting intents that exceed a specified probabil-
ity threshold. (3) gpt3.5-turbo (0613): A few-shot
LLM baseline.

4.3 Experiment Settings

We used Mistral-7B-instruct-v0.1 (Jiang et al.,
2023) as the foundational backbone model for our
MIDLM model. For fine-tuning, we applied LoRA
(Hu et al., 2022), setting the LoRA rank through
a grid search over {16, 32} and selecting an al-
pha scaling parameter from {32, 64}. We also im-
plemented a dropout rate of 0.05. The optimiza-
tion process involved learning rates of {1e-4, 2e-
4} and a weight decay of 0.05. Parameter op-
timization was performed using the Adam opti-
mizer (Kingma and Ba, 2015). The model was
trained for 1 epoch.

4.4 Main Results

As shown in Table 2, MIDLM establishes state-of-
the-art (SOTA) performance benchmarks across
a range of datasets, significantly outperforming
existing strong baselines. Specifically, MIDLM
demonstrates substantial performance improve-
ments across all datasets and splits: (1) On the
SNIPS dataset, MIDLM achieved an accuracy
of 96.8% on the MixX split and 96.7% on the
BlendX split, surpassing SLIM by +0.8% and
+1.0%, respectively. (2) For the ATIS dataset,
MIDLM reached 88.5% accuracy on MixX and
88.4% on BlendX, showing an improvement of
+11.4% and +11.5% over SLIM. (3) On the Bank-
ing77 dataset, MIDLM achieved 89.1% accuracy
on MixX and 79.2% on BlendX, translating to im-
provements of +5.4% and +3.9%, respectively. (4)
For the CLINC150 dataset, MIDLM scored 95.6%
on MixX and 92.0% on BlendX, outperforming
SLIM by +6.9% and +6.4%.
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Model Split Dataset (Metric: Accuracy)

Training Test SNIPS ATIS Banking77 CLINC150

gpt-3.5-turbo - MixX 81.7 40.3 30.9 49.2

- BlendX 76.2 38.8 22.7 37.6

TFMN MixX MixX 95.7 ±0.57 78.0 ±0.57 76.6 ±1.17 85.9 ±1.03

BlendX BlendX 94.9 ±0.85 76.5 ±0.83 64.0 ±0.81 78.0 ±0.82

SLIM MixX MixX 96.0 ±0.23 77.1 ±0.28 83.7 ±0.88 88.7 ±0.56

BlendX BlendX 95.7 ±0.86 76.9 ±0.84 75.3 ±0.71 85.6 ±0.51

MIDLM MixX MixX 96.8* ±0.28 88.5* ±1.77 89.1* ±0.27 95.6* ±0.27

BlendX BlendX 96.7* ±0.46 88.4* ±1.84 79.2* ±1.09 92.0* ±1.41

Improvement over SLIM MixX MixX +0.8% +11.4% +5.4% +6.9%

BlendX BlendX +1.0% +11.5% +3.9% +6.4%

Table 2: Evaluation of competitive MID models on MixX and BlendX datasets. The reported values are the av-
erages and standard deviations from five separate runs. Values marked with * denote statistically significant im-
provements of our model over all baselines (p < 0.05 under a t-test). Baseline results are sourced from Yoon et al.
(2024).
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Figure 2: Performance of MIDLM in Intent Accuracy across Different Numbers of Intents.

4.5 Performance on Different Intent Settings

To further explore MIDLM’s performance under
different difficulty settings, we conduct experi-
ments with varying numbers of intents. In these
experiments, we use the same training data but
split the test data according to the number of in-
tents. As shown in Figure 2, the results are as
follows: (1) On the MixATIS dataset, MIDLM
demonstrates robust performance, achieving an
accuracy of 93.7% for single-intent utterances,
which slightly decreases to 90.4% for two-intent
utterances and 87.5% for three-intent utterances.
(2) For MixSNIPS, the model maintains high ac-
curacy rates, achieving 97.6% for single-intent,
97.5% for two-intents, and 96.0% for three-
intents. (3) On the MixBanking77 dataset, ac-
curacy decreases from 95.0% for single-intent
to 89.1% for two-intents and 80.5% for three-
intents. (4) In the MixCLINC150 dataset, MIDLM

achieves 98.1% accuracy for single-intent, 96.0%
for dual-intent, and 90.8% for triple-intent utter-
ances. A similar trend is observed in the BlendX
series datasets. These results underscore the sig-
nificant influence of intent number variation on
model performance, with accuracy generally de-
clining as the number of intents increases. This
highlights the potential for future work to address
and alleviate this challenge.

4.6 Performance of Scaling Law
To explore whether downstream MID training
follows a scaling law with respect to data vol-
ume, we conducted a comprehensive evaluation
by systematically varying the proportion of train-
ing data at levels of 0.2, 0.4, 0.6, 0.8, and 1.0. As
shown in Figure 3, the performance of MIDLM
improves as the proportion of training data in-
creases across all datasets. The results are ana-
lyzed in detail as follows: (1) For the MixATIS
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Figure 3: Performance comparison of models on MixX and BlenX datasets. This visualization illustrates the intent
accuracy across different training data proportions for the MIDLM.

dataset, accuracy improved from 78.8% at 20% of
the training data to 93.1% at 60% of the data, be-
fore stabilizing around 90.8% as the training data
proportion reached 1.0. Similarly, the BlendATIS
dataset showed an increase from 75.4% at 20%
of the training data to 88.5% at 60%, with a
slight dip to 85.9% at full data proportion. (2) For
the MixSNIPS dataset, accuracy consistently in-
creased from 91.2% at 20% of the training data
to a high of 96.6% at full data proportion. The
BlendSNIPS dataset exhibited a similar trend, ris-
ing from 89.7% to 96.8% as the data proportion
increased. (3) The MixBanking77 dataset saw a
notable improvement in accuracy, from 63.4% at
20% of the training data to 89.1% at the full
data proportion. The BlendBanking77 dataset dis-
played a similar upward trend, increasing from
44.1% to 78.3%. (4) For the CLINC150 dataset,
the MixCLINC150 accuracy scaled from 79.5% at
20% of the training data to 96.0% at full data pro-
portion. The BlendCLINC150 dataset also showed
an increase from 74.0% to 93.4%. These find-
ings underscore the critical importance of train-
ing data volume in enhancing the performance
of MIDLM across diverse datasets. The improve-
ments are consistent, affirming that larger training
data proportions substantially boost the model’s
intent accuracy in most datasets. Interestingly, we

observed that the model began to overfit on the
MixATIS and BlendATIS datasets when the train-
ing data ratio reached 0.6. We believe that more
efficient data selection methods could help miti-
gate this issue, and we consider this an area for
future work.
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Figure 4: Performance comparison of Bidirectional In-
formation Flow and Causal Information Flow on Mix-
ATIS and MixSNIPS datasets.

5 Different Information Flow

To evaluate the impact of the bidirectional infor-
mation flow proposed in MIDLM, we compared
the performance of the vanilla LLM model, which
uses the default causal information flow, with
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Model Split Dataset (Metric: Accuracy)

Training Test SNIPS ATIS Banking77 CLINC150
TFMN MixX BlendX 52.5 42.5 37.3 42.5
SLIM MixX BlendX 93.5 72.8 69.9 73.4

MIDLM (Ours) MixX BlendX 95.7 84.3 80.2 93.6
% Increase +2.2% +11.5% +10.3% +20.2%

Table 3: Evaluation of Transfer Pattern Learning Ability

MIDLM on the MixATIS and MixSNIPS datasets.
As shown in Figure 4, the causal mask struggles
significantly in MID, achieving only 2.5% and
4.8% accuracy on the MixATIS and MixSNIPS
datasets, respectively, compared to the 88.5% and
96.8% accuracy achieved by our bidirectional in-
formation flow. This highlights a key limitation of
the causal mask, particularly for tasks that require
natural language understanding. In such tasks, the
model needs full visibility of the entire utterance
to accurately interpret context and detect multiple
intents. By restricting the model to a unidirectional
view, the causal mask hinders its ability to capture
the nuanced, interconnected nature of the input.

5.1 Transfer Patterns learning ability

To investigate the generalization capability of
MID models, we conducted transfer learning
experiments across different training and test-
ing splits. Specifically, models were trained on
the MixX split and tested on the BlendX split.
Due to different connectors in different pattern
datasets, we give the number of instances to
our model, mainly focusing on intent detection.
As shown in Table 3 ， the results demonstrate
the superior performance of MIDLM compared
to TFMN and SLIM. For the SNIPS dataset,
MIDLM achieved an accuracy of 95.7%, rep-
resenting a 2.2% improvement over SLIM. In
the ATIS dataset, MIDLM outperformed SLIM
with an accuracy of 84.3%, marking a substan-
tial 11.5% increase. The Banking77 dataset saw
MIDLM reaching 80.2% accuracy, indicating a
10.3% gain over SLIM. Finally, for the CLINC150
dataset, MIDLM achieved an impressive 93.6%
accuracy, showing a remarkable 20.2% improve-
ment over SLIM. These findings highlight the ro-
bustness and effectiveness of the MIDLM model
in transferring knowledge from easier to more dif-
ficult patterns, outperforming strong baselines.

Model MixATIS MixSNIPS
Llama-3.1-8B 86.6 97.0
Llama-3.1-8B-Instruct 87.8 96.9
Mistral-7B-v0.1 89.5 97.8
Mistral-7B-v0.1-Instruct 88.5 96.8

Table 4: Intent accuracy with different LLM backbones
of MIDLM on MixATIS and MixSNIPS datasets.

5.2 Different LLM Backbones for MIDLM

To evaluate the generalization capability of the
MID framework, we conducted experiments us-
ing various backbone models of MIDLM on the
MixATIS and MixSNIPS datasets. No additional
parameter tuning was performed during these
evaluations. As shown in Table 4, all models
demonstrate strong intent detection performance
across both datasets. Specifically, Llama-3.1-8B
achieved 86.6% accuracy on MixATIS and 97.0%
on MixSNIPS, while Llama-3.1-8B-Instruct im-
proved the performance to 87.8% and 96.9%, re-
spectively. Among the Mistral series, Mistral-7B-
v0.1 delivered the best overall accuracy, achiev-
ing 89.5% on MixATIS and 97.8% on MixSNIPS,
followed closely by Mistral-7B-v0.1-Instruct at
88.5% and 96.8%. These results highlight the ro-
bustness of the MID framework across different
backbone models, confirming its suitability for
general-purpose intent detection tasks.

5.3 The Influence of Different Weight Factors

To investigate the effect of different weight fac-
tors, we set β = 1 − α and conducted fur-
ther experiments on the MixATIS and MixSNIPS
datasets. As shown in Figure 5, we found that the
intent detection accuracy approaches nearly 100%
in both datasets. However, the model is more sen-
sitive to the weight factor in MixATIS than in
MixSNIPS, with α = 0.7 achieving the best in-
tent accuracy of 91.0% on MixATIS. In contrast,
on MixSNIPS, the model’s performance remains
consistently around 97.0% across different weight
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Utterances True Labels Predictions

show me the cheapest round trip fares from san fran-
cisco to houston and then how many passengers can
an l1011 aircraft hold

atis airfare
atis capacity

atis airfare
atis capacity

how much is limousine service in los angeles atis ground fare atis ground fare

i d like to eat at an internet restaurant with a party of
four and also play jawad ahmad

BookRestaurant
PlayMusic

BookRestaurant
PlayMusic

coon chicken inn restaurant for 1 am for me clarice
and debbie and also find now and forever

BookRestaurant
SearchScreeningEvent

BookRestaurant
SearchCreativeWork

Table 5: Sample Example with True Labels and MIDLM Predictions
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Figure 5: Performance with different weight factors on
MixATIS and MixSNIPS datasets.

factors. Given that directly setting these two fac-
tors to 1 yields promising performance, we leave
further exploration of this aspect for future work.

5.4 Case Analysis

In this section, we present a detailed analysis of
the MIDLM’s performance by examining specific
cases. As shown in Table 5, each row of the ta-
ble represents a sample query along with its true
labels and the model’s predictions. For instance,
in the query “show me the cheapest round trip
fares from San Francisco to Houston and then
how many passengers can an L1011 aircraft hold,”
MIDLM correctly classified it into two categories:

atis airfare and atis capacity. A similar level of
accuracy is noted for the query “how much is
limousine service in los angeles,” which was cor-
rectly labeled as atis ground fare. Another accu-
rate classification is seen in the query “i d like
to eat at an internet restaurant with a party of
four and also play jawad ahmad,” which was cor-
rectly identified as BookRestaurant and PlayMu-
sic. However, a misclassification is evident in the
fourth case. The query “coon chicken inn restau-
rant for 1 am for me clarice and debbie and
also find now and forever” was incorrectly pre-
dicted. The true labels are BookRestaurant and
SearchScreeningEvent, but the model predicted
BookRestaurant and SearchCreativeWork. This
misclassification suggests the model confuses sim-
ilar categories, indicating a need for better differ-
entiation. This insight can guide future improve-
ments to reduce such errors.

6 Conclusion

In this paper, we propose a bidirectional LLM
framework for Multi-Intent Detection (MID),
which integrates intent number detection and
multi-intent selection. Extensive evaluations
across 8 datasets show that MIDLM consistently
outperforms several strong baselines. Further ex-
periments demonstrate its adaptability to varying
numbers of intents and data proportions. Addi-
tionally, MIDLM exhibits remarkable versatility
and resilience, effectively transitioning between
the MixX and BlendX datasets, highlighting its
robustness in diverse settings.
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Limitations

(1) Impact of LoRA on Performance: While lever-
aging LoRA affords improved training efficiency
and reduced memory usage, it does not always
achieve the full performance potential afforded by
tuning all model parameters. LoRA strictly fo-
cuses on the most impactful parameters, which,
though efficient, can sometimes lead to a loss
of subtle linguistic detail that comprehensive pa-
rameter tuning might capture. (2) Prospects for
Improvement through Data Curation and Prompt
Optimization: Our current research framework
does not extend to the advanced strategies of se-
lective data curation or intricate prompt engineer-
ing. Recognizing this as a limitation, we propose
that future investigations will embrace these cru-
cial techniques.
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