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Abstract

Multimodal emotion recognition in conversa-
tion (MERC) refers to identifying and classi-
fying human emotional states by combining
data from multiple different modalities (e.g.,
audio, images, text, video, etc.). Most exist-
ing multimodal emotion recognition methods
use GCN to improve performance, but exist-
ing GCN methods are prone to overfitting and
cannot capture the temporal dependency of
the speaker’s emotions. To address the above
problems, we propose a Dynamic Graph Neu-
ral Ordinary Differential Equation Network
(DGODE) for MERC, which combines the dy-
namic changes of emotions to capture the tem-
poral dependency of speakers’ emotions, and
effectively alleviates the overfitting problem of
GCNs. Technically, the key idea of DGODE
is to utilize an adaptive mixhop mechanism
to improve the generalization ability of GCNs
and use the graph ODE evolution network to
characterize the continuous dynamics of node
representations over time and capture temporal
dependencies. Extensive experiments on two
publicly available multimodal emotion recog-
nition datasets demonstrate that the proposed
DGODE model has superior performance com-
pared to various baselines. Furthermore, the
proposed DGODE can also alleviate the over-
smoothing problem, thereby enabling the con-
struction of a deep GCN network.

1 Introduction

Multimodal Emotion Recognition in Conversation
(MERC) technology significantly improves the ac-
curacy and wide application of emotion recogni-
tion by integrating data from multiple modalities
(e.g., audio, image, text, and video) (Shou et al.,
2022b, 2025, 2022a, 2023e, 2024e; Meng et al.,
2024b; Shou et al., 2023d; Ai et al., 2023a, 2024e;
Meng et al., 2024a; Shou et al., 2024c,b,a). MERC
can not only improve the intelligence of human-
computer interaction, but also bring important im-
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Figure 1: Performance comparison of different methods
for different numbers of GCN layers on the IEMOCAP
dataset.

provements in practical scenarios (e.g., health mon-
itoring, education, entertainment, and security)
(Ying et al., 2021; Shou et al., 2023b,a; Meng et al.,
2024d; Shou et al., 2024f; Ai et al., 2024f; Zhang
et al., 2024; Ai et al., 2023b; Meng et al., 2024c;
Ai et al., 2024a).

Many existing studies improve the performance
of MERC by using graph convolutional neural
networks (GCNs) (Yin et al., 2023b,a,c, 2022b,a,
2024b,a; Yin et al.) to effectively model the con-
versational relations between speakers. However,
as shown in Fig. 1, we find that existing GCNs
only contain 4 layers of GCN (e.g., MMGCN (Hu
et al., 2021) and M3Net (Chen et al., 2023)), while
the performance decreases significantly as the num-
ber of layers increases. The reason for the perfor-
mance degradation may be attributed to the fact
that information aggregation in vanilla GCNs is
just simple message smoothing within the neigh-
borhood, causing neighboring nodes to converge to
the same value as the number of layers is stacked.
Therefore, it is necessary to improve the stability of
information diffusion on the graph and alleviate the
problem of over-smoothing of nodes. Furthermore,
MERC usually relies on dynamic temporal infor-
mation, while traditional GCNs can only process
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static images. How to model the temporal fea-
tures in emotion recognition tasks as a continuous
dynamic process so that the network can capture
and model the complex patterns of emotion chang-
ing over time remains a challenge. Therefore, this
paper aims to propose a Dynamic Graph Neural
Ordinary Differential Equation Network (DGODE)
to dynamically model the temporal dependency of
emotion changes and improve the expressiveness
of node features as the number of GCN layers in-
creases (Shou et al., 2023c; Ai et al., 2024c; Shou
et al., 2024d,g; Ai et al., 2024b,d).

Specifically, we introduce the Dynamic Graph
Neural Ordinary Differential Equation Network
(DGODE) based on the perspective of continu-
ous time. Our DGODE method introduces an
adaptive mixhop mechanism to extract node in-
formation from different hop count neighbors si-
multaneously and uses ordinary differential equa-
tions to model the temporal dependence of emotion
changes. DGODE shows stable performance as
the number of GCN layers increases. We use two
publicly available multimodal emotion recognition
datasets to verify the effectiveness of DGODE.

Overall, the main contributions of this paper are
as follows:

• We propose the Dynamic Graph Neural
Ordinary Differential Equation Network
(DGODE), which combines the dynamic
changes of emotions to capture the temporal
dependency of speakers’ emotions.

• We design an adaptive mixhop mechanism to
capture the relationship between distant nodes
and combine ODE to capture the temporal
dependency of speakers’ emotions.

• Extensive experiments are conducted to
demonstrate its superiority in MERC com-
pared to various baselines on IEMOCAP and
MELD datasets.

2 Related Work

2.1 Multimodal Emotion Recognition in
Conversation

MERC aims to identify and understand the emo-
tional state in a conversation by analyzing data
in multiple modalities (Zhang et al., 2023). With
the rapid development of social media technology,
people are increasingly communicating in a mul-
timodal way. Therefore, how to accurately under-

stand the emotional information in multimodal data
has become a key issue (Ai et al., 2024e).

Initially, researchers used recurrent neural net-
works (RNNs) to model conversations, which
mainly capture emotional information by process-
ing utterances or entire conversations sequentially
(Poria et al., 2017). For instance, HiGRU (Jiao
et al., 2019) proposed a hierarchical GRU model to
capture the information in the conversation, which
not only considers the emotional features at the
word level, but also extends to the utterance level,
thereby generating a conversation representation
that contains richer contextual information. Simi-
larly, DialogueRNN (Majumder et al., 2019) also
uses GRU units to capture the emotional dynam-
ics in the conversation, while taking into account
the state of the utterance itself and the emotional
state of the speaker. Since RNNs cannot achieve
parallel computing, Transformers have become a
better alternative for sequence modeling (Fan et al.,
2023). For example, CTNet (Lian et al., 2021) uses
the powerful representation ability of Transform-
ers to model the emotional dynamics in conver-
sations through a self-attention mechanism. SDT
(Ma et al., 2023) effectively integrates multimodal
information through Transformer, and uses self-
distillation technology to better learn the potential
information in multimodal data.

However, studies have shown (Hu et al., 2021)
that the discourse in the conversation is not just a se-
quential relationship, but a more complex speaker
dependency. Therefore, the DialogGCN (Ghosal
et al., 2019) introduces a graph network to model
the dependency between the self and the speaker in
the conversation. By using a graph convolutional
network (GCN), DialogGCN can effectively prop-
agate contextual information to capture more de-
tailed emotional dependencies. Based on the idea
of DialogGCN, SumAggGIN (Sheng et al., 2020)
further emphasizes the emotional fluctuations in
the conversation by referencing global topic-related
emotional phrases and local dependencies. Mean-
ingwhlie, the DAG-ERC (Shen et al., 2021b) be-
lieves that the discourse in the conversation is not
a simple continuous relationship, but a directed
dependency structure.

With the development of pre-trained language
models (PLMs) (Min et al., 2023), researchers be-
gan to explore the application of PLM’s power-
ful representation capabilities to emotion recogni-
tion tasks. For example, DialogXL (Shen et al.,
2021a) applies XLNet to emotion recognition and



258

designs an enhanced memory module for storing
historical context, while modifying the original
self-attention mechanism to capture complex de-
pendencies within and between speakers. The
CoMPM (Lee and Lee, 2022) further leverages
PLM by building a pre-trained memory based on
the speaker’s previous utterances, and then combin-
ing the context embedding generated by another
PLM to generate the final representation of emo-
tion recognition. CoG-BART (Li et al., 2022a)
introduces the BART model to understand the con-
textual background and generate the next utterance
as an auxiliary task.

2.2 Continuous Graph Neural Networks

Neural ordinary differential equations (ODEs) are
a novel approach to modeling continuous dynamic
systems (Chen et al., 2018). They parameterize
the derivatives of hidden states through neural net-
works, allowing the model to perform continuous
inference in the time dimension, rather than re-
lying solely on the discrete sequence of hidden
layers in traditional neural networks. ODEs can
more accurately describe the changing process over
time and are suitable for complex tasks involving
time evolution. Continuous Graph Neural Network
(CGNN) (Xhonneux et al., 2020) first extended this
ODE approach to graph data. Specifically, CGNN
developed a continuous message passing layer to
achieve continuous dynamic modeling of node
states. Unlike traditional graph neural networks
(GCNs), CGNNs no longer rely on a fixed number
of layers for information propagation, but instead
solve ordinary differential equations to enable con-
tinuous propagation of information between nodes.
CGNN also introduces a restart distribution to "re-
set" the node state to the initial state in a timely
manner during the information propagation pro-
cess, thereby avoiding the over-smoothing.

3 Preliminaries

3.1 Graph Neural Networks

Given a graph G = (V,E), where V is a set of
nodes and E is a set of edges. Each node v ∈ V
constitutes the node feature matrix X ∈ R|V |×d,
where d represents the dimension of the feature.
Each row of X corresponds to the feature repre-
sentation of a node. we use the binary adjacency
matrix A ∈ R|V |×|V | to represent the connection
relationship between node i and node j. If aij = 1,
it means that there is an edge between node i and

node j; if aij = 0, it means that there is no con-
nection. Our goal is to learn a node representation
matrix H that can capture the structural informa-
tion and feature information of the nodes in the
graph.

We usually normalize the adjacency matrix A.
The degree matrix D is a diagonal matrix whose
diagonal elements Dii represent the degree of node
i. However, the eigenvalues of the normalized ma-
trix may include negative values. Therefore, we
follow the previous methods (Kipf and Welling,
2022) and use a regularized matrix to represent the
graph structure. Specifically, we use the following
symmetric normalized adjacency matrix:

Â =
α

2

(
I + D−

1
2 AD−

1
2

)
(1)

where α is a hyperparameter.

3.2 Neural Ordinary Differential Equation
Neural ODEs provides a new method for
continuous-time dynamic modeling by modeling
the forward propagation process of a neural net-
work as the solution process of an ODE. Specifi-
cally, consider an input data x(t) and describe its
evolution in the form of an ODE:

dx(t)

dt
= f(x(t), t, θ) (2)

where x(t) represents the hidden state at time t, f
is a neural function with parameter θ.

3.3 Multi-modal Feature Extraction
Word Embedding: Following previous studies
(Chudasama et al., 2022; Li et al., 2022b), we use
RoBERTa (Liu, 2019) to obtain contextual embed-
ding representations of text in this paper.

Visual and Audio Feature Extraction: Follow-
ing previous work (Ma et al., 2023; Lian et al.,
2021), we selected DenseNet (Huang et al., 2017)
and openSMILE (Eyben et al., 2010) as feature
extraction tools for video and audio.

3.4 Problem Definition
In the multimodal conversational emotion recogni-
tion task, given a conversation C, the conversation
consists of a series of utterances and S different
speakers. The goal of multimodal emotion recog-
nition in a conversation is to predict the emotion
label of each utterance in the emotion set Y . Specif-
ically, the conversation C can be represented as a
sequence C = [(u1, s1), (u2, s2), . . . , (uM , sM )],
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Figure 2: The overall architecture of DGODE.

where ui represents the i-th utterance in the conver-
sation and si represents the unique speaker si ∈ S
associated with the utterance. Each utterance ui
contains audio data va, video data vf , and text data
vt. These multimodal data together express the
meaning and emotion of the utterance. For each
utterance ui, we need to determine its emotional
state, which is represented by an emotion label yei .

4 Methodology

As shown in Fig. 2, the key steps of DGODE are to
alleviate the overfitting problem of existing GCNs
and capture the temporal dependency of speaker
emotions. DGODE constructs an adaptive mixhop
mechanism in the process of node aggregation to
reduce the excessive dependence on local features
and thus reduce overfitting. Furthermore, we in-
troduce Graph ODE to model multimodal data in
continuous time through differential equations and
capture the temporal dependence of speakers. By
solving the ODE equation, the emotional state of
the previous moment is propagated to the subse-
quent moment, allowing the model to capture the
changing process of the speaker’s emotion over a
longer time range. In this section, we theoretically
introduce the Dynamic Graph Neural Ordinary Dif-

ferential Equation Network (DGODE) and explain
the implementation details.

4.1 Modality Encoding
The essence of a conversation is a continuous inter-
active process in which multiple speakers partici-
pate and communicate with each other. Therefore,
when processing a conversation, we need to con-
sider the identity of each speaker and the contextual
information of the conversation to obtain seman-
tic information that reflects the current discourse
and capture the speaker’s characteristics and the
contextual association information of the conversa-
tion. Specifically, we first mark each speaker with
a one-hot vector pi to uniquely identify the speaker.
For the i-th round of conversation, we extract the
corresponding speaker embedding Pi based on the
one-hot vector pi, which contains the characteris-
tic information of the current speaker and can be
combined with the semantic features of the current
discourse to generate a speaker-aware and context-
aware unimodal representation. The formula for
discourse embedding is defined as follows:

Pi = Wppi (3)

where Wp is the learnable parameters.
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To effectively encode the features of the conver-
sation text, we use GRU to capture the contextual
semantic information in the sequence data and gen-
erate a more comprehensive text representation.
Specifically, we can make full use of the time order
and dependency relationship in the conversation
text through GRU, and incorporate the information
of the previous and next context into the encoding
of each round of conversation, so that the generated
text features can better reflect the context and mean-
ing of the entire conversation. Mathematically:

vim =
←−−→
GRU(vim, c

i
m(+,−)),m ∈ {a, v, f} (4)

where cim(+,−) represents the cell state.
To obtain a unimodal representation that reflects

both the speaker identity and the context informa-
tion, we add the speaker embedding to the repre-
sentation of each modality. Specifically, for the
i-th round of speech in the conversation, we calcu-
late the text modality representation hit, the audio
modality representation hia, and the visual modality
representation hif and add the speaker embedding
Si to these modality representations to generate the
final unimodal representations that incorporate the
speaker information as follows:

him = cim + Si, m ∈ {t, a, v} (5)

4.2 Adaptive MixHop Graph

The core idea of GCN is to perform convolution
operations on graph structured data to capture the
complex relationships between nodes and the topo-
logical structure of the graph and learn the repre-
sentation of node features. However, traditional
GCN only aggregates information from directly
adjacent nodes, and may not be able to fully cap-
ture the information of more distant nodes. To
capture high-order neighbor relationships, we con-
struct an adaptive mixhop graph to simultaneously
extract information from different hop neighbors
and improve the understanding of the global graph
structure. Furthermore, to model the interaction
between different features, we use the residual idea
to discretely model the adaptive mixHop GCN as
follows:

Hn+1 =
N∑

n=1

ÂnHnW + H0 (6)

where W ∈ Rd×d represents the learnable weight
matrix. Essentially, using the idea of residuals we

can model the interaction of different features, so
that we can learn the representation of nodes more
effectively.

4.3 Temporal Graph ODE
However, information aggregation via Eq. 6 can-
not model the speaker’s emotional changes over
time. Therefore, we aim to model the discrete in-
formation propagation process of vanilla GCN as
a continuous process and use ODE to characterize
this dynamic information propagation process. By
solving the ODE equation, the emotional state of
the previous moment is propagated to the subse-
quent moments, allowing the model to capture the
changing process of the speaker’s emotions over a
longer time frame. Specifically, we view Eq. 6 as
the Riemann sum of integrals from t = 0 to t = n,
as described in the following proposition.

Proposition 1. Suppose A− I = PΛ′P−1,
W − I = QΦ′Q−1, then Eq. 6 is discretized as
the ODE as follows:

dH(t)

dt
=

1

N

N∑
n=1

(
lnÂH(t) + H(t)lnW + E

)
(7)

H(t) =
1

N

N∑
n=1

(
e(A−I)tEe(W−I)t + PF(t)Q−1

)
(8)

where E = H(0) = (lnÂ)−1(Â − I)E, E =
f(X) is the output of the encoder f . F(t) is defined
as follows:

Fij(t) =
Ẽij

Λ′ii + Φ′jj
et(Λ

′
ii+Φ′

jj) − Ẽij

Λ′ii + Φ′jj
(9)

where Ẽ = P−1EQ.
Eq. 8 can be approximated by an ODE solver to

calculate the dynamic evolution of the system in
discrete time steps as follows:

H(t) = ODESolver(
dH(t)

dt
,H0, t) (10)

4.4 Model Training
The final multi-modal embedding representation
Hi is passed to a fully connected layer for further
integration and transformation, and a deeper feature
representation is extracted as follows:

li = ReLU(W lHi + bl)

pi = softmax(W smaxli + bsmax)
(11)
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Methods
IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated W-F1 Neutral Surprise Fear Sadness Joy Disgust Anger W-F1

bc-LSTM (Poria et al., 2017) 34.4 60.8 51.8 56.7 57.9 58.9 54.9 73.8 47.7 5.4 25.1 51.3 5.2 38.4 55.8
A-DMN (Xing et al., 2020) 50.6 76.8 62.9 56.5 77.9 55.7 64.3 78.9 55.3 8.6 24.9 57.4 3.4 40.9 60.4
DialogueGCN (Ghosal et al., 2019) 42.7 84.5 63.5 64.1 63.1 66.9 65.6 72.1 41.7 2.8 21.8 44.2 6.7 36.5 52.8
RGAT (Ishiwatari et al., 2020) 51.6 77.3 65.4 63.0 68.0 61.2 65.2 78.1 41.5 2.4 30.7 58.6 2.2 44.6 59.5
CoMPM (Lee and Lee, 2022) 60.7 82.2 63.0 59.9 78.2 59.5 67.3 82.0 49.2 2.9 32.3 61.5 2.8 45.8 63.0
EmoBERTa (Kim and Vossen, 2021) 56.4 83.0 61.5 69.6 78.0 68.7 69.9 82.5 50.2 1.9 31.2 61.7 2.5 46.4 63.3
CTNet (Lian et al., 2021) 51.3 79.9 65.8 67.2 78.7 58.8 67.5 77.4 50.3 10.0 32.5 56.0 11.2 44.6 60.2
LR-GCN (Ren et al., 2021) 55.5 79.1 63.8 69.0 74.0 68.9 69.0 80.8 57.1 0 36.9 65.8 11.0 54.7 65.6
MMGCN (Hu et al., 2021) 47.1 81.9 66.4 63.5 76.2 59.1 66.8 77.0 49.6 3.6 20.4 53.8 2.8 45.2 58.4
AdaGIN (Tu et al., 2024) 53.0 81.5 71.3 65.9 76.3 67.8 70.7 79.8 60.5 15.2 43.7 64.5 29.3 56.2 66.8
DER-GCN (Ai et al., 2024e) 58.8 79.8 61.5 72.1 73.3 67.8 68.8 80.6 51.0 10.4 41.5 64.3 10.3 57.4 65.5
M3Net (Chen et al., 2023) 60.9 78.8 70.1 68.1 77.1 67.0 71.1 79.1 59.5 13.3 42.9 65.1 21.7 53.5 65.8
DGODE 71.8 71.0 74.9 55.7 78.6 75.2 72.8 82.6 60.9 5.1 45.5 63.4 10.6 54.0 67.2

Table 1: Comparison with other baselines on the IEMOCAP and MELD dataset.

where pi contains the model’s predicted probability
for each emotion category, reflecting the model’s
confidence in identifying different emotions on the
utterance, W l, W smax, bl, and bsmax are trainable
parameters. To obtain the final emotion prediction
result, we select the emotion category label ŷi with
the highest probability from pi as the predicted
emotion of the utterance as follows:

ŷi = argmax
j

(pij) (12)

4.5 Implementation Details

We used PyTorch to implement the proposed
DGODE model and chose Adam as the optimizer.
For the IEMOCAP dataset, the learning rate of
the model was set to 1e-4, while for the MELD
dataset, the learning rate was set to 5e-6. Dur-
ing training, the batch size of IEMOCAP was 16,
while the batch size of MELD was 8. In the setting
of the Bi-GRU layer, we set different numbers of
channels for different modal inputs. In the IEMO-
CAP dataset, the number of input channels for text,
acoustic, and visual modalities are 1024, 1582, and
342, respectively. In the MELD dataset, the num-
ber of input channels for text, acoustic, and visual
modalities are set to 1024, 300, and 342, respec-
tively. In addition, for the graph encoder, we set
the size of the hidden layer to 512. To prevent
overfitting of the model, we introduced L2 weight
decay in training, with the coefficient set to 1e-5,
and applied a dropout rate of 0.5 in the key layers.

5 Experiments

Our experimental results are the average of 10 runs
and are statistically significant under paired t-test
(all p < 0.05).

5.1 Datasets and Evaluation Metrics

We used two used MERC datasets in our experi-
ments: IEMOCAP (Busso et al., 2008) and MELD
(Poria et al., 2019). Both datasets contain data in
three modalities: text, audio, and video. The IEMO-
CAP dataset is collected from dialogue scenes per-
formed by actors. The MELD dataset consists of di-
alogue clips from the American TV series Friends.
We report the F1 and the weighted F1 (W-F1).

5.2 Baselines

To verify the superior performance of our proposed
method DGODE, we compared it with other com-
parison methods, including three RNN algorithms
(i.e., bc-LSTM (Poria et al., 2017), A-DMN (Xing
et al., 2020), CoMPM (Lee and Lee, 2022)), six
GNN algorithms (i.e., DialogueGCN (Ghosal et al.,
2019), LR-GCN (Ren et al., 2021), MMGCN (Hu
et al., 2021), AdaGIN (Tu et al., 2024), DER-
GCN (Ai et al., 2024e), RGAT (Ishiwatari et al.,
2020)), one HGNN algorithm (i.e., M3Net (Chen
et al., 2023)), and two Transformer algorithm (i.e.,
CT-Net (Lian et al., 2021), EmoBERTa (Kim and
Vossen, 2021)).

5.3 Overall Results

As shown in Table 1, the experimental results show
that our proposed method DGODE significantly
improves the performance in the emotion recogni-
tion task. The performance improvement may be
due to the fact that the dynamic graph ODE net-
work can effectively capture the temporal depen-
dency of the discourse and effectively alleviate the
over-smoothing problem when processing graph
data. To further verify the superiority of the model,
we also report the W-F1 of each emotion category.
Specifically, in the IEMOCAP dataset, our model
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Figure 3: Verify the effectiveness of multimodal fea-
tures.

has better W-F1 scores than other methods on the
three categories of emotions "happy", "neutral" and
"frustrated". Similarly, in the MELD dataset, our
model also achieves the best W-F1 scores on the
three categories of emotions "surprise", "neutral"
and "sadness", further verifying the robustness of
the model. Therefore, our method not only per-
forms well in emotion recognition tasks, but also
has significant advantages in model complexity.

5.4 Effectiveness of Multimodal Features

We analyze the impact of different modal features
on the results of emotion recognition experiments
to verify the effect of different modal feature com-
binations. Specifically, we observe the contribu-
tion of different modal features (text, audio, and
video) to the emotion recognition performance by
inputting them into the model. The experimental
results are shown in Fig. 3. 1) In the single-modal
experiment, the emotion recognition accuracy of
the text modality is significantly better than the au-
dio and video modalities. 2) When we combine the
features of the two modalities for the experiment,
the effect of emotion recognition is significantly
better than the results of any single modality. 3)
When we use the features of the three modalities
for emotion recognition at the same time, the per-
formance of the model reaches the best level.

5.5 Error Analysis

Although the proposed DGODE model has shown
good results in the emotion recognition task, it still
faces some challenges, especially in the recognition
of some emotions. To analyze the misclassification
of the model in more depth, we analyzed the con-
fusion matrix of the test set on the two datasets.
As shown in Fig. 4, DGODE has the problem of
misclassifying similar emotions on the IEMOCAP
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Figure 4: We performed a analysis of the classification
results on the test sets and visualized through confusion
matrices.
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Figure 5: On the IEMOCAP and MELD datasets, we
performed a detailed analysis of the classification results
on the test sets and visualized them through confusion
matrices.

dataset. For example, the model often misclassi-
fies "happy" as "excited" or "angry" as "frustrated".
The slight differences between emotions lead to the
difficulty of the model in distinguishing them. Sec-
ondly, on the MELD dataset, DGODE also shows
a similar misclassification trend, such as misclas-
sifying "surprise" as "angry". In addition, since
the "neutral" emotion is the majority class in the
MELD dataset, the model tends to misclassify other
emotions as "neutral", which makes the model’s
performance in dealing with other emotion cate-
gories decrease. Finally, the model also encoun-
ters significant difficulties in identifying minority
emotions. In particular, in the MELD dataset, the
two emotions "fear" and "disgust" belong to the
minority class, and it is difficult for the model to
accurately detect these emotions.

5.6 Abalation Study

To analyze the components of DGODE, we per-
formed ablation experiments on the IEMOCAP and
MELD datasets. The results in Fig. 5 show that
DGODE consistently outperforms all variants on
W-F1 and is also the best on the partially classified
sentiment categories. Removing ODE degrades the
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Figure 6: Visualization of the learned embeddings.

performance, which highlights the role of ODE in
capturing the dynamics of multimodal data. Re-
moving the adaptive mixHop graph also degrades
the performance, which emphasizes the importance
of capturing high-order relationships.

5.7 Visualization

To more intuitively demonstrate the classification
effect of DGODE method in the MERC task, we
use T-SNE to visualize the generated sentence vec-
tors. As shown in Fig. 6, on the IEMOCAP
dataset, the DGODE model performs well, and
samples of different emotion categories are effec-
tively separated in the visualization. In contrast,
although the MMGCN model can also distinguish
samples of different emotion categories to some
extent, its classification performance is obviously
inferior to DGODE. The distribution of samples
generated by MMGCN is relatively chaotic, and the
boundaries between different emotion categories
are unclear. Meaningwhile, we also compared the
classification effect of the M3Net model. Similar
to DGODE, M3Net also showed good classifica-
tion performance on the IEMOCAP dataset, and
was able to clearly separate samples of different
emotion categories. In the experimental results
on the MELD dataset, we observed a similar phe-
nomenon.

6 Conclusions

In this paper, we introduce the Dynamic Graph
Neural Ordinary Differential Equation Network
(DGODE) based on the perspective of controlled
diffusion. Our DGODE method introduces an
adaptive mixhop mechanism to extract node in-
formation from different hop count neighbors si-
multaneously and uses ordinary differential equa-
tions to model the temporal dependence of emotion
changes. DGODE shows stable performance as
the number of GCN layers increases. We com-
pare DGODE and other baselins on two widely
used datasets, and experimental results show that
DGODE achieves new SOTA results.

7 Ethical Considerations

(1) All of our experiments are based on public sci-
entific research datasets that have been widely used
in academic research and have undergone strict
ethical review. (2) Our research content and experi-
mental design do not involve any sensitive data.

8 Limitations

In multimodal emotion recognition, emotion labels
are usually annotated for the overall emotion of a
certain period of time. However, DGODE focuses
on dynamic changes, which may lead to the prob-
lem that the subtle dynamic changes captured by
the model do not match the overall emotion labels.
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A Appendix

Proof of Proposition 1. Eq. 6 can be rewritten as
follows:

Hn =
N∑

n=1

n∑
k=0

An
kEWn

k (13)

We use Riemann integration to convert Eq. 13
into a continuous form as follows:

H(t) =
1

N

N∑
n=1

∫ t+1

0
AsEWsds. (14)

Taking the derivative of H(t) with respect to t,
we get the following ODE:

dH(t)

dt
=

1

N

N∑
n=1

At+1EWt+1. (15)

To alleviate the problem of information loss, we
take the second-order derivative of H(t) to obtain
an ODE expression with better information aggre-
gation as follows:

d2H(t)

dt2
(t) =

1

N

N∑
n=1

(
lnAAt+1EWt+1

+At+1EWt+1 lnW
)

=
1

N

N∑
n=1

(
lnA

dH(t)

dt
+

dH(t)

dt
lnW

)
(16)

Integrating both sides of Eq. 16 with respect to
t, we can obtain:
dH(t)

dt
(t) = lnAH(t) + H(t) lnW + c. (17)

The initial value of H(0) is defined as follows:(
P−1H(0)Q

)
ij
=

ΛiiẼijΦjj − Ẽij

lnΛii + lnΦjj
(18)

When t = 0, we can get:

dH(t)

dt

∣∣∣∣
t=0

= AEW

=⇒ AEW − lnAH(0)−H(0) lnW = c
(19)

Combining Eq. 12 and Eq. 13 we can derive:(
P−1cQ

)
ij
= ΛiiẼijΦjj −

lnΛii(ΛiiẼijΦjj − Ẽij)

lnΛii + lnΦjj

− ΛiiẼijΦjj − Ẽij

lnΛii + lnΦjj
lnΦjj

c = PẼQ−1 = E
(20)

Therefore, the discrete form of GCN information
aggregation can be converted into the continuous
form of ODE as follows:

dH(t)

dt
=

1

N

N∑
n=1

(
lnÂH(t) + H(t)lnW + E

)
(21)

H(t) can be further solved by an ODE solver
(e.g., the Runge-Kutta method) to obtain.
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