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Abstract

We present a new method to detect anomalies in
texts (in general: in sequences of any data), us-
ing language models, in a totally unsupervised
manner. The method considers probabilities
(likelihoods) generated by a language model,
but instead of focusing on low-likelihood to-
kens, it considers a new metric defined in this
paper: oddballness. Oddballness measures how
“strange” a given token is according to the lan-
guage model. We demonstrate in grammatical
error detection tasks (a specific case of text
anomaly detection) that oddballness is better
than just considering low-likelihood events, if
a totally unsupervised setup is assumed.

1 Introduction

Not all events with low probability are weird or
oddball when they happen. For example, the prob-
ability of a specific deal in the game of bridge
is extremely low (pb = 1

5.36×1028
for each deal).

Thus, every time cards are dealt in bridge, does
something incredible happen? Of course not; in
fact an event of the very low probability pb must
happen (with probability 1!).

As another example, imagine two probability
distributions:

1. D1 = {p1 = 1
100 , p2 =

99
100},

2. D2 = {p1 = 1
100 , p2 =

1
100 , . . . p100 =

1
100},

Intuitively, p1 is much more oddball in D1 than
p1 in D2.

How, then, should we measure oddballness? We
already know that a low probability is not enough.
Let us start with basic assumptions or axioms of
oddballness. Then we will define oddballness as
a specific function and demonstrate its practical
usage for anomaly detection when applied to prob-
ability distributions generated by language models.

* Work partially done for a thesis submitted for the MSc
degree at Adam Mickiewicz University.

2 Axioms of oddballness

Let us assume a discrete probability distribution
D = (Ω,Pr), where Ω could be finite or countably
infinite. From now on, for simplicity, we define D
just as a multiset of probabilities:

D = {p1, p2, p3, . . .} = {Pr(ωi) : ωi ∈ Ω}.

We would like to define an oddballness measure1

for an outcome (elementary event) of given proba-
bility pi within a distribution D:

ξD(pi), ξD : D → [0, 1]

Note that oddballness, unlike, for instance, en-
tropy, does not work just on a probability distri-
bution. It is defined for a probability distribution
and an event (or rather its probability) within that
distribution.

Let us define some common-sense axioms for
oddballness:

(O0) ξD(pi) ∈ [0, 1] – let us assume our measure
is from 0 to 1,

(O1) ξD(0) = 1 – if an impossible event happens,
that’s pretty oddball!

(O2) for any distribution ξD(max{pi}) = 0 – the
most likely outcome is not oddball at all,

(O3) pi = pj → ξD(pi) = ξD(pj) – all we know
is a distribution, hence two outcomes of the
same probability must have the same oddball-
ness (within the same distribution),

(O4) pi < pj → ξD(pi) ≥ ξD(pj) – if some
outcome is less likely than another outcome,
it cannot be less oddball,

1Measure understood informally, not as defined in measure
theory.
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(O5) (continuity) for any distribution D =
{p1, p2, p3, . . .}, the function f(x) = ξDx(x),
where Dx = {x, p2 × 1−x

1−p1
, . . . , pi ×

1−x
1−p1

, . . .}, is continuous – if we change the
probabilities by a small amount, the oddball-
ness should not change much.

Note that (O2) implies the following two facts:

(F1) pi > 0.5 → ξD(pi) = 0 – something that is
more likely than 50% is not oddball at all,

(F2) for any distribution D = {p1 =
1
N , . . . , pN = 1

N }, ξD(pi) = 0 – as in the
bridge example.

3 Oddballness measure

Let us define a measure that fulfills (O0)–(O5).
First, let us define an auxiliary function:

x+ = max(0, x).

(In other words, this is the ReLU activation func-
tion.)

Now, let us assume a probability distribution
D = {p1, p2, p3, . . .}. Let us define the following
oddballness measure:

ξD(pi) =
∑
j

(pj − pi)
+. (1)

This measure satisfies the axioms (O0)–(O5).
Let us check this measure for the distributions

D1 and D2 given as examples above:

• ξD1(p1) = 0.98,

• ξD1(p2) = 0,

• ξD2(pi) = 0,

Consider another example: D3 = {p1 =
0.7, p2 = 0.25, p3 = 0.05}, then: ξD3(p1) = 0,
ξD3(p2) = (0.7 − 0.25)+ + (0.25 − 0.25)+ +
(0.05− 0.25)+ = 0.45, ξD3(p3) = 0.85.

More generally, the following family of func-
tions fulfills the axioms of oddballness as well:

ξD(pi) =

∑
j g((pj − pi)

+)∑
j g(pj)

,

where g is any monotonic and continuous function
for which g(0) = 0 and g(1) = 1. The more
general form of the oddballness measure simplifies
just to (1), when the identity function g(x) = x is
assumed (although, for instance, x2 or x3 can also

be used). From now on, we will continue to use the
simpler form (1).

Implementing the oddballness measure for
LLMs in PyTorch is simple and can be done in
a single line of code. In Listing 1 there are two
functions – one that returns probability values for
each token in the given text, and a second one that
returns oddballness values for each token in the
given text. We use these functions in the experi-
ments in Section 7.

def get_probability_for_decoder(text):
model_input = tokenizer(text ,

return_tensors=’pt’)
tokens_tensor = model_input.

input_ids [0]

with torch.no_grad ():
outputs = model (** model_input)

output = torch.softmax(outputs
[0][0] , dim=1)

tokens_tensor = tokens_tensor [1:]
output = output [:-1]

probabilities = output[torch.arange(
output.shape [0]), tokens_tensor]

return probabilities

def get_oddballness_for_decoder(text):
model_input = tokenizer(text ,

return_tensors=’pt’)
tokens_tensor = model_input.

input_ids [0]

with torch.no_grad ():
outputs = model (** model_input)

output = torch.softmax(outputs
[0][0] , dim=1)

tokens_tensor = tokens_tensor [1:]
output = output [:-1]

probabilities = output[torch.arange(
output.shape [0]), tokens_tensor]

oddballness = torch.sum(relu(output
- probabilities [:, None]), dim
=1)

return oddballness

Listing 1: Python functions that compute probability
and oddballness values for a language model in
PyTorch.

4 Oddballness as a complement of
probability of probability

Interestingly, oddballness can be interpreted as the
complement of the probability of a probability. By
the probability of a probability pi with respect to
the distribution D (denoted by πD(pi)), we mean:
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ξD(p2)

πD(p2)

p1 = 0.05

p2 = 0.25

p3 = 0.7

Figure 1: Illustration of oddballness ξD and “probability of probability” (πD) for the event ω2 of probablity
p2 = 0.25 for D3 = {p1 = 0.7, p2 = 0.25, p3 = 0.05}.

• the probability that some event of probability
pi (not necessarily ωi) or lower occurs

• . . . with the additional assumption that each
event ωj with probability pj > pi contains a
“subevent” of probability pi, hence for each
such event we sum in pi as well.

It can be shown that

πD(pi) = 1− ξD(pi).

Intuitively, an event is oddball if the probability
of any event happening with a similar probability is
low. See Figure 1 for an illustration of the relation
between oddballness and probability of probability.

5 Connection to entropy

The concept of oddballness introduced in this pa-
per is closely related to entropy in a probability
distribution. Entropy is a measure of the uncer-
tainty, the randomness, of a probability distribution.
Oddballness can be seen as a way to quantify the
“strangeness” of an event, which is really just an ex-
pression of outliers in the entropy of a distribution.
In particular, the oddballness measure is defined as
a normalized version of the surprisal of an event
(log(1/p)), which is a measure of the information
content of an event.

6 What is the practical use?

The oddballness measure can be used to detect
anomalies or errors, for example in a text, assuming
that we have a good language model. The language
model will give a probability distribution for any
word in a text; some words will be given higher
probability (likelihood), some lower. We could
mark words with low probability as suspicious, but
sometimes a low-probability event must occur. For

instance, the distribution for the word gap in the
sentence:

I was born in . . . , a small village
should be (for a good language model2) composed
of a large number of names, each with a relatively
low probability. Hence, like in the bridge example,
we should not be surprised to see a low-probability
event. On the other hand, in the sentence:

I was born in New . . . City
any word other than York is pretty unlikely (and
oddball). Therefore, rather than probability, the
oddballness should be used – words with oddball-
ness exceeding some threshold should be marked
as suspicious; they are potential mistakes or anoma-
lies to be checked by humans. In this way, we could
devise a grammar checking/proofreading system
that is not trained or fine-tuned in a supervised
manner for the specific task of error detection.

The notion of oddballness might not have been
that useful in the world before good language mod-
els, when usually only static discrete distributions
were assumed. Language models, even within the
same text, can generate vastly different types of
probability distributions for each position:

• sometimes the model is almost certain and
almost all probability will be assigned to one
token,

• sometimes the model will predict a group of
possible tokens plus a long tail of less likely
tokens,

• and sometimes the model is uncertain and the
entropy is high.

See Figure 2 for an example of how oddballness
can work for detecting ‘suspicious’ passages in a

2For this example, an encoder-only model trained on
the masked language task should be assumed, for instance
RoBERTa (Liu et al., 2019).
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Figure 2: Visualization of oddballness on a fragment from one of the earlier versions of this paper. Yellow, orange
and red represent oddballness ranges, respectively: (0.88, 0.91), (0.91, 0.94), (0.94, 1.0). For the occurrence of the
word potentially the probabilities and oddballness are given.

text. Some of the words with high oddballness are
indeed grammatical errors or cases of awkward-
ness; for instance, can be applied potentially in-
stead of can be potentially applied.3

In this paper, we focus on applying oddball-
ness to grammatical error detection (see Section 7).
However, some related (but not identical) ideas
have been proposed in the field of log anomaly de-
tection, as log sequences can be viewed as a modal-
ity similar to natural language. LogBERT by Guo
et al. (2021) was trained, in a semi-supervised way,
on log sequences. During anomaly detection, some
tokens are masked, and the probability distribution
is obtained from LogBERT for each of them. If
the probability of the actual token is not one of
the K highest-likelihood tokens (K is a hyperpa-
rameter), the token is considered anomalous (we
will refer to this method later as topK). LogGPT
by Han et al. (2023) is a similar idea, but applied to
a decoder-only GPT-like architecture, rather than
an encoder-only Transformer; however, the same
approach of considering topK prediction is still
taken for the detection of anomalies, although the
model is also fine-tuned specifically for anomaly
detection.

In general, there is a large body of literature

3Google Scholar reported 367 results for the query “can
be applied potentially” and as many as 15,600 for "can
be potentially applied". Anecdotally, this was not de-
tected by the Writefull grammar checking tool.

on anomaly or outlier detection; see, for instance,
Schölkopf et al. (2001), Breunig et al. (2000), Liu
et al. (2008). Oddballness is different as it consid-
ers only probabilities from a language model (or
any other statistical model) rather than any intrinsic
feature of the events in question.

7 Experiments with error detection

Table 1 presents the results obtained on the FCE
dataset (Yannakoudakis et al., 2011). In each case,
using the oddballness value as the threshold gives
better results than using the probability value. All
thresholds were adjusted to maximize the F0.5 score
on the development set. The maximum oddballness
value from the GPT2-XL and RoBERTa Large (Liu
et al., 2019) models produced the best F0.5 score
on the test set. The result is slightly better than the
BiLSTM model by Rei and Yannakoudakis (2016),
which was trained specifically to detect errors in
texts, while GPT2-XL and RoBERTa Large are
models which were trained, in a self-supervised
manner, on the masked token prediction task. Al-
though results based on the oddballness value are
not competitive with state-of-the-art solutions, it
should be noted that the oddballness technique does
not involve any task-specific fine-tuning, except for
adjusting a single hyperparameter: the oddballness
threshold.

Furthermore, the texts were written by CEFR-B-



2687

Model Method Threshold Dev F0.5 Test F0.5

Unsupervised methods
GPT2-small Probability 0.0002 35.00 37.74
GPT2-small Oddballness 0.84 37.27 39.19
GPT2-XL Probabilisty 0.0001 36.00 38.86
GPT2-XL Oddballness 0.85 38.17 40.52
Yi-6b Probability 0.0005 34.38 37.35
Yi-6b Oddballness 0.85 36.77 39.83
Mistral 7B Probability 0.0003 33.68 36.86
Mistral 7B Oddballness 0.89 35.04 38.00
RoBERTa Base Probability 0.005 32.63 33.62
RoBERTa Base Oddballness 0.91 33.08 34.86
RoBERTa Large Probability 0.014 32.74 33.39
RoBERTa Large Oddballness 0.84 34.33 35.78
min(GPT2-XL,
RoBERTa Large)

Probability 0.0001 36.88 39.31

max(GPT2-XL,
RoBERTa Large)

Oddballness 0.89 40.32 43.15

Supervised methods
(Rei and Yannakoudakis, 2016) Bi-LSTM - 46.00 41.10
(Bell et al., 2019) BERT-base - - 57.28
(Kaneko and Komachi, 2019) MHMLA - 61.65
(Yuan et al., 2021) ELECTRA - - 72.93

Table 1: Results for the Grammatical Errror Detection FCE Dataset. Thresholds tuned with the development set.

level students, who may not be fully proficient in
the language. This could cause the language model
to flag non-fluent words as incorrect and thus pre-
dict correct words as erroneous. This may also
explain why the smaller GPT2-small model out-
performs the much larger Mistral 7B model. This
study demonstrates that the oddballness measure
can yield superior results compared with the use of
probability values for anomaly detection.

We also tested the Mistral 7B model (Jiang et al.,
2023) for the multilingual GED datasets used in
the MultiGED-2023 Shared Task (Volodina et al.,
2023) using the same approach as in the experi-
ments for the FCE dataset.4 The results in Table 2
show that for all languages the oddballness method
outperforms the probability method. We also tried
adding the following prompt before each sentence:
"An example of a grammatically correct text in any
language that may be out of context: <example>"
to make the probability distributions smoother. The
results in Table 3 show that this trick helps in al-
most all of the experiments, but the improvements
for the oddballness method are greater than for the

4The source code for the experiments is available here:
https://github.com/richardxoldman/oddballness.

probability method. The topK approach was also
tested. For the multilingual GED task it does not
provide better results than the probability method
in any language.

Looking at the thresholds, we can also observe
that the thresholds for the oddballness value are
more universal than the probability thresholds.

The best solutions for each dataset in the shared
task are better than the oddballness value results,
but again those solutions are trained to predict in-
correct tokens, whereas the oddballness method
approach focuses more on predicting spans in texts
that are most likely erroneous without precisely
labeling all incorrect tokens.

8 Conclusions

We have shown that using a new metric for anoma-
lous events, oddballness, is better than just consid-
ering low-likelihood tokens, at least for grammat-
ical error detection tasks. The method based on
oddballness yields worse results than state-of-the-
art models that have been heavily fine-tuned for the
task (Li and Wang, 2024), but its great advantage is
that it can be used for any language model, without
any fine-tuning. This technique can be potentially

https://github.com/richardxoldman/oddballness
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Language Method Threshold Dev F0.5 Test F0.5
Czech TopK 30 41.17 38.56
Czech Probability 0.002 44.32 41.87
Czech Oddballness 0.84 49.16 46.58
German TopK 86 30.53 28.67
German Probability 0.001 32.53 31.32
German Oddballness 0.89 37.62 36.67
English – FCE TopK 310 29.18 30.67
English – FCE Probability 0.00009 32.47 34.39
English – FCE Oddballness 0.90 35.21 35.91
English – REALEC TopK 390 27.66 28.17
English – REALEC Probability 0.00006 31.03 31.12
English – REALEC Oddballness 0.94 32.93 32.69
Italian TopK 18 22.76 24.53
Italian Probability 0.003 23.71 25.90
Italian Oddballness 0.80 27.33 29.77
Swedish TopK 34 35.16 33.99
Swedish Probability 0.003 37.41 36.08
Swedish Oddballness 0.78 40.18 38.85

Table 2: Results for the Mistral 7B model on the MultiGED-2023 Shared Task dataset.

Language Method Threshold Dev F0.5 Test F0.5
Czech TopK 18 41.21 39.53
Czech Probability 0.003 44.24 42.75
Czech Oddballness 0.84 49.77 47.76
German TopK 80 31.78 30.41
German Probability 0.0009 34.48 33.04
German Oddballness 0.89 39.40 39.27
English – FCE TopK 140 29.82 31.82
English – FCE Probability 0.0003 32.85 35.02
English – FCE Oddballness 0.90 35.96 36.35
English – REALEC TopK 520 27.74 27.46
English – REALEC Probability 0.0001 30.42 29.95
English – REALEC Oddballness 0.92 32.84 32.43
Italian TopK 30 23.13 25.19
Italian Probability 0.0008 25.39 26.48
Italian Oddballness 0.92 31.43 32.37
Swedish TopK 50 36.98 34.99
Swedish Probability 0.002 39.20 38.24
Swedish Oddballness 0.84 43.55 41.84

Table 3: Results for the Mistral 7B model on the MultiGED-2023 Shared Task dataset with an additional prompt.
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applied to anomaly detection in sequences of any
type of data, assuming that a “language” model
was pre-trained on such data.

9 Limitations

Our method for anomaly detection in texts (or,
more broadly, in sequences), by its nature, always
requires human supervision. Also, there is no guar-
antee of obtaining all anomalies (achieving perfect
recall); there is a risk of humans overrelying on
such methods while looking for errors or anoma-
lies.

Our study does not cover human evaluation,
which could provide more accurate results. The
texts used in the MultiGED-2023 Shared Task were
annotated on the sentence level. It would be desir-
able to test the oddballness method on texts that
are split on the document level, so as to take longer
contexts into account (this affects the probability
distributions created by language models).

The notion of grammatical correctness is always
subject to human judgment and is relative to stan-
dards established within a given linguistic commu-
nity.
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