
Proceedings of the 31st International Conference on Computational Linguistics, pages 2626–2644
January 19–24, 2025. ©2025 Association for Computational Linguistics

2626

ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity
within Large Language Models

Chenyang Song1, Xu Han1∗, Zhengyan Zhang1, Shengding Hu1, Xiyu Shi2
Kuai Li3, Chen Chen3, Zhiyuan Liu1*, Guangli Li2, Tao Yang3, Maosong Sun1

1 Dept. of Comp. Sci. & Tech., Institute for AI, Tsinghua University, Beijing, China
2 SKLP, Institute of Computing Technology, Chinese Academy of Sciences, China

3 Tencent Machine Learning Platform, China
scy22@mails.tsinghua.edu.cn, {han-xu,liuzy}@tsinghua.edu.cn

Abstract

Activation sparsity refers to the existence
of considerable weakly-contributed elements
among activation outputs, serving as a promis-
ing paradigm for accelerating model infer-
ence. Nevertheless, most large language mod-
els (LLMs) adopt activation functions without
intrinsic activation sparsity (e.g., GELU and
Swish). Some recent efforts have explored
introducing ReLU or its variants as the sub-
stitutive activation function to pursue activa-
tion sparsity and acceleration, but few can si-
multaneously obtain high activation sparsity
and comparable model performance. This pa-
per introduces a simple and effective method
named “ProSparse” to sparsify LLMs while
achieving both targets. Specifically, after in-
troducing ReLU activation, ProSparse adopts
progressive sparsity regularization with a fac-
tor smoothly increasing for multiple stages.
This can enhance activation sparsity and miti-
gate performance degradation by avoiding rad-
ical shifts in activation distributions. With
ProSparse, we obtain high sparsity of 89.32%
for LLaMA2-7B, 88.80% for LLaMA2-13B,
and 87.89% for end-size MiniCPM-1B, re-
spectively, with comparable performance to
their original Swish-activated versions. These
present the most sparsely activated models
among open-source LLaMA versions and com-
petitive end-size models. Inference accelera-
tion experiments further demonstrate the signif-
icant practical acceleration potential of LLMs
with higher activation sparsity, obtaining up to
4.52× inference speedup.

1 Introduction

Recent years have witnessed significant break-
throughs made by large language models (LLMs)
with commendable performance across a wide
range of NLP tasks (Brown et al., 2020; Wei et al.,

*The corresponding authors of this paper: Xu
Han (han-xu@tsinghua.edu.cn) and Zhiyuan Liu (li-
uzy@tsinghua.edu.cn).

2021; Ouyang et al., 2022; OpenAI, 2023; Achiam
et al., 2023). Nevertheless, the formidable compu-
tational costs required by the deployment and infer-
ence of LLMs pose a considerable challenge (Am-
inabadi et al., 2022; Pope et al., 2023). The uti-
lization of activation sparsity is one of the most
promising techniques to enhance inference effi-
ciency (Liu et al., 2023; Song et al., 2023), by
discarding the redundant computation associated
with the elements among LLM activation outputs
that contribute weakly to the final outputs.

The adoption of ReLU, which naturally out-
puts zero elements, as the activation function is
a straightforward method to achieve intrinsic acti-
vation sparsity in early LLMs (Raffel et al., 2020;
Zhang et al., 2022a). However, recent LLMs pre-
dominantly favor non-ReLU activation functions,
such as GELU and Swish (Touvron et al., 2023a;
Chowdhery et al., 2023; Almazrouei et al., 2023).
Although these non-ReLU LLMs may also display
activation sparsity (Zhang et al., 2024), such spar-
sity is manually imposed by searching adaptive
activation thresholds (i.e., non-intrinsic), which
can potentially lose minor neuron outputs and de-
grade performance. To pursue the sparsity-based
inference acceleration, the task of ReLUfication
is proposed, aiming to introduce ReLU-based in-
trinsic activation sparsity into non-ReLU LLMs.
Preliminary methods (Zhang et al., 2022b, 2024)
directly substitute the activation functions with
ReLU. As such substitution cannot overcome the
inherent limitation imposed by the original dense
activation distribution, inserted and shifted ReLU
functions (Mirzadeh et al., 2023) are introduced to
enforce higher sparsity through radically shifting
the activation distribution. However, existing ef-
forts fail to achieve satisfactory sparsity and risk
performance degradation.

In this paper, we propose a simple and effective
ReLUfication method named “ProSparse” to help
non-ReLU LLMs obtain high activation sparsity

2627

x

W1
T

xW1
T

Ws
T

Swish

xWs
T

s

W2
T

FFN
Outputs

x1

(a) Swish-Activated Gated FFN

x

W1
T

xW1
T

Ws
T

ReLU

xWs
T

s

W2
T x1

(b) Activation Function Substitution (c) Progressive Sparsity Regularization

L1 Regularized

Training Step

λ

Warmup
Stage

Training Step

λ

(d) Activation Threshold Shifting

0 x

σ(x)

ReLU

0 x

σ(x)

FATReLU

T

strongly-contributed parameters

activated elements

weakly-contributed parameters

inactivated elements

matrix
multiplication

element-wise
multiplication

Incremental
Stages

FFN
Outputs

Figure 1: The overall architecture of ProSparse, which includes three steps: activation function substitution,
progressive sparsity regularization, and activation threshold shifting.

without performance degradation. ProSparse in-
cludes three steps shown in Figure 1: activation
function substitution, progressive sparsity regular-
ization, and activation threshold shifting. The first
step is to replace the activation function with ReLU
and then apply continual training. As discussed
above, this can hardly achieve satisfactory sparsity.
Therefore, in the second step, we apply sparsity
regularization (Ma et al., 2019) to the intermedi-
ate activation outputs of the feed-forward networks
(FFNs) within LLMs to seek higher sparsity. Con-
sidering the potential performance risks of forcing
the fixed regularization factor (Ma et al., 2019; Li
et al., 2020), we progressively increase the fac-
tor in multiple stages, including one flat warmup
stage and multiple incremental stages along gentle
sine curves. Such progressive regularization can
provide more time for adaption to increasing reg-
ularization and avoid a radical shift in activation
distribution, thereby mitigating performance degra-
dation. The final step adopts FATReLU (Kurtz
et al., 2020), shifting the ReLU activation thresh-
old to a positive value. This prunes less influential
neurons to improve sparsity.

In experiments, we apply ProSparse to the Re-
LUfication of LLaMA2 (Touvron et al., 2023b)
and end-size MiniCPM (Hu et al., 2024). Activa-
tion sparsity of 89.32%, 88.80%, and 87.89% are
successfully achieved for LLaMA2-7B, LLaMA2-
13B, and MiniCPM-1B, respectively, with perfor-
mance comparable to their original Swish-activated
versions on various LLM benchmarks. Further-

more, we demonstrate the practical inference accel-
eration of higher activation sparsity, by respectively
applying an approximate algorithm and an accurate
algorithm to the inference of models with different
sparsity. For the approximate one, we use PowerIn-
fer (Song et al., 2023), which achieves state-of-the-
art speedup ratios tailored for sparsely activated
LLMs but risks inaccurate inference due to the
mistakes of activation predictors. For the accurate
one, we implement and release two GPU operators
that leverage the input-side and output-side sparsity
during the computation of ReLU-activated FFNs*.

The experimental results demonstrate that mod-
els with higher sparsity can achieve more signifi-
cant inference acceleration with both approximate
and accurate algorithms (e.g., up to 4.52× speedup
with PowerInfer). Moreover, comprehensive anal-
yses are conducted to figure out the quantitative
relationship between the activation sparsity and the
regularization factor, making the activation sparsity
obtained by ProSparse more controllable. We also
discuss the rationality of progressive L1 regulariza-
tion, empirical methods of performing supervised
fine-tuning (SFT) on sparsely activated models, and
the sparsity distribution among distinct datasets or
layers.

In summary, we make the following contribu-
tions in this paper: (1) We propose ProSparse,
an effective ReLUfication method that converts
non-ReLU LLMs into much sparser ReLU-

*Source codes for these two operators are avail-
able at https://github.com/Raincleared-Song/sparse_
gpu_operator.

https://github.com/Raincleared-Song/sparse_gpu_operator
https://github.com/Raincleared-Song/sparse_gpu_operator

2628

activated LLMs without performance degradation.
(2) Sparsely activated versions of LLaMA2-7B,
LLaMA2-13B, and MiniCPM-1B comparable to
their original Swish-activated versions in perfor-
mance are both obtained and available†. (3) We
demonstrate the practical inference acceleration ef-
fect of higher activation sparsity that ProSparse can
reach. Valuable observations and analyses are also
conducted.

2 Preliminaries and Related Works

Here we discuss how to improve LLM inference
efficiency. Refer to existing surveys (Zhao et al.,
2023) for works about LLMs and Appendix A for
works about L1 regularization.

Inference Acceleration for LLMs Efficiency
has long been a crucial topic in various AI applica-
tions (Chen et al., 2023b). The sustainable increase
in LLM scales brings the exponential growth of
inference computations, making the deployment of
LLMs a formidable challenge (Kaplan et al., 2020;
Liu et al., 2023). To reduce the computational costs
required by LLM inference, various model com-
pression or decoding acceleration methods have
been proposed, such as quantization (Jacob et al.,
2018; Nagel et al., 2019; Zhao et al., 2019; Bai
et al., 2022; Xiao et al., 2023; Yao et al., 2023),
pruning (Hoefler et al., 2021; Ma et al., 2023; Sun
et al., 2023; Frantar and Alistarh, 2023; Xia et al.,
2023), distillation (Tang et al., 2019; Touvron et al.,
2021; Gu et al., 2023; Hsieh et al., 2023), and ef-
ficient sampling methods (Leviathan et al., 2023;
Wang et al., 2023; Chen et al., 2023a; Miao et al.,
2023). While these works have proved effective for
inference acceleration and other scenarios (e.g., se-
cure federated learning (Ding et al., 2023b)), none
of these methods leverages the intrinsic mecha-
nisms within LLMs.

Activation Sparsity Recent works (Li et al.,
2022; Liu et al., 2023; Song et al., 2023) have no-
ticed the intrinsic activation sparsity within some
LLMs and its potential in inference acceleration.
Activation sparsity refers to the phenomenon where
considerable zero or negligible elements in activa-
tion outputs, corresponding to certain model pa-
rameters (i.e., neurons), have a weak impact on

†Models are respectively available at https:
//huggingface.co/SparseLLM/prosparse-llama-2-7b,
https://huggingface.co/SparseLLM/
prosparse-llama-2-13b, and https://huggingface.
co/SparseLLM/ProSparse-MiniCPM-1B-sft.

LLM outputs given a specific input. These weakly-
contributed parameters are regarded as inactivated
and can thus be skipped during inference to save
computational resources. Notably, the utilization
of activation sparsity is orthogonal to model
compression and efficient sampling, and these
approaches can be readily combined. Another
fact worth attention is the fundamental difference
between activation sparsity and pruning, see
Appendix A.

ReLUfication Activation sparsity naturally ex-
ists in ReLU-activated architecture (Li et al., 2022),
from LLMs (Raffel et al., 2020; Zhang et al.,
2022a) to vision models (Dosovitskiy et al., 2020).
However, recent LLMs such as Falcon (Almazrouei
et al., 2023) and LLaMA (Touvron et al., 2023b)
prevalently adopt non-ReLU activation functions
such as GELU (Hendrycks and Gimpel, 2016) and
Swish (Elfwing et al., 2018) without intrinsic ac-
tivation sparsity. Therefore, to leverage the mer-
its of activation sparsity without training a ReLU-
activated LLM from scratch, many works con-
duct ReLUfication, introducing sparse ReLU-based
activations into non-ReLU LLMs. Zhang et al.
(2022b) converts a GELU-activated BERT (De-
vlin et al., 2018) into a ReLU-activated version
through activation function substitution and ad-
ditional training. ReluLLaMA and ReluFalcon
apply a similar paradigm to Falcon and LLaMA,
respectively (Zhang et al., 2024). Since activa-
tion substitution cannot reach satisfactory spar-
sity, mainly due to the unhandled limitation of the
original dense activation distribution, the inserted
and shifted ReLU activation functions are intro-
duced (Mirzadeh et al., 2023), conducting a radical
shift in activation distribution. Although these op-
erations are claimed to achieve sparsity of nearly
95%, we cannot replicate the results in our exper-
iments (see the 3rd paragraph of Section 4.4) and
the sparsity is still limited. By contrast, ProSparse
is a ReLUfication method designed to achieve high
sparsity and mitigate performance degradation con-
currently.

3 Methods

3.1 Definitions and Notations
For the convenience of subsequent demonstrations,
here we define activation sparsity in detail. Since
the activation function mainly exists in the FFNs
within LLMs, we first discuss the computation pro-
cess of FFNs. Given the hidden dimension dmodel

https://huggingface.co/SparseLLM/prosparse-llama-2-7b
https://huggingface.co/SparseLLM/prosparse-llama-2-7b
https://huggingface.co/SparseLLM/prosparse-llama-2-13b
https://huggingface.co/SparseLLM/prosparse-llama-2-13b
https://huggingface.co/SparseLLM/ProSparse-MiniCPM-1B-sft
https://huggingface.co/SparseLLM/ProSparse-MiniCPM-1B-sft

2629

and the intermediate dimension dff , the computa-
tion process of a gated FFN (i.e., the most widely
adopted FFN architecture in recent LLMs (Dauphin
et al., 2017; Shazeer, 2020)) can be formalized as:

s = σ(xWT
s), x1 = s⊙ (xWT

1),

FFN(x) = x1W
T
2 ,

(1)

where x ∈ Rdmodel , s,x1 ∈ Rdff , σ, and ⊙ de-
note the input hidden states, the gating scores,
the intermediate outputs, the activation function,
and the element-wise multiplication respectively.
Ws,W1 ∈ Rdff×dmodel and W2 ∈ Rdmodel×dff

are learnable weights.
We define the activation sparsity (hereinafter

abbreviated as sparsity) as the ratio of zero ele-
ments (i.e., inactivated elements) in x1 for a spe-
cific input x. The sparsity of an LLM is evaluated
using the average sparsity, defined as the average
value of sparsity across all layers in an LLM on a
sufficiently large amount of input data.

In this paper, we focus on the task of ReLUfica-
tion, namely converting an LLM using a non-ReLU
activation function σ (e.g., GELU or Swish) into
a ReLU-activated one, while making the average
sparsity as high as possible and mitigating perfor-
mance degradation.

3.2 ProSparse
We propose ProSparse to achieve the above targets.
Three steps are carefully designed to introduce and
enhance the intrinsic activation sparsity for a non-
ReLU LLM: (1) activation function substitution;
(2) progressive sparsity regularization; (3) activa-
tion threshold shifting.

Activation Function Substitution For lack of
attention to activation sparsity, a majority of re-
cent mainstream LLMs adopt non-ReLU activation
functions such as GELU and Swish that output few
zero elements (i.e., low activation sparsity accord-
ing to the above definition). Therefore, the first
step of ProSparse is to introduce intrinsic sparsity
through activation function substitution, which re-
places the FFN activation function σ with ReLU,
namely σ(x) = max(x, 0), followed by continual
training. This can make the ratio of zero activa-
tion elements significantly larger and preliminarily
adapt the LLM to new ReLU activation.

Progressive Sparsity Regularization Neverthe-
less, activation function substitution by nature does
not change the activation distribution, which will

potentially limit the sparsity to relatively low val-
ues. To push for higher sparsity, a typical method is
L1 sparsity regularization (Li et al., 2022), which
introduces the L1 regularization loss as an extra
training target. Given the intermediate output x1

of the i-th FFN layer in an LLM, the regularization
loss is defined as:

Lireg(λ) = λ · ||x1||1, (2)

where || · ||1 is the L1 norm operator and λ is
the regularization factor. For an LLM with K
FFN layers, the total regularization loss is summed
from the losses of all layers, namely Lreg(λ) =∑K

i=1 Lireg(λ). The overall optimization target is
Llm + Lreg(λ), where Llm is the vanilla language
modeling loss.

Considering the potential performance degrada-
tion due to fixed regularization factors (Georgiadis,
2019; Kurtz et al., 2020; Li et al., 2022), we pro-
pose the progressive sparsity regularization, where
the factor λ is carefully scheduled to gently in-
crease in multiple stages. Refer to Appendix B for
more details.

Concretely, for the warmup stage, we set λ to
a constant value, which is relatively small to pre-
vent radical activation distribution shifts and intro-
duce higher preliminary sparsity. Next, for each
of the remaining stages (called incremental stages),
λ is scheduled to increase along a smooth sine
curve from a trough value to a peak value. In-
spired by the cosine annealing scheduler for learn-
ing rates (Loshchilov and Hutter, 2016), we choose
the sine function owing to its special trend, as the
small derivatives near its troughs and peaks can
make λ not increase radically around these two
points. This provides the LLMs with more time
to adapt the activation distributions to the newly
increased L1 regularization. Notably, each stage is
accompanied by certain steps of training. The step
numbers and peak λ values are chosen according
to the target sparsity and stability.

Activation Threshold Shifting As demonstrated
by recent works, there exist considerable amounts
of non-zero low elements in the activation outputs,
which have little influence on final results and thus
can be pruned for higher sparsity (Zhang et al.,
2024). Therefore, we convert the ReLU into FA-
TReLU (Kurtz et al., 2020) by shifting the activa-
tion threshold, i.e.,

σ(x) =

{
x when x ≥ t,

0 otherwise,
(3)

2630

where t > 0 is a positive threshold. As long as t
is properly chosen (see Appendix O), FATReLU
can increase sparsity with negligible losses (Zhang
et al., 2024).

3.3 Practical Inference Acceleration

To go beyond theoretical analyses based on FLOPS
(Floating Point Operations Per Second) (Mirzadeh
et al., 2023) and establish the practical value of
ProSparse, we discuss how to realize inference ac-
celeration with sparsely activated LLMs on real
hardware and how to evaluate the practical accel-
eration effects. We consider two categories of ac-
celeration algorithms based on activation sparsity:
approximate algorithms and accurate algorithms.

Approximate Acceleration Algorithms Utiliz-
ing activation sparsity, recent approximate accel-
eration algorithms predominantly rely on activa-
tion predictors, typically small neural networks, to
forecast the activation distributions indicated by
the sparse intermediate outputs x1 given a specific
input x (Liu et al., 2023; Song et al., 2023). In
this way, they can make wiser hardware allocation
or computation policies to avoid resource waste
on weakly-contributed parameters. However, their
efficiency and accuracy largely depend on the pre-
dictors’ performance, and invalid predictions can
cause suboptimal hardware allocation or even infer-
ence inaccuracy. Therefore, to gain more practical
acceleration effects from approximate algorithms,
both high activation sparsity and predictability are
indispensable.

To this end, we focus on three metrics for accel-
eration analysis: the activation recall, the predicted
sparsity, and the inference speed. The former two
metrics evaluate the performance of activation pre-
dictors as well as the activation predictability of
a sparse LLM (Zhang et al., 2024). For inference
speed, we adopt PowerInfer (Song et al., 2023),
a state-of-the-art approximate algorithm to mea-
sure practical speedup ratios. Refer to Appendix C
for more related introductions and the detailed ap-
proach to calculating these metrics.

Accurate Acceleration Algorithms Targeting
acceleration without potential inference inaccura-
cies, we implement two hardware-efficient sparse
GPU operators with system-level optimizations,
such as operator fusion, coalesced memory access,
and vectorization, thereby exploiting input-side and
output-side sparsity in Equation 1.

Concretely, we reorganize a ReLU-activated
gated FFN into three major steps and our two op-
erators are responsible for the step (2) and (3) re-
spectively: (1) A dense matrix-vector multiplica-
tion operator xWT

s directly supported by vendor
libraries such as cuBLAS; (2) A fused operator of
ReLU and s ⊙ (xWT

1) with output-side sparsity;
(3) A sparse matrix-vector multiplication opera-
tor x1W

T
2 with input-side sparsity. We adopt the

single-step speedup ratios of steps (2) and (3) with
these two operators respectively to reflect the practi-
cal accurate acceleration potential of sparse LLMs.
Refer to Appendix D for implementation details.

4 Experiments

4.1 Experimental Settings

Our training data consists of both language mod-
eling datasets and instruction tuning datasets. For
evaluation, we adopt comprehensive benchmarks
covering code generation, commonsense reasoning,
reading comprehension, and 4 other popular tasks.
Refer to Appendix E for more details.

4.2 Overall Results

We apply ProSparse to Swish-activated LLaMA2-
7B, LLaMA2-13B (Touvron et al., 2023b), and
MiniCPM-1B (Hu et al., 2024). The obtained
sparsely activated models are then compared with
their original Swish-activated versions. For com-
prehensiveness, we also consider ReluLLaMA‡,
the only open-source ReLU-based LLMs fine-
tuned from LLaMA2. All the average sparsity
values are computed on the same mixed dataset
sampled from training datasets. For more hyper-
parameters, see Appendix L and O.

Results are shown in Table 1 (see Appendix G
for performance on each independent benchmark).
We can draw three conclusions:

(1) Effectiveness: ProSparse simultaneously
achieves high sparsity and comparable downstream
performance for all the three Swish-activated mod-
els considered. The activation sparsity obtained by
ProSparse is significantly higher than ReluLLaMA,
reaching the state-of-the-art level among all the
open-source LLaMA versions and competitive end-
size models.

(2) Scale Generalizability: The effectiveness of
ProSparse consistently holds under three model
scales. The promising results on the end-size

‡https://huggingface.co/SparseLLM/
ReluLLaMA-7B

https://huggingface.co/SparseLLM/ReluLLaMA-7B
https://huggingface.co/SparseLLM/ReluLLaMA-7B

2631

Setting Code Commonsense Reading GSM8K MMLU BBH AGI Eval Average Average
Generation Reasoning Comprehension Performance Sparsity

LLaMA2-7B 16.37 69.59 61.87 12.96 44.45 32.96 27.53 37.96 -
ReluLLaMA-7B 15.85 69.64 70.54 5.84 38.64 35.07 27.73 37.62 66.98
ProSparse-7B∗ 19.47 66.29 63.33 12.74 45.21 33.59 27.55 38.31 88.11
ProSparse-7B 19.42 66.27 63.50 12.13 45.48 34.99 27.46 38.46 89.32

LLaMA2-13B 20.19 72.58 71.55 22.21 54.69 37.89 29.33 44.06 -
ReluLLaMA-13B 20.19 70.44 73.29 18.50 50.58 37.97 28.22 42.74 71.56
ProSparse-13B∗ 29.03 69.75 67.54 25.40 54.78 40.20 28.76 45.07 87.97
ProSparse-13B 28.42 69.76 66.91 26.31 54.35 39.90 28.67 44.90 88.80

MiniCPM-1B 36.85 63.67 60.90 35.48 50.44 35.03 28.71 44.44 -
ProSparse-1B∗ 41.38 64.55 60.69 34.72 49.36 34.04 28.27 44.72 86.25
ProSparse-1B 42.04 64.37 60.73 34.57 49.51 34.08 27.77 44.72 87.89

Table 1: The overall experimental results with the comparison of activation sparsity (%) and downstream performance
(%). “LLaMA2” and “MiniCPM” refer to the original Swish-activated LLaMA2 (Touvron et al., 2023b) and
MiniCPM (Hu et al., 2024) versions respectively. “ProSparse-7B∗”, “ProSparse-13B∗”, and “ProSparse-1B∗”
denote the ProSparse versions without activation threshold shifting.

model (i.e., MiniCPM-1B) reveal the potential of
ProSparse as well as activation sparsity on end-user
devices, where the inference efficiency of LLMs is
significantly emphasized.

(3) Effect of Activation Threshold Shifting:
Based on the results without activation threshold
shifting (i.e., those with the “∗” marker), we can
demonstrate the effectiveness of this technique in
improving the sparsity without compromising per-
formance. Notably, the threshold t must be care-
fully chosen, see Appendix O.

4.3 Acceleration Effect of Sparsity
Approximate Acceleration Algorithm In this
section, we train the activation predictors for each
sparse LLM and compute the recalls, predicted
sparsity, and actual inference speeds on PowerIn-
fer (Song et al., 2023). As the FFN in each Trans-
former layer has different activation distributions as
well as different predictors, the former two metrics
are averaged from the results of all layers. Note that
MiniCPM-1B has not been tested since PowerInfer
does not support its architecture at present. Refer
to Appendix F for training details of predictors.

As demonstrated by the results shown in Ta-
ble 2, compared with llama.cpp§, an acceleration
framework without sparsity utilization, PowerInfer
achieves up to 4.52× speedup, revealing the signifi-
cant potential of sparsity-based acceleration. More-
over, an increased activation sparsity can consid-
erably improve the activation recall, the predicted
sparsity, and the inference speed of PowerInfer.
This proves the considerable practical values of
even more sparsely activated LLMs in improving
the inference speed with predictor-based approx-
imate acceleration algorithms and mitigating the

§https://github.com/ggerganov/llama.cpp

inaccurate inference problem. ProSparse, which
reaches a high sparsity without performance degra-
dation, can thus gain the most acceleration effects
with PowerInfer.

Accurate Acceleration Algorithm Furthermore,
with LLMs of different sparsity, we measure the
average single-step wall-clock time spent by our
two sparse GPU operators, which are responsible
for step (2) and step (3) in Section 3.3 respectively.
As demonstrated in Table 2, higher activation spar-
sity can make accurate algorithms based on GPU
operators more efficient. Besides, our two sparse
GPU operators also display satisfactory speedup
ratios up to 2.44× and 1.70× respectively with bet-
ter acceleration effects for larger models. Note that
despite the less significant acceleration effects than
PowerInfer, our GPU operators are highly plug-
gable, predictor-free, and immune to potential in-
ference accuracies.

4.4 Analysis and Discussion

Q1: What is the effect of L1 regularization
and its trend of increase? For this question,
we consider two regularization-free ReLUfication
baselines: vanilla ReLU (Zhang et al., 2024) and
shifted ReLU (Mirzadeh et al., 2023). Both only
include the substitution of activation functions with
ReLU (i.e., max(x, 0)) and shifted ReLU (i.e.,
max(x − b, 0), where b is a tunable bias) respec-
tively.

First, we consider the training dynamics of the
above two baselines and ProSparse, as shown in
Figure 2. The setting “Fixed L1” is a reference set-
ting with a constant regularization factor. Clearly,
the training stages with increasing sparsity only in-
clude those with regularization applied, namely the
whole “Fixed L1”, the warmup stage, and the in-

https://github.com/ggerganov/llama.cpp

2632

Approximate Acceleration Accurate Acceleration

Setting Average Activation Predicted Inference Speedup Step (2) Speedup Step (3) Speedup
Sparsity Recall Sparsity Speed to Dense Time (↓) to Dense Time (↓) to Dense

Dense-7B - - - 3.67 1.00 90.55 1.00 82.92 1.00
ReluLLaMA-7B 66.98 90.89 58.95 11.37 3.10 67.12 1.35 63.00 1.32
ProSparse-7B∗ 88.11 93.46 75.24 16.30 4.44 46.66 1.94 55.56 1.49
ProSparse-7B 89.32 92.34 78.75 - - 45.38 2.00 55.05 1.51

Dense-13B - - - 1.92 1.00 131.36 1.00 113.68 1.00
ReluLLaMA-13B 71.56 86.41 71.93 6.59 3.43 69.92 1.88 75.47 1.51
ProSparse-13B∗ 87.97 91.02 77.93 8.67 4.52 55.29 2.38 67.50 1.68
ProSparse-13B 88.80 91.11 78.28 - - 53.78 2.44 66.73 1.70

† For “Dense” settings, the “Inference Speed” is obtained by llama.cpp, and the time for steps (2) and (3) is measured without sparse
GPU operators. For other sparse settings, the “Inference Speed” is obtained by PowerInfer, and sparse GPU operators are applied.
ProSparse settings with activation threshold shifting and the MiniCPM architecture are not supported by PowerInfer at present.

Table 2: The comparison of activation recalls (%), predicted sparsity (%), inference speeds
(tokens per second) by llama.cpp (Dense) or PowerInfer (others), and the average wall-clock
time (us) without (Dense) or with (others) our sparse GPU operators among LLMs with
different sparsity. “Step (2)” and “Step (3)” correspond to the steps in Section 3.3.

ProSparse

Vanilla ReLU

Fixed L1

Shifted b = 0.3

Shifted b = 0.5

Shifted b = 1.0

I. activation function
substitution
(zero factor)

II. warmup stage
(fixed factor)

III. incremental stages
(increasing factor)

6000

Shifted b = 0.1

IV. activation
threshold shifting

training steps

sp
a
rs

it
y
 (

%
)

Figure 2: The trend of sparsity (7B models) along the
training process. “Shifted” denotes Shited ReLU and
b = 0.1 corresponds to the results in Table 4.

cremental stages of ProSparse. Therefore, among
the settings involved, the trend of sparsity is
incremental only if non-zero L1 regularization
is applied¶. Neither vanilla ReLU nor shifted
ReLU can push for higher sparsity without reg-
ulatization.

However, concerns may naturally arise about the
performance, as the additional L1 loss term can
unavoidably influence the optimization of the lan-
guage modeling target. For this problem, we eval-
uate the above methods given different numbers
of training tokens. Through experiments (see Ap-
pendix H), while a performance gap exists between
ProSparse and two baselines given limited 34.60B
tokens, it obtains comparable performance when
sufficient 89.13B tokens are provided and thus the
regularization can increase more smoothly, with a

¶We did not reproduce the flat sparsity trend claimed in
the paper of Shifted ReLU (Mirzadeh et al., 2023).

final sparsity value close to the limited-token set-
ting. Therefore, L1 regularization can reach far
higher activation sparsity and maintain compa-
rable performance to regularization-free meth-
ods with a sufficiently smooth increase trend
of the factor, at the cost of an acceptable rise
in training tokens (i.e., 54.53B, only 2.73% of
the 2T tokens used to pre-train LLaMA2 (Touvron
et al., 2023b)).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
log10 (S)

70

75

80

85

90

sp
ar

si
ty

 (%
)

from step 5,000 (end of stage 0)
from step 6,000 (end of stage 1)
from step 10,000 (end of stage 2)
from step 12,000 (end of stage 3)

100 exp(1.76 0.30
S + 3.49)

S = 10 2

Figure 3: The activation sparsity obtained by apply-
ing different final-stage regularization factors λS to the
checkpoints at different training stages (16,500 steps in
total) of ProSparse-7B.

Q2: How to reach a target activation sparsity
value? Considering the additional training costs
needed to reach higher sparsity, a common require-
ment lies in how to manipulate ProSparse to reach
a desired sparsity given a limited computation bud-
get. The key challenge is the search for suitable
regularization factors. To this end, we manage to
find the quantitative relationship between the final
activation sparsity and the regularization factors to
avoid the empirical hyper-parameter search.

Specifically, we select checkpoints at different

2633

training stages of ProSparse-7B (see Table 6), ap-
ply a constant regularization factor λS , and then
resume training for sufficient steps (i.e., no less
than 4,000 steps) as the last regularization stage.
With the same accumulated training token numbers
as ProSparse-7B, we can obtain different activa-
tion sparsity by tuning the value of λS . The results
shown in Figure 3 provide two observations: (1)
The final activation sparsity is mainly depen-
dent on the last-stage regularization factor λS

when λS is relatively large (e.g., λS >= 10−2 for
ProSparse-7B). (2) The activation sparsity shows
a negative exponential relationship with λα

S . For
ProSparse-7B, specifically, the sparsity approxi-
mates 100 − exp(−1.76 · λ0.30

S + 3.49) (i.e., the
red fitted curve in Figure 3). In summary, to reach
a given relatively high sparsity level (e.g., sparsity
larger than 80%, satisfying λS >= 10−2), the only
thing needed is to control the regularization fac-
tor λS of the final progressive regularization stage.
Therefore, given the fixed model size, ProSparse
is a highly controllable ReLUfication method in
terms of sparsity adjustment.

Q3: Is progressive sparsity regularization effec-
tive? If the activation sparsity mainly depends
on the final-stage regularization factor, why should
we increase the factor progressively? The answer
lies in the performance concern. To substantiate
the effectiveness of progressive sparsity regular-
ization, the second step of ProSparse, we conduct
ablation studies by making the regularization fac-
tor constant throughout the training process after
activation function substitution. By setting the
factor to 0.1, we obtain a model with activation
sparsity of 88.62%, slightly lower than ProSparse-
7B (89.32%). However, with the same number
of training tokens, this model only has an aver-
age performance of 36.34%, considerably lower
than ProSparse-7B (38.46%). Similarly, for the
13B setting, we obtain a model with the compa-
rable sparsity of 88.96% and an average perfor-
mance of 42.85%, lower than ProSparse-13B (see
Appendix I). Therefore, progressive sparsity reg-
ularization is indispensable in mitigating the
performance degradation caused by ReLUfica-
tion.

Q4: How to SFT sparsely activated models?
It is non-trivial to apply SFT to sparsely acti-
vated models obtained by ProSparse. Our prac-
tice of training ProSparse-1B can provide some
experience: SFT can be applied to sparsely ac-

tivated models obtained by ProSparse with a
well-chosen regularization factor, and this fac-
tor for SFT is empirically smaller than λS to ac-
commodate newly injected knowledge and avoid
performance degradation. See Appendix J for
more details and observations.
Q5: How does the sparsity distribute? Another
interesting observation is the imbalanced sparsity
distributions among distinct datasets and layers.
Specifically, the activation sparsity of ProSparse
models is higher on more formatted instruction
tuning datasets and higher layers (i.e., layers
closer to outputs). More detailed analyses are
provided in Appendix M and N.

5 Conclusion
In this work, we propose ProSparse, an effec-
tive ReLUfication method for introducing and
enhancing intrinsic activation sparsity from non-
ReLU LLMs with comparable performance. Ex-
tensive experiments demonstrate the effectiveness
of ProSparse and its practical values in inference
acceleration with various algorithms. Deeper anal-
yses concerned with certain ProSparse techniques,
model properties, and SFT issues further substanti-
ate the practicality of ProSparse and provide valu-
able insights.

Broader Impacts

This paper presents a simple and effective method,
ProSparse, for introducing and enhancing ReLU-
based intrinsic activation sparsity into non-ReLU
LLMs. There may exist many potential societal
consequences of our work, none of which we feel
must be specifically highlighted here.

Limitations

Firstly, more comprehensive studies on huge-scale
models (e.g., 70B or more) should be included
in the future given sufficient computing resources.
Moreover, we only focus on the sparsity-based ac-
celeration of step (2) and step (3) of FFN, leav-
ing a considerable ratio of LLM computation un-
optimized. Actually, there already exist prelimi-
nary works in the sparsification of the attention
layers (Shen et al., 2023; Wortsman et al., 2023).
Methods such as pruning and low-rank decompo-
sition may also be helpful in optimizing the FFN
step (1) (Ji et al., 2024). For future works, we will
continue to explore how to introduce and enhance
sparsity in the attention layer as well as the acceler-
ation issue of the FFN step (1).

2634

Acknowledgments

This work is supported by National Natural Sci-
ence Foundation of China (No. 62236004, No.
62236011, No. 62302479), China Postdoctoral
Science Foundation (2023M733566), and Institute
Guo Qiang at Tsinghua University.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The Falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. DeepSpeed-Inference: enabling
efficient inference of Transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King,
and Michael R Lyu. 2022. Towards efficient post-
training quantization of pre-trained language models.
Advances in Neural Information Processing Systems,
35:1405–1418.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PIQA: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Jiajun Chen, Yin Gao, Zhuang Liu, and Dapeng Li.
2023b. Future vision on artificial intelligence as-
sisted green energy efficiency network. ZTE Commu-
nications, 21(2).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang.
2017. A survey of model compression and accel-
eration for deep neural networks. arXiv preprint
arXiv:1710.09282.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. PaLM: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454–470.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International Conference on
Machine Learning, pages 933–941. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional Transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023a. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Yahao Ding, Mohammad Shikh-Bahaei, Zhaohui Yang,
Chongwen Huang, and Weijie Yuan. 2023b. Secure
federated learning over wireless communication net-
works with model compression. ZTE Communica-
tions, 21(1):46.

https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2311.16867.pdf
https://ieeexplore.ieee.org/abstract/document/10046087
https://ieeexplore.ieee.org/abstract/document/10046087
https://ieeexplore.ieee.org/abstract/document/10046087
https://arxiv.org/pdf/2108.07732.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/096347b4efc264ae7f07742fea34af1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/096347b4efc264ae7f07742fea34af1f-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6239/6095
https://ojs.aaai.org/index.php/AAAI/article/view/6239/6095
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/2302.01318.pdf
https://arxiv.org/pdf/2302.01318.pdf
https://www.zte.com.cn/content/dam/zte-site/res-www-zte-com-cn/mediares/magazine/publication/com_en/article/202302/202302006.pdf
https://www.zte.com.cn/content/dam/zte-site/res-www-zte-com-cn/mediares/magazine/publication/com_en/article/202302/202302006.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/1710.09282.pdf
https://arxiv.org/pdf/1710.09282.pdf
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://arxiv.org/pdf/2110.14168.pdf
https://arxiv.org/pdf/2110.14168.pdf
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202301006#1
https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202301006#1
https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202301006#1

2635

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. In International
Conference on Learning Representations.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural networks, 107:3–11.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Georgios Georgiadis. 2019. Accelerating convolutional
neural networks via activation map compression. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7085–
7095.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman,
and Jerome H Friedman. 2009. The elements of statis-
tical learning: data mining, inference, and prediction,
volume 2. Springer.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (GELUs). arXiv preprint
arXiv:1606.08415.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. 2021. Sparsity in deep
learning: Pruning and growth for efficient inference
and training in neural networks. The Journal of Ma-
chine Learning Research, 22(1):10882–11005.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-
ang Huang, Weilin Zhao, et al. 2024. MiniCPM:
Unveiling the potential of small language models
with scalable training strategies. arXiv preprint
arXiv:2404.06395.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2704–2713.

Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi
Liu, Kehai Chen, and Min Zhang. 2024. Feature-
based low-rank compression of large language mod-
els via bayesian optimization. arXiv preprint
arXiv:2405.10616.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-
der Matveev, John Carr, Michael Goin, William Leis-
erson, Sage Moore, Nir Shavit, and Dan Alistarh.
2020. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In In-
ternational Conference on Machine Learning, pages
5533–5543. PMLR.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from Transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Küttler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. PAQ: 65 mil-
lion probably-asked questions and what you can do
with them. Transactions of the Association for Com-
putational Linguistics, 9:1098–1115.

Gen Li, Yuantao Gu, and Jie Ding. 2020. The efficacy of
l1 regularization in two-layer neural networks. arXiv
preprint arXiv:2010.01048.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. StarCoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

https://openreview.net/pdf?id=YicbFdNTTy
https://openreview.net/pdf?id=YicbFdNTTy
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://arxiv.org/pdf/2101.00027.pdf
https://arxiv.org/pdf/2101.00027.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Georgiadis_Accelerating_Convolutional_Neural_Networks_via_Activation_Map_Compression_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Georgiadis_Accelerating_Convolutional_Neural_Networks_via_Activation_Map_Compression_CVPR_2019_paper.pdf
https://arxiv.org/pdf/2306.08543.pdf
https://arxiv.org/pdf/2306.08543.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-21606-5.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-21606-5.pdf
https://arxiv.org/pdf/2009.03300.pdf
https://arxiv.org/pdf/2009.03300.pdf
https://arxiv.org/pdf/1606.08415.pdf
https://arxiv.org/pdf/1606.08415.pdf
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://arxiv.org/pdf/2212.09689.pdf
https://arxiv.org/pdf/2212.09689.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://arxiv.org/pdf/2405.10616
https://arxiv.org/pdf/2405.10616
https://arxiv.org/pdf/2405.10616
https://arxiv.org/abs/2001.08361
https://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf
https://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf
https://proceedings.mlr.press/v202/leviathan23a/leviathan23a.pdf
https://proceedings.mlr.press/v202/leviathan23a/leviathan23a.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://arxiv.org/pdf/2010.01048.pdf
https://arxiv.org/pdf/2010.01048.pdf
https://arxiv.org/pdf/2305.06161.pdf

2636

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Fe-
lix Chern, Felix Yu, Ruiqi Guo, et al. 2022. The lazy
neuron phenomenon: On emergence of activation
sparsity in Transformers. In The Eleventh Interna-
tional Conference on Learning Representations.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
Vu: Contextual sparsity for efficient LLMs at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The Flan collection: designing data and methods for
effective instruction tuning. In Proceedings of the
40th International Conference on Machine Learning.
JMLR.org.

Ilya Loshchilov and Frank Hutter. 2016. SGDR:
Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations.

Rongrong Ma, Jianyu Miao, Lingfeng Niu, and Peng
Zhang. 2019. Transformed l1 regularization for learn-
ing sparse deep neural networks. Neural Networks,
119:286–298.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
LLM-Pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhi-
hao Jia. 2023. SpecInfer: Accelerating generative
LLM serving with speculative inference and token
tree verification. arXiv preprint arXiv:2305.09781.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta,
Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar.
2023. ReLU strikes back: Exploiting activation
sparsity in large language models. arXiv preprint
arXiv:2310.04564.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort,
and Max Welling. 2019. Data-free quantization
through weight equalization and bias correction. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1325–1334.

OpenAI. 2023. ChatGPT.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling Transformer inference. Proceedings
of Machine Learning and Systems, 5.

Yogi Prasetyo, Novanto Yudistira, and Agus Wahyu
Widodo. 2023. Sparse then prune: Toward
efficient vision Transformers. arXiv preprint
arXiv:2307.11988.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text Trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI Spring Symposium Series.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. WinoGrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732–8740.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
et al. 2021. Multitask prompted training enables
zero-shot task generalization. In International Con-
ference on Learning Representations.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. SocialIQA: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4463–4473.

Simone Scardapane, Danilo Comminiello, Amir Hus-
sain, and Aurelio Uncini. 2017. Group sparse regular-
ization for deep neural networks. Neurocomputing,
241:81–89.

Noam Shazeer. 2020. GLU variants improve Trans-
former. arXiv preprint arXiv:2002.05202.

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang,
Rui Wang, and Jiang Bian. 2023. A study on
ReLU and Softmax in Transformer. arXiv preprint
arXiv:2302.06461.

https://openreview.net/pdf?id=TJ2nxciYCk-
https://openreview.net/pdf?id=TJ2nxciYCk-
https://openreview.net/pdf?id=TJ2nxciYCk-
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://openreview.net/pdf?id=ZX4uS605XV
https://openreview.net/pdf?id=ZX4uS605XV
https://arxiv.org/pdf/1608.03983.pdf
https://arxiv.org/pdf/1608.03983.pdf
https://www.sciencedirect.com/science/article/pii/S0893608019302321
https://www.sciencedirect.com/science/article/pii/S0893608019302321
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2310.04564.pdf
https://arxiv.org/pdf/2310.04564.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.pdf
https://openai.com/blog/chatgpt
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://aclanthology.org/P16-1144.pdf
https://aclanthology.org/P16-1144.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/523f87e9d08e6071a3bbd150e6da40fb-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/523f87e9d08e6071a3bbd150e6da40fb-Paper-mlsys2023.pdf
https://arxiv.org/pdf/2307.11988.pdf
https://arxiv.org/pdf/2307.11988.pdf
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ojs/6399/6399-13-9624-1-10-20200517.pdf
https://cdn.aaai.org/ojs/6399/6399-13-9624-1-10-20200517.pdf
https://openreview.net/pdf?id=9Vrb9D0WI4
https://openreview.net/pdf?id=9Vrb9D0WI4
https://aclanthology.org/D19-1454.pdf
https://aclanthology.org/D19-1454.pdf
https://www.sciencedirect.com/science/article/pii/S0925231217302990
https://www.sciencedirect.com/science/article/pii/S0925231217302990
https://arxiv.org/pdf/2002.05202.pdf
https://arxiv.org/pdf/2002.05202.pdf
https://arxiv.org/pdf/2302.06461.pdf
https://arxiv.org/pdf/2302.06461.pdf

2637

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2023. PowerInfer: Fast large language model serv-
ing with a consumer-grade GPU. arXiv preprint
arXiv:2312.12456.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the Lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–
288.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. 2021. Training data-efficient image Trans-
formers & distillation through attention. In Inter-
national Conference on Machine Learning, pages
10347–10357. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. LLaMA: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. LLaMA 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Huan Wang, Qiming Zhang, Yuehai Wang, Lu Yu, and
Haoji Hu. 2019. Structured pruning for efficient
ConvNets via incremental regularization. In 2019
International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.

Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo.
2023. Tabi: An efficient multi-level inference sys-
tem for large language models. In Proceedings of
the Eighteenth European Conference on Computer
Systems, pages 233–248.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022. Super-
NaturalInstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings

of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 5085–5109.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity in
deep neural networks. Advances in neural informa-
tion processing systems, 29.

Wikimedia Foundation. 2022. Wikimedia downloads.

Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and
Simon Kornblith. 2023. Replacing softmax with
ReLU in vision Transformers. arXiv preprint
arXiv:2309.08586.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared LLaMA: Accelerating lan-
guage model pre-training via structured pruning.
arXiv preprint arXiv:2310.06694.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn,
and Yuxiong He. 2023. A comprehensive study on
post-training quantization for large language models.
arXiv preprint arXiv:2303.08302.

Ming Yuan and Yi Lin. 2006. Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society Series B: Statistical
Methodology, 68(1):49–67.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791–4800.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022a. OPT: Open pre-trained Transformer language
models. arXiv preprint arXiv:2205.01068.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022b. MoEfication:
Transformer feed-forward layers are mixtures of ex-
perts. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 877–890.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han,
Yankai Lin, Chaojun Xiao, Chenyang Song, Zhiyuan
Liu, Zeyu Mi, and Maosong Sun. 2024. ReLU2 wins:
Discovering efficient activation functions for sparse
llms. arXiv preprint arXiv:2402.03804.

https://arxiv.org/pdf/2312.12456.pdf
https://arxiv.org/pdf/2312.12456.pdf
https://arxiv.org/pdf/2306.11695.pdf
https://arxiv.org/pdf/2306.11695.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://watermark.silverchair.com/jrsssb_58_1_267.pdf
https://watermark.silverchair.com/jrsssb_58_1_267.pdf
http://proceedings.mlr.press/v139/touvron21a/touvron21a.pdf
http://proceedings.mlr.press/v139/touvron21a/touvron21a.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/1804.09461.pdf
https://arxiv.org/pdf/1804.09461.pdf
https://dl.acm.org/doi/abs/10.1145/3552326.3587438
https://dl.acm.org/doi/abs/10.1145/3552326.3587438
https://aclanthology.org/2022.emnlp-main.340.pdf
https://aclanthology.org/2022.emnlp-main.340.pdf
https://aclanthology.org/2022.emnlp-main.340.pdf
https://arxiv.org/pdf/2109.01652
https://arxiv.org/pdf/2109.01652
https://proceedings.neurips.cc/paper_files/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://dumps.wikimedia.org
https://arxiv.org/pdf/2309.08586.pdf
https://arxiv.org/pdf/2309.08586.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://arxiv.org/pdf/2303.08302.pdf
https://arxiv.org/pdf/2303.08302.pdf
https://academic.oup.com/jrsssb/article-pdf/68/1/49/49794691/jrsssb_68_1_49.pdf
https://academic.oup.com/jrsssb/article-pdf/68/1/49/49794691/jrsssb_68_1_49.pdf
https://aclanthology.org/P19-1472.pdf
https://aclanthology.org/P19-1472.pdf
https://arxiv.org/pdf/2205.01068.pdf
https://arxiv.org/pdf/2205.01068.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://arxiv.org/pdf/2402.03804.pdf

2638

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz.
2016. Loss functions for image restoration with neu-
ral networks. IEEE Transactions on computational
imaging, 3(1):47–57.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,
and Zhiru Zhang. 2019. Improving neural network
quantization without retraining using outlier channel
splitting. In International Conference on Machine
Learning, pages 7543–7552. PMLR.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. AGIEval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Mingjian Zhu, Yehui Tang, and Kai Han. 2021.
Vision Transformer pruning. arXiv preprint
arXiv:2104.08500.

https://ieeexplore.ieee.org/abstract/document/7797130
https://ieeexplore.ieee.org/abstract/document/7797130
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
https://arxiv.org/pdf/2303.18223.pdf
https://arxiv.org/pdf/2303.18223.pdf
https://arxiv.org/pdf/2304.06364.pdf
https://arxiv.org/pdf/2304.06364.pdf
https://arxiv.org/pdf/2104.08500.pdf

2639

A Extended Related Works

L1 Regularization In statistical learning such as
linear regression, L1 regularization has been long
adopted as a classical and effective technique for
sparsification (Tibshirani, 1996; Hastie et al., 2009).
With the advent of deep learning, researchers also
explore paradigms of applying L1 regularization
to neural networks. One prominent usage is model
pruning (Cheng et al., 2017). Specifically, a term of
loss calculated as the L1 norm of the sparsification
target is added to the optimization target function to
prompt sparse weights for faster computation. This
has helped acceleration in various conventional neu-
ral networks (Han et al., 2015; Zhao et al., 2016;
Wen et al., 2016; Scardapane et al., 2017; Ma et al.,
2019; Wang et al., 2019) as well as Transformer-
based models (Zhu et al., 2021; Prasetyo et al.,
2023). Inspired by these works, some researchers
also try to adopt L1 regularization for activation
sparsity, mainly in ReLU-activated convolutional
networks (Georgiadis, 2019; Kurtz et al., 2020) and
Transformer-based architectures (Li et al., 2022).

To the best of our knowledge, ProSparse is the
first work using a dynamic L1 regularization fac-
tor for prompting activation sparsity in neural net-
works. By contrast, a majority of the former works
adopt fixed factors. For more adaptive control,
some of them introduce group regularization (Yuan
and Lin, 2006), namely using different factors for
different parameter groups. Nevertheless, without
dynamic factors, these paradigms can cause a sub-
stantial shift in activation distribution and thus po-
tentially risk performance degradation. The work
most related to ProSparse is IncReg (Wang et al.,
2019), which introduces incremental regularization
factors that change for different parameter groups
at each iteration. While they focus on the pruning
of convolutional networks, ProSparse handles a dis-
tinct scenario of prompting activation sparsity in
Transformer-based LLMs and adopts a completely
different strategy consisting of a progressively in-
cremental factor.

Difference between Activation Sparsity and
Pruning Generally, pruning realizes sparsity by
removing certain elements (e.g., neurons, weights,
or structured blocks) in LLMs. However, the spar-
sity introduced by pruning is statically limited to
model weights and independent of the inputs. High
static sparsity is often accompanied by consider-
able performance degradation compared to the orig-
inal dense model (Frantar and Alistarh, 2023; Xia

et al., 2023). By contrast, activation sparsity is dy-
namically determined by the input data and thus
potentially compromises less model capacity and
downstream task performance.

B Detailed Algorithm for Progressive
Sparsity Regularization

The detailed algorithm for scheduling the factor λ
in progressive sparsity regularization is listed in
Algorithm 1.

Algorithm 1 Progressive factor scheduling adopted
in ProSparse

Require: The total number of stages S ≥ 1.
Require: A sequence of peak λ values {λi}Si=1,

s.t. 0 < λ1 ≤ λ2 ≤ ... ≤ λS .
Require: Accumulated step numbers of each

stage {Ti}Si=1, s.t. 0 < T1 < T2 < ... < TS .
1: // warmup stage
2: for t← 1 to T1 do
3: λ← λ1

4: update model by loss Llm + Lreg(λ)
5: end for
6: // incremental stages
7: for i← 2 to S do
8: for t← Ti−1 + 1 to Ti do
9: η ← 1

2 [sin(−
π
2 + t−Ti−1

Ti−Ti−1
π) + 1]

10: λ← λi−1 + η(λi − λi−1)
11: update model by loss Llm + Lreg(λ)
12: end for
13: end for

C Extented Introduction of Approximate
Acceleration Algorithms

Existing approximate algorithms are mostly de-
pendent on activation predictors, which are small
neural networks to predict the intermediate activa-
tions x1 based on the input hidden states x (Liu
et al., 2023; Song et al., 2023). If one element at a
specific position of x1 is predicted to be zero, then
all the computations associated with this position
can be saved with little or no hardware resources
allocated. This is the key mechanism with which
approximate algorithms realize acceleration.

Nevertheless, such a predictor-dependent accel-
eration effect is largely dependent on the perfor-
mance of the pre-trained activation predictors. For
example, a typical bad case is that an actually acti-
vated element in x1 is predicted to be inactivated.

2640

This can bring about negative results including un-
wise hardware resource allocation and erroneously
ignored intermediate logits, which limits the practi-
cal speedup ratios and even causes inference inac-
curacies. Therefore, a sparse LLM can gain more
benefits from approximate algorithms if its activa-
tion distribution is more predictable.

To test a sparse LLM’s practical acceleration
value with approximate algorithms, we involve the
predictability of its activation distribution, which
is evaluated by the performance of its specifically
pre-trained activation predictor. This involves two
key metrics: the activation recall and the predicted
sparsity.

The activation recall refers to the average ratio
of correctly predicted activated elements among all
the truly activated elements in x1. The predicted
sparsity is calculated as the ratio of predicted in-
activated elements among all the elements in x1.
A predictor with higher recall will miss less truly
activated elements, therefore reducing inference
inaccuracies and bringing about wiser hardware
allocation. Under comparable recalls, a higher
predicted sparsity indicates fewer elements to be
falsely predicted activated, which largely allevi-
ates the waste of computational resources. These
can help an acceleration framework obtain a bet-
ter grasp of activation distribution and thus make
wiser policies for faster inference as well as low
inference inaccuracies (Liu et al., 2023).

D Implementation Details of Sparse GPU
Operators

Input-Side Sparse Operator. The input-side
sparse operator is a sparse matrix-vector multipli-
cation operator for accelerating x1W

T
2 , where the

input x1 is sparse. Due to the sparsity of input, any
operation involving a zero element in x1 can be
omitted. Compared with a standard implementa-
tion of matrix-vector multiplication, both memory
access and computation of the sparse operator will
decrease with the sparsity increasing.

Output-Side Sparse Operator. The output-
side sparse operator is a fused operator consist-
ing of ReLU, sparse matrix-vector multiplication,
and element-wise multiplication, for accelerating
s ⊙ (xWT

1), where s is sparse. The sparsity of s
can be propagated to the output of xWT

1 through
element-wise multiplication, which means that
the computation of matrix-vector multiplication
in xWT

1 can be skipped whenever a result element

will be multiplied by zero of sparse s. In addi-
tion, we postpone the ReLU activation function
in σ(xWT

s) into this operator so that σ can be
implicitly performed along with the element-wise
multiplication. These operations are fused into a
single operator, thereby reducing the data move-
ment between operations.

For implementation, we first load the result of
xWT

s , determine which elements are greater than
zero (or a positive threshold after activation thresh-
old shifting), and then select the corresponding
columns of WT

1 to load from GPU memory, per-
forming multiplication operations with x. As the
matrix WT

1 is sparse by column, we store the ma-
trix in a column-major format to coalesce memory
access and fully utilize vectorized loads/store in-
structions. After this step, we get the sparse result
vector of xWT

1 and multiply the corresponding
elements with activated elements of s, with other
elements filled with zeros directly. Finally, the
result vector x1 is obtained.

E Training and Evaluation Datasets

Training Datasets Our mixed training data con-
sists of both language modeling datasets and in-
struction tuning datasets. The language mod-
eling datasets are directly cleaned and filtered
from raw corpus, including StarCoder (Li et al.,
2023), Wikipedia (Wikimedia Foundation, 2022),
Pile (Gao et al., 2020), and other collected datasets.
The instruction tuning datasets mainly involve in-
put instructions and annotated target answers, in-
cluding UltraChat (Ding et al., 2023a), multiple-
choice QA data of P3 (Sanh et al., 2021) (Choice
P3), PAQ (Lewis et al., 2021), Unnatural Instruc-
tions (Honovich et al., 2022), Flan (Longpre et al.,
2023), Super-Natural Instructions (Wang et al.,
2022), and other collected datasets.

Evaluation Benchmarks To evaluate the task-
specific performance of the LLMs obtained by
ProSparse, we adopt the following comprehensive
benchmarks.

(1) Code Generation: We compute the average
pass@1 scores on HumanEval (0-shot) (Chen et al.,
2021) and MBPP (3-shot) (Austin et al., 2021).
(2) Commonsense Reasoning: We report the aver-
age 0-shot accuracies on PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2020), and
COPA (Roemmele et al., 2011). (3) Reading Com-
prehension: We compute the average 0-shot accura-

2641

Setting HumanEval MBPP PIQA SIQA HellaSwag WinoGrande COPA BoolQ LAMBADA TyDi QA

Original-7B 10.98 21.77 78.40 47.70 75.67 67.17 79.00 75.99 72.81 36.82
ReluLLaMA-7B 12.20 19.51 77.86 49.54 72.85 64.96 83.00 78.10 70.33 63.18
ProSparse-7B∗ 16.46 22.48 75.79 43.50 71.08 64.09 77.00 62.48 67.73 59.77
ProSparse-7B 16.46 22.38 75.68 43.55 71.09 64.01 77.00 62.51 68.21 59.77

Original-13B 16.46 23.92 79.38 47.90 79.12 70.48 86.00 82.54 76.21 55.91
ReluLLaMA-13B 17.07 23.31 78.40 47.13 76.60 69.06 81.00 81.16 73.49 65.23
ProSparse-13B∗ 25.61 32.44 77.04 45.14 75.91 68.67 82.00 79.27 71.08 52.27
ProSparse-13B 23.78 33.06 77.26 45.29 75.88 68.35 82.00 78.93 71.36 50.45

MiniCPM-1B 41.46 32.24 74.10 48.87 67.27 59.12 69.00 69.30 58.18 55.23
ProSparse-1B∗ 48.78 33.98 73.99 47.54 68.46 59.75 73.00 74.92 53.74 53.41
ProSparse-1B 50.61 33.47 74.16 47.54 68.40 59.75 72.00 75.08 53.74 53.36

Table 3: The performance (%) on each independent benchmark.

Setting Accumulated Average Average Accumulated Average Average
Tokens (B) Sparsity (%) Performance (%) Tokens (B) Sparsity (%) Performance (%)

Vanilla ReLU 34.60 66.04 41.40 89.13 64.93 41.52
Shifted ReLU 34.60 69.59 41.33 89.13 68.35 41.40

ProSparse 34.60 89.32 38.46 89.13 88.29 40.67

† Note that ProSparse with 89.13B tokens applies different hyper-parameters (i.e., more training stages and step num-
bers) for a smoother trend of regularization factor increase and thus obtains higher performance than the 34.60B setting.

Table 4: Comparison of ProSparse with two regularization-free former ReLUfication
methods (7B). The bias b for shifted ReLU is tuned to ensure the best performance.

cies on BoolQ (Clark et al., 2019), LAMBADA (Pa-
perno et al., 2016), and TyDi QA (Clark et al.,
2020). (4) Other Popular Benchmarks: We report
the average accuracies on GSM8K (8-shot) (Cobbe
et al., 2021), MMLU (5-shot) (Hendrycks et al.,
2020), Big Bench Hard (BBH) (3-shot) (Suzgun
et al., 2022), and AGI-Eval (0-shot) (Zhong et al.,
2023). Refer to Appendix K for more details.

F Training Details of Activation
Predictors

Following Deja Vu (Liu et al., 2023), the predictor
is a two-layer FFN, composed of two linear pro-
jection layers with a ReLU activation in between
them. Notably, as each layer of a sparse LLM
has different activation distributions, we should in-
troduce the same number of predictors as that of
Transformer layers. For predictor training, we first
collect about 400,000 pairs of input hidden states x
and intermediate activations x1 at the correspond-
ing layer. Next, we train the predictor on 95% pairs
with the binary cross entropy loss and compute the
predictability metrics on the remaining 5% pairs.
We reserve the checkpoint with the highest recall
to ensure the best inference accuracy with the least
falsely ignored activations.

G Performance on Independent
Benchmarks

In this section, we report the performance on each
independent benchmark of Code Generation, Com-

monsense Reasoning, and Reading Comprehen-
sion, as displayed in Table 3.

H Performance Comparison between
ProSparse and Baselines

Given the different amounts of training tokens, we
compare ProSparse with the other two baselines
(i.e., vanilla ReLU and shifted ReLU) in terms of
the average sparsity and performance. As shown in
Table 4, ProSparse can achieve far higher sparsity
than two baselines. Besides, with more training
tokens given, ProSparse is able to apply a smoother
trend of regularization increase and thus better
mitigate performance degradation. This is why
the performance gap between ProSparse and two
regularization-free baselines is bridged when the
tokens increase from 34.60B to 89.13B. The addi-
tional training costs, namely 54.53B tokens, only
account for about 2.73% of the pre-training costs
of the original LLaMA2 (Touvron et al., 2023b)
and are well acceptable.

I Ablation Studies of Progressive Sparsity
Regularization

Here we provide more detailed experimental results
about the ablation of progressive sparsity regular-
ization, as shown in Table 5. Note that for ablation
settings, we keep the regularization factor constant
without progressive increase. More specifically,
the whole training process consists of three steps:
activation function substitution, continual training

2642

Scale λ Average Sparsity (%) Average Performance (%) Scale λ Average Sparsity (%) Average Performance (%)

7B 5e − 2 85.95 37.83 13B 1e − 2 86.23 43.87
7B 1e − 1 88.62 36.34 13B 2e − 2 88.96 42.85
7B 5e − 1 93.15 33.86 13B 5e − 2 92.65 40.13

7B ProSparse 89.32 38.46 13B ProSparse 88.80 44.90

Table 5: Ablation study results about progressive sparsity regularization, the second step of ProSparse. λ refers to
the constant regularization factor in the second stage of ablation settings.

with a constant regularization factor, and activation
threshold shifting.

J SFT for Sparsely Activated Models

The key problem for SFT sparsely activated mod-
els is how to feed instruction following knowledge
into the model while maintaining the sparsity si-
multaneously. From the above observations about
training dynamics, the regularization factor is still
indispensable during SFT to avoid a considerable
drop in sparsity. Moreover, the factor is probably
not equal to the one used in the final progressive
regularization stage (i.e., λS), as the data distribu-
tion has shifted radically.

Our practice of training ProSparse-1B can pro-
vide empirical answers to this problem. Concretely,
while ProSparse-7B and ProSparse-13B are di-
rectly trained from the original LLaMA2 on mixed
data through the three-step ProSparse, the train-
ing of ProSparse-1B includes an extra decay stage
and an SFT stage, following the original practice
of MiniCPM for better performance (see Table 7).
The decay stage is conducted on the mixed data,
with a decreasing learning rate and a fixed regular-
ization factor of value λS . By contrast, the SFT
stage is performed only on the instruction tuning
data. We find that the regularization factor for
SFT should be empirically smaller than λS in or-
der to accommodate newly injected knowledge
from SFT data and avoid performance degrada-
tion. For ProSparse-1B, an SFT factor of 1e − 2
works the best with an average performance of
44.72%, while the performance drops to 44.32%
with λS = 5e − 2. Therefore, SFT can be ap-
plied to sparsely activated models obtained by
ProSparse with a well-chosen regularization fac-
tor.

K Evaluation Details

For evaluation benchmarks including PIQA, SIQA,
HellaSwag, WinoGrande, COPA, BoolQ, LAM-
BADA, TyDi QA, and AGI-Eval, we obtain the
predicted answers based on maximized perplexity.

Specifically, the predicted answer to a given ques-
tion corresponds to the candidate that produces
the lowest perplexity when it is concatenated to
the question. For GSM8K, MMLU, and BBH, the
predicted answers are determined by the option
numbers directly generated by the models.

L Important Hyperparameters

We provide the important hyperparameters for
ProSparse training, as shown in Table 6 and Ta-
ble 7. Note that the peak regularization factors of
two contiguous stages can be set to the same value
to introduce an extra constant-factor stage, mainly
for stability requirements. For ProSparse-7B and
ProSparse-13B, We use a cosine annealing learning
rate scheduler throughout the training process and
the peak learning rates are 3e − 5 and 5e − 5 for
7B and 13B respectively. For ProSparse-1B, we
use exactly the same hyper-parameter settings as
MiniCPM-1B (Hu et al., 2024) except for the L1

regularization. After pre-training on the language
modeling dataset with the paradigm of ProSparse,
following the original practice, we add an extra
decay stage (mixed data with a decreasing learning
rate) and an SFT stage (only instruction tuning data
with a fixed learning rate). Each of the additional
stages has a constant regularization factor. The con-
text length is 4,096 for all settings. Considering
cost issues, the hyper-parameters for ProSparse are
set to appropriate values to just match the original
Swish-activated versions in terms of benchmark
performance.

All the 7B models are trained with the AdamW
optimizer on 8 A100 80GB GPUs for about 10
days. All the 13B models are trained on 32 A100
80GB GPUs for about 20-30 days. The LLMs of
each method involved in this paper are trained once
due to the formidable training costs.

M Dataset-Wise Sparsity Distribution

Despite the satisfactory average sparsity, there still
exist gaps between the mixed training dataset and
the actual input texts that the model will encounter

2643

ProSparse-7B ProSparse-13B

Stage Number i λi Ti Accumulated Tokens (B) Stage Number i λi Ti Accumulated Tokens (B)

0 0 5,000 10.49 0 0 5,500 46.14
1 5e − 3 6,000 12.58 1 5e − 3 6,750 56.62
2 5e − 2 10,000 20.97 2 1e − 2 10,750 90.18
3 5e − 2 12,000 25.17 3 1e − 2 11,000 92.27
4 2e − 1 16,000 33.55 4 2e − 2 15,000 125.83
5 2e − 1 16,500 34.60 5 2e − 2 16,000 134.22

Table 6: The important hyperparameters for training ProSparse-7B and ProSparse-13B. For simplicity, the 0th stage
refers to the continual training in activation function substitution. The 1st stage is the warmup stage with a fixed
regularization factor λ1. The remaining stages are incremental stages with an increasing factor.

ProSparse-1B

Stage Number i λi Ti Accumulated Tokens (B)

0 0 10,000 49.15
1 1e − 3 15,000 73.73
2 5e − 3 20,000 98.30
3 5e − 3 25,000 122.88
4 5e − 2 35,000 172.03

decay 5e − 2 (fixed) 95,000 466.94
SFT 1e − 2 (fixed) 101,000 473.02

Table 7: The important hyperparameters for ProSparse-
1B. Compared with the other two settings, we follow
the original practice of MiniCPM-1B (Hu et al., 2024),
appending an extra decay stage and an SFT stage. Note
that each of the additional stages has a constant regular-
ization factor.

in real-life applications. To investigate the sparsity
of our model under different scenarios, we com-
pute the sparsity on each component of the mixed
training data respectively.

As demonstrated in Table 8, the sparse LLMs
obtained through ProSparse have a pronounced
property of inconsistent dataset-wise sparsity. Con-
cretely, the sparsity on instruction tuning datasets
is significantly higher than those on language mod-
eling datasets (i.e., StarCoder, Wikipedia, and Pile).
Considering the contents of datasets, we come to
the following assumption: the more formatted a
dataset is, the less hybrid knowledge is needed
for generation, and thus the L1-regularized mod-
els can achieve higher activation sparsity with
fewer neurons activated. Plain text datasets in-
cluding Wikipedia and Pile have the lowest spar-
sity, followed by the more formatted code dataset
StarCoder. Among instruction tuning datasets, QA
datasets (e.g., Choice P3) with the most monotonic
input-output formats obtain the highest sparsity. By
contrast, the sparsity is relatively lower on Ultra-
Chat and Flan, covering general dialogues and a
wide variety of tasks respectively. Notably, dia-
logues and tasks with formatted instructions cover
a majority of input contents of conversational AI,

the mainstream application form of LLMs. Such
higher sparsity on instruction tuning data will en-
dow ProSparse with more significant practical val-
ues.

N Layer-Wise Sparsity Distribution

Another problem worth concern is the layer-wise
sparsity, which potentially impacts the load bal-
ance and the inference efficiency. Therefore, we
compute the sparsity of each layer for ProSparse
models, as shown in Figure 4.

0 4 8 12 16 20 24 28 32
Layer ID

80

85

90

95

Sp
ar

si
ty

 (%
)

ProSparse-7B *

ProSparse-7B

0 4 8 12 16 20 24 28 32 36 40
Layer ID

80

85

90

95

Sp
ar

si
ty

 (%
)

ProSparse-13B *

ProSparse-13B

Figure 4: The layer-wise sparsity of ProSparse models.
The marker “∗” denotes the settings without activation
threshold shifting.

From the tendency of the line chart, we clearly
observe layer-wise sparsity imbalance in that lower
layers are significantly denser than higher layers.
Nevertheless, the activation threshold shifting can
considerably improve the sparsity of lower layers
with little impact on higher layers. Although this
technique only contributes marginally to the aver-
age sparsity, it is still indispensable in alleviating
the layer-wise sparsity imbalance issue.

O Effect of Different Thresholds in
Activation Threshold Shifting

As mentioned in Section 3.2, the threshold t is an
important hyper-parameter in activation threshold
shifting, the last step of ProSparse. In the overall
experimental results, we choose t = 0.01 for both
ProSparse-7B and ProSparse-13B to balance the
sparsity and performance. Here we list the results

2644

Setting Mixed StarCoder Wikipedia Pile UltraChat Choice PAQ Flan Unnatural Super-Natural
P3 Instructions Instructions

ReluLLaMA-7B 66.98 66.60 67.16 67.35 67.91 67.35 66.98 67.35 66.42 66.98
ProSparse-7B∗ 88.11 88.20 83.30 84.24 91.23 97.94 96.74 90.76 93.00 95.71
ProSparse-7B 89.32 89.13 84.33 85.35 93.66 98.33 97.28 91.74 93.80 96.32

ReluLLaMA-13B 71.56 71.33 71.45 71.56 72.27 71.80 71.21 71.56 70.85 71.33
ProSparse-13B∗ 87.97 87.50 81.64 83.06 92.45 98.41 97.54 91.65 92.92 96.40
ProSparse-13B 88.80 88.63 83.65 84.12 92.65 98.73 97.99 92.54 93.66 96.92

ProSparse-1B∗ 86.25 86.84 82.72 83.23 88.50 89.83 83.36 83.93 90.16 90.70
ProSparse-1B 87.89 88.44 84.71 85.17 89.93 91.01 85.36 85.82 91.36 91.76

Table 8: The average sparsity (%) on our mixed training dataset (denoted as “Mixed”) and its components, divided
into language modeling datasets and instruction tuning datasets.

Setting Average Code Commonsense Reading GSM8K MMLU BBH AGI Eval Average
Sparsity Generation Reasoning Comprehension Performance

ProSparse-7B∗ 88.11 19.47 66.29 63.33 12.74 45.21 33.59 27.55 38.31
ProSparse-7B t = 0.005 88.62 19.68 66.23 62.59 12.05 44.95 34.43 27.46 38.20
ProSparse-7B t = 0.01 89.32 19.42 66.27 63.50 12.13 45.48 34.99 27.46 38.46
ProSparse-7B t = 0.02 90.35 18.39 66.09 62.93 12.59 45.02 34.34 27.14 38.07
ProSparse-7B t = 0.03 90.95 18.65 66.24 62.72 12.13 44.83 34.92 27.36 38.12

ProSparse-13B∗ 87.97 29.03 69.75 67.54 25.40 54.78 40.20 28.76 45.07
ProSparse-13B t = 0.005 88.24 29.04 69.69 67.62 26.23 54.75 39.52 28.74 45.08
ProSparse-13B t = 0.01 88.80 28.42 69.76 66.91 26.31 54.35 39.90 28.67 44.90
ProSparse-13B t = 0.02 89.40 29.29 69.63 65.28 24.94 54.88 39.79 28.88 44.67
ProSparse-13B t = 0.03 90.23 28.12 69.28 64.79 25.85 54.68 40.08 28.71 44.50

Table 9: The sparsity (%) and performance (%) under different thresholds t of the activation threshold shifting step.

under other thresholds in Table 9. As can be ob-
served, a small t results in a quite limited sparsity
improvement compared with the version without
activation threshold shifting, while a larger t can
cause more performance degradation. Therefore,
we choose t = 0.01 to strike a balance.

	Introduction
	Preliminaries and Related Works
	Methods
	Definitions and Notations
	ProSparse
	Practical Inference Acceleration

	Experiments
	Experimental Settings
	Overall Results
	Acceleration Effect of Sparsity
	Analysis and Discussion

	Conclusion
	Extended Related Works
	Detailed Algorithm for Progressive Sparsity Regularization
	Extented Introduction of Approximate Acceleration Algorithms
	Implementation Details of Sparse GPU Operators
	Training and Evaluation Datasets
	Training Details of Activation Predictors
	Performance on Independent Benchmarks
	Performance Comparison between ProSparse and Baselines
	Ablation Studies of Progressive Sparsity Regularization
	SFT for Sparsely Activated Models
	Evaluation Details
	Important Hyperparameters
	Dataset-Wise Sparsity Distribution
	Layer-Wise Sparsity Distribution
	Effect of Different Thresholds in Activation Threshold Shifting

