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Abstract

To achieve faithful reasoning that aligns with
human expectations, large language models
(LLMs) need to ground their reasoning to real-
world knowledge (e.g., web facts, math and
physical rules). Tools help LLMs access this ex-
ternal knowledge, but there remains challenges
for fine-tuning LLM agents (e.g., Toolformer)
to invoke tools in multi-step reasoning prob-
lems, where inter-connected tool calls require
holistic and efficient tool usage planning.

In this work, we propose a new method for
LLMs to better leverage tools in multi-step
reasoning. Our method, Chain-of-Abstraction
(CoA), trains LLMs to first decode reasoning
chains with abstract placeholders, and then call
domain tools to reify each reasoning chain by
filling in specific knowledge. This planning
with abstract chains enables LLMs to learn
more general reasoning strategies, which are ro-
bust to shifts of domain knowledge (e.g., math
results) relevant to different reasoning ques-
tions. It also allows LLMs to perform decod-
ing and calling of external tools in parallel,
which avoids the inference delay caused by
waiting for tool responses. In mathematical
reasoning and Wiki QA domains, we show that
our method consistently outperforms previous
chain-of-thought and tool-augmented baselines
on both in-distribution and out-of-distribution
test sets, with an average ∼ 6% absolute QA ac-
curacy improvement. LLM agents trained with
our method also show more efficient tool use,
with inference speed being on average ∼1.4×
faster than baseline tool-augmented LLMs.

1 Introduction

Recent large language models (LLMs; Touvron
et al., 2023b; Anil et al., 2023; OpenAI, 2023),
have made progress at interpreting and executing
instructions (Wei et al., 2021; Chung et al., 2022),

*Work done during internship at FAIR.
†Equal Supervision.

In a 90-minute game, Mark played 20 
minutes, then another 35 minutes. 
How long was he on the sideline?

LLM  

Tool

LLM

Mark played for a total of 
[20 + 35 = y1] minutes. So, 
he was on the sideline for 
[90 - y1 = y2] minutes.

y1 = 20 + 35 = 55
y2 = 90 – y1 = 90 - 55 = 35 

The answer is 35 minutes.

Ralph Hefferline was a psychology 
professor at a university. In which 
city is this university located?

Search the [university of Ralph Hefferline -
WikiSearch-> y1], which is [y1 -NER-> y2]. 
Then find the [city y2 is in -WikiSearch-> y3]. 

y1: Ralph Hefferline was a professor at 
Columbia University …
y2: Columbia University
y3: Columbia University is an Ivy League 
university in New York …

The answer is New York.

Mathematical Reasoning  Wiki QA  

Figure 1: Overview of chain-of-abstraction reasoning
with tools. Given a domain question (green scroll), a
LLM is fine-tuned to first generate an abstract multi-step
reasoning chain (blue bubble), and then call external
tools to reify the chain with domain-specific knowledge
(orange label). The final answer (yellow bubble) is
obtained based on the reified chain of reasoning.

but still make errors when recalling and composing
world knowledge for their responses, e.g., making
unfactual statements (Maynez et al., 2020; Ji et al.,
2023), incorrect calculations (Patel et al., 2021), etc.
Using auxiliary tools (e.g., a search engine to pro-
vide credible facts, a calculator for accurate math
operations, etc.) at inference time can mitigate
some of these errors, motivating tool-augmented
language models that integrate external API calls
into their output generations (Parisi et al., 2022;
Schick et al., 2023; Hao et al., 2023b).

However, we show that current tool-augmented
LLMs, e.g., Toolformer (Schick et al., 2023), strug-
gle to reliably and efficiently leverage tools in
multi-step reasoning. In particular, tool calls in
multi-step reasoning tasks are often interleaved
(i.e., the response of an API call is often part of the
query of a subsequent call; as shown in Figure 1).
Without explicitly modeling these interconnections
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in reasoning chains, LLMs do not learn effective
planning for tool use, which leads to less accurate
reasoning with tools.1 Meanwhile, interleaving
text generation with API calls also introduces inef-
ficient inference “waiting times,” where the model
must wait for the response from the API call before
resuming the decoding process. This inefficiency
becomes more significant in multi-step reasoning
scenarios, when multiple rounds of API calls are
typically required for each reasoning process.

In this work, we propose Chain-of-Abstraction
(CoA) reasoning, a robust and efficient method for
LLMs to perform multi-step reasoning with tools.
As shown in Figure 1, LLMs are fine-tuned with
a goal of making reasoning chains with abstract
placeholders. The placeholders do not affect LLMs’
reasoning flow, and are subsequently infilled with
specific knowledge retrieved from specialized tools,
to ground the final answer generations. Planning
abstract chain of reasoning encourages LLMs to
inter-connect multiple tool calls and adopt more
feasible reasoning strategies, which are robust to
the variation of domain knowledge involved in each
reasoning process, e.g., specific calculation results.
Unlike previous methods where LLM decoding
and API calls are executed in an interleaved man-
ner, our method leverages tools to infill knowledge
once after the whole chain of reasoning is gener-
ated. This enables more efficient decoding across
multiple examples (e.g., as in a stream) because
CoA traces for subsequent examples can be de-
coded while tool calls are made for the preceding
ones, amortizing overall inference time. We de-
velop a simple pipeline to build fine-tuning data for
models to learn CoA, where we first prompt LLMs
to re-write existing responses to instructions as ab-
stract chains, and then use domain tools to check
the validity of re-writing, as shown in Figure 2.

After training LLMs to learn CoA reasoning,
we evaluate the finetuned models on two repre-
sentative multi-step reasoning domains, including
mathematical reasoning (Cobbe et al., 2021; Miao
et al., 2020; Patel et al., 2021; Koncel-Kedziorski
et al., 2016), and Wikipedia (Wiki) QA (Yang et al.,
2018; Berant et al., 2013; Kwiatkowski et al., 2019;
Joshi et al., 2017) that involves reasoning on factual
descriptive knowledge. We show that our method
boosts LLMs’ performances, with average ∼7.5%
and 4.5% absolute accuracy improvements on math
and Wiki QA, respectively. These improvements

1as verified by our analysis in §5

are consistent across both in-distribution and (zero-
shot) out-of-distribution test sets, and are espe-
cially pronounced on questions that require com-
plex chain-of-thought reasoning.2 Meanwhile, our
method also uses tools more efficiently than previ-
ous augmentation methods, with average ∼1.47×
and 1.33× faster inference speeds on math and
Wiki QA tasks, respectively. Finally, extensive
human evaluation demonstrates that our method
guides LLMs to learn more accurate reasoning,
which leads to ∼ 8% fewer reasoning errors.

2 Related Work

Tool-Augmented LLMs There is growing in-
terest in augmenting LLMs using external tools.
Considerable work has tried to adapt LLMs as
tool-using reasoners through in-context learning,
demonstrating promising performance improve-
ments in various applications, e.g., math prob-
lem solving (Gao et al., 2023; Chen et al., 2022),
biomedical question answering (Jin et al., 2023)
and self-critiquing (Gou et al., 2023). Neverthe-
less, guiding LLMs to effectively use tools using
in-context demonstrations is challenging, which
requires elaborate task-specific prompt engineering
and is restricted by the model’s instruction follow-
ing ability (Jacovi et al., 2023). Noticing the limi-
tations of in-context learning, several works teach
LLMs to learn the usage of tools by fine-tuning
(Parisi et al., 2022; Schick et al., 2023; Hao et al.,
2023b), which more robustly improves LLMs’ per-
formance. However, all above approaches adopt
sequential interactions with tools throughout rea-
soning, slowing the inference speed as a function
of the latency of the tool (or API) and the number
of API calls that are made.

Some other prior works focus on using LLMs for
multi-step reasoning with other modules. In partic-
ular, ReAct (Yao et al., 2023b) and FireAct (Chen
et al., 2023) integrate LLMs with tools into a closed
loop of thought, action and observation steps. This
verbose reasoning loop slows down the LLM de-
coding, and still incorporates tools via sequential
interactions, resulting in inefficient inference. An-
other line of work, Program of Thoughts (Chen
et al., 2022), DECLARATIVE (He-Yueya et al.,
2023) and PAL (Gao et al., 2023) prompt LLMs
to generate program-based reasoning and interact
with code executors, which however heavily rely
on closed source coding models, i.e., Codex (Chen

2e.g., more than 3 steps of math derivations



2729

et al., 2021), and are restricted to procedural arith-
metic reasoning. Building on these works, CoA
proposes a framework to convert natural language
reasoning traces into abstract representations, and
uses the abstract reasoning traces as fine-tuning
data to improve tool-augmented LLMs. CoA also
accelerates tool-augmented reasoning, by holisti-
cally planning the CoA traces and calling tools only
once at inference time.

Tool Usage Planning Several previous works re-
search tool usage planning in LLMs. Specifically,
HuggingGPT (Shen et al., 2023), Chameleon (Lu
et al., 2023), OpenAGI (Ge et al., 2023) and Meta-
Tool (Huang et al., 2023) focus on planning the
high-level sequence of using multiple tools to ad-
dress multi-domain mixed tasks. Similarly, LATM
(Cai et al., 2023), ML-BENCH (Liu et al., 2023)
and Gorilla (Patil et al., 2023) aim at planning
program-level integration of multiple APIs for de-
signing scripts of procedural tasks, e.g., a script
for training a model described by a GitHub reposi-
tory. ToolChain* (Zhuang et al., 2023) combines
the planning of tool usage with tree-search-based
reasoning (Yao et al., 2023a; Hao et al., 2023a),
which is especially useful for procedural tasks (Xu
et al., 2023; Cobbe et al., 2021). Different from
above work, we focus on the planning of general
chain-of-thought (Wei et al., 2022) reasoning with
awareness of domain specialized tools.

3 Method

Chain-of-Abstraction (CoA) Reasoning Our
method decouples the general reasoning of LLMs
from domain-specific knowledge obtained from ex-
ternal tools. Figure 1 shows an overview of our
method. In particular, we first fine-tune LLMs to
generate reasoning chains with abstract placehold-
ers, e.g., y1, y2 and y3,3 as shown in Figure 1. In
the second stage, we reify each reasoning chain by
replacing placeholders with domain-specific knowl-
edge obtained from external tools, e.g., calculation
results from a calculator, relevant articles retrieved
from web search engine, etc. Finally, the question
is answered based on the reified reasoning chain.

Note that since the LLMs are trained to gener-
ate abstract chain of reasoning instead of regular
chain-of-thought (CoT) reasoning with explicit val-
ues, this enables LLMs to focus on learning gen-
eral and holistic reasoning strategies without need-

3We also test placeholders in single-character format, e.g.,
x, y and z, but these led to sub-optimal results.

In a 90-minute game, Mark played 20 minutes, then 
another 35 minutes. How long was he on the sideline?

LLM  

Tool

Mark played for a total of [20 + 35 = y1] 
minutes. So, he was on the sideline for 
[90 - y1 = y2] minutes.

Mark played for a total of 20 + 35 = 55 minutes. So, 
he was on the sideline for 90 - 55 = 35 minutes.

y1 = 20 + 35 = 55
y2 = 90 – y1 = 90 - 55 = 35 

Figure 2: Illustration of gold data re-writing for fine-
tuning data construction. Given a pair of domain ques-
tion (green scroll) and gold answer (yellow scroll), an
LLM is prompted to re-write the gold answer as a rea-
soning chain with abstract variables (purple bubble).
Then, domain specialized tools validate the correctness
of the re-writing by checking whether the abstract chain
can be reified to get the final answer (orange label).

ing to generate instance-specific knowledge for the
model’s parameters. Moreover, decoupling general
reasoning and domain-specific knowledge enables
LLM decoding to proceed and switch between dif-
ferent samples in parallel with API calling (via a
pipeline), i.e., LLM can start generating the next
abstract chain while the tool fills the current chain,
which speeds up the overall inference process.

Fine-tuning Data Construction To construct
chain-of-abstraction (CoA) data for fine-tuning
LLMs, we collect question answering (QA) sam-
ples from existing open-source QA datasets (Cobbe
et al., 2021; Miao et al., 2020; Yang et al., 2018),
and prompt LLaMa-70B (Touvron et al., 2023a)
to re-write the answer of each sampled question,
as shown in Figure 2. Specifically, we prompt
LLaMa-70B to label the spans in gold answers that
correspond to knowledge operations (e.g., math
derivations, statements based on Wikipedia refer-
ences) and then to re-write the sentences with la-
beled spans as fillable CoA traces, where the opera-
tion results are replaced with abstract placeholders.
For example, the two derivations in the example in
Figure 2 are re-written as “[20 + 35 = y1]" and
“[90− y1 = y2]", respectively.

Note that an intermediate knowledge operation
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result may appear multiple times in an answer, e.g.,
in Figure 2, the first equation’s result 55 is used in
the second equation. We prompt LLaMa-70B to
replace all occurrences of the same intermediate
result with the same placeholder, thereby explicitly
connecting the multiple reasoning steps. To ensure
that the re-written data is accurate, we use domain-
specialized tools to verify the correctness of each
CoA reasoning trace.4 Specifically, we use the
tools to execute the labeled operations in each CoA,
and only keep questions whose CoA can be infilled
with valid results by the tools.

4 Experimental Settings

We conduct our experiments on two representative
domains: mathematical reasoning and Wikipedia
(Wiki) QA, which involves commonsense and logi-
cal reasoning on factual descriptive knowledge.

4.1 Mathematical Reasoning
Given a math question, the QA system needs to
generate a natural language solution to the problem
with step-by-step arithmetic derivations (as demon-
strated in the left column of Figure 1). We assume
that the derivations involved in the solution are
the specialized knowledge operations required in
this domain, which are labeled in square brackets
with derivation results being replaced by abstract
placeholders, e.g., “[20 + 35 = y1]".

Datasets We construct most of our fine-tuning
CoA data by re-writing the GSM8K (Cobbe et al.,
2021) training set, which contains 7473 linguis-
tically diverse grade school math problems. As
GSM8K dataset focuses on multi-step reasoning, it
lacks coverage of single-step arithmetic problems,
so we also re-write an additional set of 691 single-
step math problems from the ASDiv (Miao et al.,
2020) dataset. Across these re-written datasets, we
find that ∼ 76.6% of the CoA reasoning traces gen-
erated by LLaMa-70B are verified by our equation
solver (described below). Table 1 shows the reason-
ing step distribution (i.e., number of derivations) of
our constructed fine-tuning data.

For an in-distribution evaluation, we test mod-
els on GSM8K and ASDiv, containing 1319 and
2305 testing problems. To further test the models’
generalization ability, we also conduct zero-shot
evaluation on other representative math datasets,
including SVAMP (Patel et al., 2021) and MAWPS

4Detailed implementations of reasoning chain verification
are described in Sec. 4.1 and 4.2.

Source Reasoning Step

1 2 3 4 5 >5 All
GSM8K 8 1540 1648 1164 666 553 5579
ASDiv 677 0 0 0 0 0 677

Table 1: Reasoning step distribution of correctly re-
written reasoning chains in math domain.

Question The director of the romantic comedy “Big Stone Gap” is based in
what New York city?

Answer Greenwich Village

Wikipedia
Big Stone Gap (film) > Big Stone Gap is a 2014 American romantic

References
comedy film directed by Adriana Trigiani.
Adriana Trigiani > Adriana Trigiani is an Italian American film
director based in Greenwich Village.

CoA Trace
Find the [director of romantic comedy “Big Stone Gap” -Wiki-> y1].
The name of this film’s director is [y1 -NER(person)-> y2].
Then determine [y2 in what New York city -Wiki-> y3].

Table 2: Example of CoA fine-tuning data construction
in Wiki QA domain.

(Koncel-Kedziorski et al., 2016), which contain
1000 and 2065 testing samples, respectively.5

Domain Tool We use an equation solver to per-
form the arithmetic derivations required in the
math domain. Our equation solver first extracts
the derivations labeled in the CoA reasoning, e.g.,
“[20 + 35 = y1]" and “[90 − y1 = y2]", and
combines all derivations into a system of equa-
tions. Then the system of equations is solved by
the SymPy toolkit,6 to get the true value of each
variable (i.e., the value of the abstract placeholder).
Finally, our equation solver returns the reified chain
of reasoning by replacing all the variables with their
solved true values (including the final answer).

4.2 Wikipedia QA

Given a question based on Wikipedia knowledge,
the model needs to first identify Wikipedia arti-
cles as references related to the question, and then
reason on key knowledge in the reference articles
to answer the question (as shown in the right col-
umn of Figure 1). We assume that the special-
ized knowledge operation in this domain is the re-
trieval of relevant Wikipedia articles and important
named-entities, which are re-written as Wikipedia
searching (WikiSearch) and named-entity recogni-
tion (NER)7 queries. Table 2 shows an example of
a re-written CoA trace for Wiki QA.

5For the MAWPS benchmark, we test on the 395, 508, 562
and 600 math problems from AddSub, SingleEq, SingleOp
and MultiArith portions, respectively.

6https://www.sympy.org/en/index.html
7We use NER to extract entities from the article that bridge

the former WikiSearch results to the latter WikiSearch queries.

https://www.sympy.org/en/index.html
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Datasets We use the HotpotQA (Yang et al.,
2018) dataset to construct our fine-tuning CoA data
in the Wiki QA domain. HotpotQA contains 113K
multi-hop QA examples, each labeled with two
Wikipedia articles that provide supporting knowl-
edge. Among the 90447 training QA pairs, we
identify 72991 as Bridge QA pairs, where an inter-
mediate entity must be identified to link the answer
to the question, as shown in Table 2. The remain-
ing 17456 are Comparison QA pairs, where the
attributes of two entities are compared, e.g., “Are
Randal Kleiser and Kyle Schickner of the same
nationality?”. We prompt LLaMa-70B to re-write
these training QAs into CoAs with WikiSearch and
NER queries, and verify each CoA with our do-
main tools (described below), by checking whether
all the articles returned by the WikiSearch queries
match one of the titles in the gold articles. Finally,
8956 Bridge QAs and 5405 Comparison QAs are
used as fine-tuning data, whose re-written CoAs
pass the verification.8 For Wiki QA, we note that
besides training a LLM to produce CoA data using
WikiSearch, we also fine-tune a second LLM to
learn to generate the final gold answer based on a
correctly reified CoA reasoning trace.

We evaluate models on the HotpotQA develop-
ment set, which contains 5918 Bridge QA pairs and
1487 Comparison QA pairs. Similar to the mathe-
matical reasoning domain, we also conduct zero-
shot evaluation on other open-domain QA datasets:
WebQuestions (WQ; Berant et al., 2013), Natu-
ralQuestions (NQ; Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017), which contain 2032,
3610 and 17944 test questions, respectively.

Domain Tools The specialized tools required
for Wiki QA include a Wikipedia search engine
to retrieve reference articles, and a NER toolkit
to extract entities that bridge multi-step search-
ing queries. We follow Toolformer (Schick et al.,
2023) and implement a Wikipedia search engine as
a BM25 retriever (Robertson et al., 1995; Baeza-
Yates et al., 1999) that indexes the Wikipedia dump
from the KILT benchmark (Petroni et al., 2021).
We use the BM25 retriever to search the top-10 arti-
cles relevant to the input query, and then re-rank the
articles based on their Sentence-BERT (Reimers
and Gurevych, 2019) embedding cosine similar-
ity with the question. After re-ranking, the top-1

8Compared to mathematical reasoning, generating CoA
data for Wiki QA requires more complex tool use that com-
bines WikiSearch and NER models, leading to a lower re-
writing success rate (∼ 15.9%).

General SpaCy NER Types included in each General ClassClass
person PERSON
group NORP, ORG, LANGUAGE

location GPE, FAC, LOC
culture EVENT, WORK_OF_ART, LAW, PRODUCT

date DATE, TIME
numeral CARDINAL, PERCENT, MONEY, QUANTITY, ORDINAL

Table 3: Aggregation of SpaCy NER types.

article is selected to be the final search result.
We use SpaCy9 (en_core_web_sm) as the NER

toolkit to extract named entities. To simplify NER,
we aggregate the numerous SpaCy NER types into
6 general classes, as shown in Table 3. If multiple
named entities are recognized, we input each rec-
ognized entity to the subsequent WikiSearch query,
and select the entity whose subsequent search result
has the highest Sentence-BERT embedding cosine
similarity with the question.

4.3 Baselines
We apply our CoA reasoning method to both 7B
and 70B LLaMa models, and test various model
versions including the first version of LLaMa (Tou-
vron et al., 2023a) and the more advanced LLaMa-2
and LLaMa-2-Chat (Touvron et al., 2023b). We
compare our method to several baselines, includ-
ing: a) few-shot prompting using 8 randomly sam-
pled QA exemplars from the original (i.e., not re-
written) chain-of-thought data (CoT-FSP), b) fine-
tuning with original chain-of-thought data (CoT-
FT)10, and c) Toolformer (Schick et al., 2023)
which fine-tunes LLMs on CCNet (Wenzek et al.,
2020) texts augmented with API calls. For evalu-
ation on Wiki QA, we also compared our method
with FireAct (Chen et al., 2023), which fine-tunes
LLMs on HotpotQA ReAct (Yao et al., 2023b) tra-
jectories distilled from GPT-4 (OpenAI, 2023).

5 Results and Analysis

5.1 Mathematical Reasoning
Table 4 shows the evaluation results for the LLaMa-
2 and LLaMa-2-Chat models.11 On the GSM8K
and ASDiv datasets, our CoA method outperforms
the few-shot baseline CoT-FSP and the regular fine-
tuning baseline CoT-FT, demonstrating that CoA

9https://spacy.io/models/en
10Note that in Wiki QA domain, the HotpotQA data used

for prompting or fine-tuning baselines is pre-processed to
contain both gold Wikipedia articles (serving as chain-of-
thought explanations) and the final answer.

11We include similar evaluation results for the original
LLaMa model (7B) in Appendix B.

https://spacy.io/models/en
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Model Method Use GSM8K ASDiv SVAMP MAWPS

Tool AddSub SingleEQ SingleOp MultiArith All

LLaMa-2

CoT-FSP
✗

16.38 47.85 38.40 52.41 63.39 82.03 43.33 60.53

-7B

CoT-FT 35.33 57.18 48.20 66.08 74.41 85.23 65.00 73.03

Toolformer
✓

17.59 48.55 37.10 47.34 58.46 79.54 50.67 59.81
CoA 37.83∗ 57.61 51.70∗ 72.15∗ 82.48∗ 86.48∗ 73.17∗ 78.89∗

LLaMa-2

CoT-FSP
✗

24.03 54.14 51.30 71.90 72.44 85.41 74.00 76.32

-Chat-7B

CoT-FT 35.41 59.00 46.90 58.23 72.24 85.41 73.00 73.37
CoA (no Tool) 35.03 58.79 51.50 68.10 74.21 86.48 77.67 77.38

Toolformer
✓

23.65 50.85 48.80 61.01 69.09 81.85 68.50 70.85
Toolformer - Math 36.01 59.18 47.60 58.99 72.44 85.94 75.50 74.43
CoA 38.29∗ 59.57 54.20∗ 72.41 81.89∗ 88.26∗ 83.00∗ 82.13∗

LLaMa-2

CoT-FSP
✗

56.18 65.94 70.60 86.08 89.17 92.88 84.50 88.23

-Chat-70B

CoT-FT 60.50 70.24 70.40 81.52 87.60 92.35 89.17 88.18

Toolformer
✓

52.54 69.07 73.60 86.84 89.76 91.46 81.50 87.26
Toolformer - Math 61.03 70.59 73.20 85.57 91.34 91.99 92.00 90.60
CoA 62.32∗ 71.89∗ 73.40 86.33 94.49∗ 93.06 92.33 91.91∗

Table 4: Evaluation results on LLaMa-2 and LLaMa-2-Chat for mathematical reasoning. “All” denotes the averaged
results on four MAWPS portions. Exact match rate to the final gold answer (i.e., accuracy) is reported. For each
base model, the best and second-best results are bolded and underlined, respectively. The best results labeled with ∗

are significantly better than their corresponding second-best results, with the significant test p-value < 0.05.

fine-tuning with tool augmentation is more effec-
tive in adapting LLMs to multi-step reasoning tasks.
Similarly, when evaluated on out-of-distribution
datasets, SVAMP and MAWPS, CoA also consis-
tently outperforms the baselines. Interestingly, for
these out-of-distribution datasets, CoT-FT lags fur-
ther behind CoA, particularly for 7B models, show-
ing that CoA reasoning yields more distributionally
robust reasoning performance.

Our CoA method also surpasses the tool-
augmented baseline Toolformer, which implies that
planning the abstract variables in CoA can improve
the accuracy of reasoning with tools. However, as
Toolformer is not originally trained with in-domain
fine-tuning data,12 we also fine-tune a new ver-
sion of Toolformer with the chain-of-thought data
from GSM8K and ASDiv, denoted as Toolformer
- Math in Table 4. We also observe that CoA per-
forms better than Toolformer - Math, confirming
that the introduction of abstract variables enables
more robust tool use compared to direct integration
of API calls within chain-of-thought reasoning.

Ablation Study We verify that the robust gener-
alization performance of our CoA method does not
merely benefit from using additional tools, by fine-
tuning another LLM to solve the equation (from the
same model backbone), rather than calling the equa-
tion solver, denoted as CoA (no Tool) in Table 4.

12Toolformer is fine-tuned on CCNet data, which may not
contain rich mathematical reasoning samples.

We find that CoA (no Tool) performs consistently
worse than CoA across all datasets, confirming
that using specialized tools enables LLM agents
to conduct more precise operations, rather than di-
rectly solving the same operations. However, CoA
(no Tool) still outperforms all baseline methods on
zero-shot generalization to SVAMP and MAWPS
datasets, implying that learning abstract reasoning
chains also contributes to better robustness of CoA,
perhaps due to better planning of multiple reason-
ing steps indexed by abstract variables.

Reasoning Steps Our findings suggest that the
benefits of chain-of-abstraction reasoning are most
pronounced when problems require long reasoning
chains to be solved. Figure 3 shows the stratified
performance of three models on GSM8K QA, rel-
ative to the number of reasoning steps in the pre-
dicted and gold reasoning chains. Compared to the
few-shot CoT-FSP, CoA produces reasoning chains
that more often match the length of the gold reason-
ing chains, as reflected by the heat-map statistics
(left column) being more aggregated around the di-
agonal (comparable to CoT-FT). At the same time,
we observe that models achieve better QA accuracy
when the number of reasoning steps in their gener-
ated answers are aligned with the gold references
(i.e., the diagonal of heat-maps in right column).
Above results show that fine-tuned models are bet-
ter at learning to produce reasoning chains that
match the true reasoning chain for the problem.
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Number of QAs
Co

T-
FS

P
Co

T-
FT

Co
A

Accuracy (%)

Figure 3: GSM8K evaluation results on LLaMa-2-Chat-
7B w.r.t. the number of reasoning steps in the predicted
and gold reasoning chain. (Left) The number of test
examples that belong to each stratum. (Right) The corre-
sponding model accuracy (%) for those examples. Non-
diagonal cells with fewer than 15 examples are ignored.

Method Error Rate

Arithmetic Reasoning
CoT-FSP 17.3 70.3
CoT-FT 25.2 67.8

CoA 0.0 60.4

Table 5: Human evaluation results of arithmetic and rea-
soning error rates on 200 GSM8K test samples. Models
developed based on LLaMa-2-Chat-7B are presented.

Interestingly, we find that CoA, compared to
CoT-FT, achieves higher performance especially
on questions that require more reasoning steps.
In the right column of Figure 3, CoA’s improve-
ment over CoT-FT is more pronounced on ques-
tions with more than 3 steps in the gold reasoning
chain (highlighted with red squares). This indicates
that the model trained with CoA has more robust
long chain-of-thought reasoning capability, which
is learned from planning with abstractions.

Human Evaluation To more comprehensively
verify that CoA improves both knowledge oper-
ation (i.e., arithmetic by using tools) and reason-
ing accuracy, we conduct a human evaluation on
different model answers to 200 randomly sam-
pled GSM8K test questions. Specifically, given a
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Figure 4: Wall-clock inference time on GSM8K (seeded
with LLaMa-2-Chat-7B). Average time of answering a
question is measured (in seconds) w.r.t. the number of
gold reasoning steps required for the question.

Method Accuracy
CoT-FSP 27.90
CoT-FT 39.12
Toolformer 24.56
Toolformer - Math 35.25
CoA 40.79

Table 6: Evaluation results on GSM8K with self-
consistency decoding (seeded with LLaMa-2-Chat-7B).
Each model uses majority voting to aggregate the an-
swers of 16 sampled reasoning chains

GSM8K question and a model’s answer to the ques-
tion, we ask human workers to judge whether the
answer contains any arithmetic errors (e.g., wrong
calculations, invalid equations) or reasoning errors
unrelated to math derivations (e.g., misunderstand-
ing of the question, improper strategy for solv-
ing the question), and report how often the model
makes these two kinds of errors. In Table 5, we
find that CoA effectively reduces arithmetic errors
to zero, due to the use of equation solver to per-
form accurate calculations. More importantly, our
method also makes fewer reasoning errors com-
pared to the baselines, verifying that CoA fine-
tuning guides the model to learn more accurate
reasoning through the holistic planning of abstract
reasoning chains. By contrast, ordinary fine-tuning
(i.e., CoT-FT) produces a more limited reasoning
improvement compared to the few-shot CoT-FSP,
while also failing to suppress arithmetic errors.

Inference Efficiency Importantly, we find that
the performance benefits of CoA reasoning do not
come with increased computational costs. In Fig-
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Model Method Use HotpotQA WQ NQ TriviaQA
Tool Bridge Comparison Both Time

LLaMa-2

CoT-FSP
✗

11.69 45.46 18.47 2.074 34.65 30.91 53.48

-Chat-7B

CoT-FT 14.24 56.69 22.77 1.937 33.51 25.40 51.05

Toolformer

✓

12.99 44.59 20.00 2.350 36.22 30.22 54.15
Toolformer - Wiki 15.68 56.42 23.86 2.301 36.61 32.96 55.08
FireAct 19.18 54.14 26.20 2.706 36.02 35.87 52.96
CoA 21.00∗ 56.96 28.22∗ 1.896 35.97 38.67∗ 57.90∗

LLaMa-2

CoT-FSP
✗

21.39 56.62 28.47 6.668 34.89 37.42 63.61

-Chat-70B

CoT-FT 23.84 63.95 31.90 6.401 34.15 39.75 62.28

Toolformer
✓

22.24 56.09 29.04 6.888 37.16 40.42 64.31
Toolformer - Wiki 26.38 63.82 33.90 6.855 37.70 41.25 66.64
CoA 27.61∗ 64.09 34.94∗ 6.369 36.37 43.57∗ 69.08∗

Table 7: Wiki QA evaluation results on LLaMa-2-Chat-based models. “Both” denotes the overall evaluation results
on both bridge and comparison portions of HotpotQA. “Time” denotes the average seconds that each agent needs to
answer a question in HotpotQA. Exact match rate to the final gold answer (i.e., accuracy) is reported. For each base
model, the best and second-best results are bolded and underlined, respectively. The best results labeled with ∗ are
significantly better than their corresponding second-best results, with the significant test p-value < 0.05.

ure 4, we show the average time (seconds) that
CoA and baseline agents (seeded with LLaMa-
2-Chat-7B) needs to answer a question w.r.t. re-
quired gold reasoning steps. Compared to the CoT
baselines, CoA requires less time than the few-
shot baseline CoT-FSP, whose generation needs to
be conditioned on additional examples. However,
CoA is slightly less inference-efficient compared
to CoT-FT, likely due to the decoding of additional
tokens (e.g., “[” and “]”) for the abstract statements.

Compared to Toolformer, CoA has a lower and
flatter inference time curve, indicating better scal-
ing as the number of reasoning steps increases.
This difference arises because CoA decouples the
generation of (abstract) reasoning chains from the
retrieval of knowledge (i.e., tool use), allowing full
reasoning chains to be decoded before any tool is
called. This procedure amortizes inference costs in
two ways. First, tool calls are made after the CoA
trace has been decoded, enabling parallel tool calls
for the same trace (e.g., using an equation solver
once rather than multiple calls to a calculator), and
avoiding the time delay caused by waiting for ex-
ternal API responses. Consequently, the model
fine-tuned with CoA is more efficient at multi-step
reasoning, especially when the number of reason-
ing steps (i.e., tool calls) increases. Second, across
multiple examples, the model can generate the CoA
trace of the next example while tool calls are made
for the preceding one, parallelizing CoA decoding
and tools calls across examples.

Self-Consistency Decoding Besides of greedy
decoding, we also test more advanced inference
strategy, i.e., self-consistency (Wang et al., 2022)
decoding, on our CoA reasoning method. We test
all methods on the GSM8K dataset seeded with
LLaMa-2-Chat-7B. Each method samples 16 rea-
soning chains and uses majority voting to aggregate
the 16 answers derived by the reasoning chains,
to get the final answer. For the hyperparameters
of sampling, we set the temperature, top-k and
top-p as 1.0, 40 and 0.5, respectively. Table 6
shows our evaluation results. We find that our CoA
method consistently outperforms all baseline meth-
ods when shifting from greedy decoding to self-
consistency decoding. This shows that our method
also has better potential to be generalized to differ-
ent LLM decoding schemes.

5.2 Wiki QA

Table 7 shows our Wiki QA results using LLaMa-
2-Chat models.13 Similar to mathematical reason-
ing, we fine-tune a new version of Toolformer with
in-domain chain-of-thought data from HotpotQA,
denoted as Toolformer - Wiki. On HotpotQA,
CoA achieves higher exact match rates with the
gold reference compared to the few-shot or fine-
tuning baselines. In particular, CoA outperforms
all baselines on the more challenging bridge-type
QAs, where two steps of reasoning over Wikipedia
knowledge are consecutively entangled, i.e., can-

13We include similar evaluation results on LLaMa-2-7B in
Appendix B.
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not be performed independently in parallel as in
comparison-type QAs. Compared to FireAct fine-
tuning, CoA also achieves better performance on
both bridge and comparison QAs, without requir-
ing data distilled from closed source GPT-4.

As with mathematical reasoning, CoA agents
also perform more efficient inference than Tool-
former and FireAct agents when answering Hot-
potQA questions. We also find that CoA is more ef-
ficient (Time column) than both CoT-FSP and CoT-
FT, as CoA does not require few-shot examples as
additional inputs and does not need to generate
long Wiki articles, which are instead provided by
the search engine. Finally, CoA improves over the
baseline methods in zero-shot generalization exper-
iments on other Wiki QA datasets, outperforming
all baselines on NaturalQuestions and TriviaQA,
and matching the best baselines on WebQuestions.

6 Conclusion

In this work, we propose to decouple the general
reasoning of LLM agents from specialized knowl-
edge obtained via external tools. Our method,
chain-of-abstraction (CoA), encourages LLMs to
learn the planning of abstract multi-step reasoning,
which are more robust to out-of-distribution knowl-
edge shifts. CoA also achieves a more efficient
pipeline for tool usage that significantly improves
the speed of tool-augmented multi-step reasoning.
The simple, yet effective, implementations of our
method on two diverse tasks (i.e., math reasoning
and open-domain QA) demonstrate its potential for
being adapted to new reasoning scenarios.

Limitations

We acknowledge a few limitations in our work.
First, datasets used for testing our method cannot
have exhaustive coverage of all real-world reason-
ing scenarios. We instead consider two represen-
tative reasoning domains, i.e., mathematical rea-
soning and general open-domain (Wikipedia) QA,
and use English as a primary language in our test-
ing. Furthermore, our method is tested on the set-
ting of fine-tuning the full LLMs, which requires
considerable computational resources, while more
efficient model training schemes, e.g., LoRA (Hu
et al., 2021), can be applied in future work.
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Evaluation Details For mathematical reasoning
evaluation, we extract the last number appeared in
each model’s answer, and check whether the num-
ber exactly match the gold reference. The accuracy
is reported as the rate of such exact match across
all QAs in a test set. For Wiki QA evaluation, simi-
lar to mathematical reasoning, we extract the final
answer of each model and calculate its exact match
rate to the gold reference. Specifically, the final
answer is supposed to be the words after “Action:
finish[” for FireAct baseline, and words after “The
answer is ” for other models. Our 8-shot in-domain
examples used for the CoT-FSP baseline are shown
in Table 14 and 15, which enables the model to pro-
vide answer with our required format for evaluation,
i.e., stating its final answer after “The answer is ”.
Our human evaluation on GSM8K is conducted by
5 internal domain experts from our research group.
For each math question, we provide the experts
with the gold answer as reference, and ask them to
evaluate each model answer in anonymous manner,
i.e., experts do not know which model each answer
comes from. Two yes-or-no questions are asked
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Model Method GSM8K ASDiv SVAMP MAWPS

AddSub SingleEQ SingleOp MultiArith All

LLaMa-7B
CoT-FSP 11.90 44.69 31.80 56.20 59.65 70.28 43.00 57.05
CoT-FT 30.71 53.19 42.30 55.70 69.09 77.05 54.17 64.36
CoA 35.71 56.36 51.10 67.59 80.51 85.94 68.33 75.98

LLaMa-2-7B

CoT-FSP 16.38 47.85 38.40 52.41 63.39 82.03 43.33 60.53
CoT-FT 35.33 57.18 48.20 66.08 74.41 85.23 65.00 73.03
Toolformer 17.59 48.55 37.10 47.34 58.46 79.54 50.67 59.81
CoA 37.83 57.61 51.70 72.15 82.48 86.48 73.17 78.89

LLaMa-2-Chat-7B

CoT-FSP 24.03 54.14 51.30 71.90 72.44 85.41 74.00 76.32
CoT-FT 35.41 59.00 46.90 58.23 72.24 85.41 73.00 73.37
CoT-FT (no ASDiv) 36.19 44.93 35.30 38.48 52.95 61.21 77.67 59.61
Toolformer 23.65 50.85 48.80 61.01 69.09 81.85 68.50 70.85
Toolformer - Math 36.01 59.18 47.60 58.99 72.44 85.94 75.50 74.43
CoA 38.29 59.57 54.20 72.41 81.89 88.26 83.00 82.13
CoA (no ASDiv) 39.73 54.19 44.40 54.18 73.62 73.49 85.33 73.27
CoA (no Tool) 35.03 58.79 51.50 68.10 74.21 86.48 77.67 77.38

LLaMa-2-Chat-70B

CoT-FSP 56.18 65.94 70.60 86.08 89.17 92.88 84.50 88.23
CoT-FT 60.50 70.24 70.40 81.52 87.60 92.35 89.17 88.18
Toolformer 52.54 69.07 73.60 86.84 89.76 91.46 81.50 87.26
Toolformer - Math 61.03 70.59 73.20 85.57 91.34 91.99 92.00 90.60
CoA 62.32 71.89 73.40 86.33 94.49 93.06 92.33 91.91

GPT-J Toolformer - 40.4 29.4 - - - - 44.0

Table 8: Mathematical reasoning evaluation results.

for evaluating each model answer, including: a)
whether the answer has any arithmetic error, and
b) whether the answer has any reasoning error, and
binary choices from the experts are collected to
calculate the error rates of each model’s generation.
We present our detailed instructions for human eval-
uation in Figure 5. Our data collection protocol is
approved by our organization in terms of ethics.

Model Training We fine-tune our models with
batch size 8 and learning rate 2e−5 and 1e−5 for
7B and 70B model sizes, respectively, using cosine
learning rate scheduler with warm-up step 10. We
use AdamW (Loshchilov and Hutter, 2018) opti-
mizer for all our fine-tuning experiments, with β1,
β2 and ϵ set to 0.9, 0.95 and 1e−8, respectively.
Training weight decay is set to 0.1. For mathe-
matical reasoning, we use a total of 400 training
steps, and get the best model checkpoints (with
highest validation scores) at step 240 and 200 for
7B and 70B model sizes. For Wiki QA domain, we
adjust the total training steps to 500, and get the
best checkpoints at step 450 and 300 for 7B and
70B models. Therefore, only ∼2K and ∼3K QAs
are required in practice for fine-tuning our mod-
els in math and Wiki QA domains. The training
of our 7B and 70B models is based on 8 and 64
NVIDIA A100-SXM4 (80GB) GPUs, with training
time about 2 and 5 hours per model, respectively.

B Full Experimental Results

Table 8 and 9 show the full results of our experi-
ments on math and Wiki QA domains. Our method
of CoA achieves consistent improvements over
baselines across various LLaMa model versions
(LLaMa, LLaMa-2 and LLaMa-2-Chat), model
sizes (7B and 70B), and domain benchmarks. This
shows great potential of our method being general-
ized to new model backbones and reasoning tasks.
We also present results on GSM8K subsets accord-
ing to varying numbers of gold reasoning steps in
Table 10, where we confirm that CoA has more
robust long chain-of-thought reasoning accuracy.

Fine-Tuning Data Balance In the mathematical
reasoning domain, we also validate the importance
of using fine-tuning data that is balanced across
different reasoning steps. Specifically, we conduct
an ablation study on CoT-FT and CoA seeded with
LLaMa-2-Chat-7B model, by removing the single-
step QA samples of ASDiv from the fine-tuning
data (no ASDiv). We find that CoT-FT (no AS-
Div) and CoA (no ASDiv) turn out to be biased
towards multi-step reasoning, where they achieve
better performance on GSM8K and MultiArith that
contain mainly multi-step QAs, but suffer from
severe performance degradation on other datasets
that contain many single-step math problems. This
demonstrates that maintaining a good balance of
single-step and multi-step reasoning data is impor-
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Model Method HotpotQA WebQ. NaturalQ. TriviaQA
Bridge Comparison All

LLaMa-2-7B

CoT-FSP 14.43 45.26 20.62 33.96 33.35 56.95
CoT-FT 14.85 57.36 23.39 31.50 26.93 52.32
Toolformer 14.12 42.76 20.35 37.11 34.49 57.79
CoA 22.00 57.43 29.12 34.60 38.28 58.28

LLaMa-2-Chat-7B

CoT-FSP 11.69 45.46 18.47 34.65 30.91 53.48
CoT-FT 14.24 56.69 22.77 33.51 25.40 51.05
Toolformer 12.99 44.59 20.00 36.22 30.22 54.15
Toolformer - Wiki 15.68 56.42 23.86 36.61 32.96 55.08
FireAct 19.18 54.14 26.20 36.02 35.87 52.96
CoA 21.00 56.96 28.22 35.97 38.67 57.90

LLaMa-2-Chat-70B

CoT-FSP 21.39 56.62 28.47 34.89 37.42 63.61
CoT-FT 23.84 63.95 31.90 34.15 39.75 62.28
Toolformer 22.24 56.09 29.04 37.16 40.42 64.31
Toolformer - Wiki 26.38 63.82 33.90 37.70 41.25 66.64
CoA 27.61 64.09 34.94 36.37 43.57 69.08

GPT-J Toolformer - - - 26.3 17.7 48.8

Table 9: Wiki QA evaluation results.

tant for adapting LLMs to be robust reasoners.

More Prompting Baselines We also compare
our CoA reasoning method to more prompting-
based methods PAL (Gao et al., 2023) and
DECLARATIVE (He-Yueya et al., 2023), which
use few-shot coding demonstrations to prompt
math solutions as Python or declarative programs.
Table 11 shows our comparison results on the
GSM8K dataset, where all methods are seeded
with LLaMa-2-Chat-7B. Without seeding with ded-
icated coding models (e.g., code-davinci-002), PAL
and DECLARATIVE get far lower accuracy on
GSM8K, which significantly under-perform our
CoA method, and even ordinary CoT-FSP.

In contrast, our CoA method relies less on arti-
ficial demonstrations and distributional closeness
of the seed LLM to target tasks, as CoA fine-tunes
the LLM agent on pre-defined abstract reasoning
chains, acquired from simple rewriting of natural
language reasoning traces. Consequently, CoA is
flexible in various generation formats, e.g., code
and plain text, and generalizes well from mathe-
matical reasoning to open-domain QA, which is a
very different type of reasoning task. This indicates
our method’s generalizability to novel reasoning
schemes required by a new domain.

C Fine-Tuning Data Re-writing Details

Table 12 and 13 show the prompting examples for
fine-tuning data construction of our method. We
prompt LLaMa-70B to re-write existing math and
Wiki QAs as abstract reasoning chains, which gets

Method Gold Reasoning Step

≤ 2 3 4 5 > 5

CoT-FSP 42.9 26.3 18.0 10.9 3.6
CoT-FT 55.5 42.6 25.8 19.0 10.8

CoA
55.8 44.4 32.5 25.3 15.1
+0.3 +1.8 +6.7 +6.3 +4.3

Table 10: Stratified LLaMa-2-Chat-7B evaluation re-
sults on GSM8K with different gold reasoning steps.
The last row reports absolute accuracy improvement of
our CoA method compared to CoT-FT baseline.

Method Accuracy
CoT-FSP 24.03
PAL 20.55
DECLARATIVE 9.86
CoA 38.29

Table 11: Comparison of CoA to prompting-based meth-
ods on GSM8K, seeded with LLaMa-2-Chat-7B.

rid of data distillation from close-sourced LLMs,
yet obtains data resources that enable more effec-
tive learning of multi-step reasoning.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees will the grove
workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21-15=6. The answer is 6.
C: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been [21 - 15 = y1]. The answer is y1.

Q: The flowers cost $9, the clay pot costs $20 more than the flower, and the bag of soil costs $2 less than the flower. How much does it cost to plant the flowers?
A: The clay pot costs $20 + $9 = $29. The bag of soil costs $9 - $2 = $7. The cost to plant the flowers is $9 + $29 + $7 = $45. The answer is 45.
C: The clay pot costs [20 + 9 = y1]. The bag of soil costs [9 - 2 = y2]. The cost to plant the flowers is [9 + y1 + y2 = y3]. The answer is y3.

Q: From March to August, Sam made $460 doing 23 hours of yard work. However, from September to February, Sam was only able to work for 8 hours. If Sam
is saving up to buy a video game console that costs $600 and has already spent $340 to fix his car, how many more hours does he need to work before he can buy
the video game console?
A: Sam makes $460 / 23 hrs = $20/hr. From September to February, Sam made 8hrs x $20/hr = $160. From March to February, Sam made a total of $460 + $160
= $620. After fixing his car, he was left with $620 - $340 = $280. Sam needs another $600 - $280 = $320. Sam needs to work another $320 / $20/hr = 16 hours.
The answer is 16.
C: Sam makes [460 / 23 = y1] dollars per hour. From September to February, Sam made [8 * y1 = y2] dollars. From March to February, Sam made a
total of [460 + y2 = y3] dollars. After fixing his car, he was left with [y3 - 340 = y4]. Sam needs another [600 - y4 = y5] dollars. Sam needs to work
another [y5 / y1 = y6] hours. The answer is y6.

Q: There were nine computers in the server room. Five more computers were installed each day, from Monday to Thursday. How many computers are now in
the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
C: There were originally 9 computers. For each of 4 days, 5 more computers were added. So [5 * 4 = y1] computers were added. [9 + y1 = y2].
The answer is y2.

Q: Of the 90 people on William’s bus, 3/5 were Dutch. Of the 1/2 of the Dutch who were also American, 1/3 got window seats. What’s the number of Dutch
Americans who sat at the windows?
A: On the bus, the number of Dutch people was 3/5 of the total number, a total of 3/5 x 90 = 54 people. Out of the 54 people who were Dutch, 1/2 were Dutch
Americans, a total of 1/2 x 54 = 27 people. If 1/3 of the passengers on the bus identifying as Dutch Americans sat at the windows, their number is 1/3 x 27 = 9.
The answer is 9.
C: On the bus, the number of Dutch people was 3/5 of the total number, a total of [3/5 * 90 = y1] people. Out of the Dutch people, 1/2 were Dutch
Americans, a total of [1/2 * y1 = y2] people. If 1/3 of the passengers on the bus identifying as Dutch Americans sat at the windows, their number
is [1/3 * y2 = y3]. The answer is y3.

Table 12: Prompting examples for fine-tuning data construction in mathematical reasoning domain. Given a question
(Q) and a gold answer (A), LLaMa-70B is prompted to generate the re-writing of answer as abstract reasoning chain
(C). Based on that, our method trains a LLM to generate the abstract chain based on the question, and the final
answer is derived by reify the chain of reasoning with the domain tool (i.e., equation solver).
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Q: Fritz von Brodowski was killed during what global war that lasted from 1939 to 1945?
A: The answer is World War II.
W: Fritz von Brodowski > Friedrich Wilhelm Konrad von Brodowski was controversially killed while in French custody during World War II.
C: Find the [war in which Fritz von Brodowski was killed -Wiki-> y1].

Q: Which tennis player won more Grand Slam titles, Henri Leconte or Jonathan Stark?
A: The answer is Jonathan Stark.
W: Henri Leconte > He won the French Open men’s doubles title in 1984. Jonathan Stark (tennis) > During his career he won two Grand Slam doubles titles.
C: First identify the [number of Grand Slam titles Henri Leconte won -Wiki-> y1]. Then find out the [number of Grand Slam titles Jonathan Stark won -Wiki-> y2].

Q: The director of the romantic comedy “Big Stone Gap” is based in what New York city?
A: The answer is Greenwich Village.
W: Big Stone Gap (film) > Big Stone Gap is a 2014 American romantic comedy film directed by Adriana Trigiani. Adriana Trigiani > Adriana Trigiani is an
Italian American film director based in Greenwich Village.
C: First search the [director of romantic comedy “Big Stone Gap” -Wiki-> y1]. The name of this film’s director is [y1 -NER(person)-> y2]. Then determine [y2 in
what New York city -Wiki-> y3].

Q: Are Randal Kleiser and Kyle Schickner of the same nationality?
A: The answer is yes.
W: Randal Kleiser > John Randal Kleiser (born July 20, 1946) is an American film director and producer. Kyle Schickner > Kyle Schickner is an American film
producer, writer, director, actor.
C: First find out the [nationality of Randal Kleiser -Wiki-> y1]. Then figure out the [nationality of Kyle Schickner -Wiki-> y2].

Q: Extras was created, written, and directed by Ricky Dene Gervais, an English comedian, actor, writer, producer, director, singer, and musician, born on which date?
A: The answer is 25 June 1961.
W: Ricky Gervais > Ricky Dene Gervais (born 25 June 1961) is an English comedian, actor, writer, producer, director, singer, and musician.
C: Search [when Ricky Dene Gervais was born -Wiki-> y1].

Q: Sameera Perera is a cricketer from what island country located southeast of the Republic of India and northeast of the Maldives?
A: The answer is Sri Lanka.
W: Sameera Perera > Sameera Perera (born 20 August 1988) is a Sri Lankan cricketer.
C: Identify the [country that cricketer Sameera Perera is from -Wiki-> y1].

Q: What screenwriter with credits for “Evolution” co-wrote a film starring Nicolas Cage and Téa Leoni?
A: The answer is David Weissman.
W: The Family Man > The Family Man is a 2000 American romantic comedy-drama film starring Nicolas Cage and Téa Leoni. David Weissman > His film credits
include “The Family Man” (2000), “Evolution” (2001), and “When in Rome” (2010).
C: First figure out the [film of Nicolas Cage and Téa Leoni -Wiki-> y1]. The name of this film is [y1 -NER(culture)-> y2]. Then find out [who wrote y2 with
credits for “Evolution” -Wiki-> y3].

Q: Ralph Hefferline was a psychology professor at a university that is located in what city?
A: The answer is New York City.
W: Ralph Hefferline > Ralph Franklin Hefferline was a psychology professor at Columbia University. Columbia University > Columbia University is a private Ivy
League research university in Upper Manhattan, New York City.
C: First identify the [university of psychology professor Ralph Hefferline -Wiki-> y1]. The university of this professor is [y1 -NER(group)-> y2]. Then figure
out [y2 is in what city -Wiki-> y3].

Table 13: Prompting examples for fine-tuning data construction in Wiki QA domain. Given a question (Q), a gold
answer (A) and its supporting Wikipedia articles (W), LLaMa-70B is prompted to generate an abstract reasoning
chain (C) with Wikipedia searching and NER queries. Based on that, our method first trains a LLM to generate the
abstract chain of queries based on the question, and then execute the queries by domain tools (i.e., Wikipedia search
engine and NER toolkit). Finally, a second LLM is trained to generate the final answer based on the Wikipedia
searching results (excluding intermediate NER results) in the reified chain of reasoning.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees will the grove
workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21-15=6. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Q: The flowers cost $9, the clay pot costs $20 more than the flower, and the bag of soil costs $2 less than the flower. How much does it cost to plant the flowers?
A: The clay pot costs $20 + $9 = $29. The bag of soil costs $9 - $2 = $7. The cost to plant the flowers is $9 + $29 + $7 = $45. The answer is 45.

Q: Maddie wants to see how much her mom spends on coffee each week. She makes herself 2 cups of coffee per day. Each cup has 1.5 ounces of coffee beans.
A bag of coffee costs $8 and contains 10.5 ounces of beans. How much does she spend on her coffee per week?
A: She uses 3 ounces of beans per day because 2 x 1.5 = 3. She uses 21 ounces of beans per week because 7 x 3 = 21. She buys 2 bags of beans per week
because 21 / 10.5 = 2. She spends $16 on the beans per week because 2 x 8 = 16. The answer is 16.

Q: There were nine computers in the server room. Five more computers were installed each day, from Monday to Thursday. How many computers are now in
the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.

Q: From March to August, Sam made $460 doing 23 hours of yard work. However, from September to February, Sam was only able to work for 8 hours. If Sam
is saving up to buy a video game console that costs $600 and has already spent $340 to fix his car, how many more hours does he need to work before he can buy
the video game console?
A: Sam makes $460 / 23 hrs = $20/hr. From September to February, Sam made 8hrs x $20/hr = $160. From March to February, Sam made a total of $460 + $160
= $620. After fixing his car, he was left with $620 - $340 = $280. Sam needs another $600 - $280 = $320. Sam needs to work another $320 / $20/hr = 16 hours.
The answer is 16.

Q: Of the 90 people on William’s bus, 3/5 were Dutch. Of the 1/2 of the Dutch who were also American, 1/3 got window seats. What’s the number of Dutch
Americans who sat at the windows?
A: On the bus, the number of Dutch people was 3/5 of the total number, a total of 3/5 x 90 = 54 people. Out of the 54 people who were Dutch, 1/2 were Dutch
Americans, a total of 1/2 x 54 = 27 people. If 1/3 of the passengers on the bus identifying as Dutch Americans sat at the windows, their number is 1/3 x 27 = 9.
The answer is 9.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74-35=39. The answer is 39.

Table 14: Few-shot examples used for CoT-FSP baseline model in mathematical reasoning domain.

Q: Fritz von Brodowski was killed during what global war that lasted from 1939 to 1945?
A: Fritz von Brodowski > Friedrich Wilhelm Konrad von Brodowski was controversially killed while in French custody during World War II. The answer is World War II.

Q: Which tennis player won more Grand Slam titles, Henri Leconte or Jonathan Stark?
A: Henri Leconte > He won the French Open men’s doubles title in 1984. Jonathan Stark (tennis) > During his career he won two Grand Slam doubles titles.
The answer is Jonathan Stark.

Q: The director of the romantic comedy “Big Stone Gap” is based in what New York city?
A: Big Stone Gap (film) > Big Stone Gap is a 2014 American romantic comedy film directed by Adriana Trigiani. Adriana Trigiani > Adriana Trigiani is an
Italian American film director based in Greenwich Village. The answer is Greenwich Village.

Q: Are Randal Kleiser and Kyle Schickner of the same nationality?
A: Randal Kleiser > John Randal Kleiser (born July 20, 1946) is an American film director and producer. Kyle Schickner > Kyle Schickner is an American film
producer, writer, director, actor. The answer is yes.

Q: Extras was created, written, and directed by Ricky Dene Gervais, an English comedian, actor, writer, producer, director, singer, and musician, born on which date?
A: Ricky Gervais > Ricky Dene Gervais (born 25 June 1961) is an English comedian, actor, writer, producer, director, singer, and musician. The answer is 25 June 1961.

Q: Sameera Perera is a cricketer from what island country located southeast of the Republic of India and northeast of the Maldives?
A: Sameera Perera > Sameera Perera (born 20 August 1988) is a Sri Lankan cricketer. The answer is Sri Lanka.

Q: What screenwriter with credits for “Evolution” co-wrote a film starring Nicolas Cage and Téa Leoni?
A: The Family Man > The Family Man is a 2000 American romantic comedy-drama film starring Nicolas Cage and Téa Leoni. David Weissman > His film credits
include “The Family Man” (2000), “Evolution” (2001), and “When in Rome” (2010). The answer is David Weissman.

Q: Ralph Hefferline was a psychology professor at a university that is located in what city?
A: Ralph Hefferline > Ralph Franklin Hefferline was a psychology professor at Columbia University. Columbia University > Columbia University is a private Ivy
League research university in Upper Manhattan, New York City. The answer is New York City.

Table 15: Few-shot examples used for CoT-FSP baseline model in Wiki QA domain.
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 In this task, you are given a middle-school math question (  Question  ), along with a gold 
 reference answer (  Gold_Answer  ) as its standard solution.  There are also 4 candidate answers 
 (  Answer_A/B/C/D  ) generated by our AI models A, B,  C and D, and your task is to judge 
 whether each candidate answer has errors. 

 In the annotation, you will do a binary choice selection of  “Yes” or “No”  for each candidate 
 answer for  two  types of errors (definition below).  Because there are 4 candidate answers and 2 
 types of errors. For each question, you will make  a total of 8 binary choices  . 

 Specifically, we consider  two types of errors  :  1  )  arithmetic error; 2) reasoning error 

 1. Whether the answer has any  arithmetic error  ? i.e.,  math derivations are wrongly calculated, 
 or math equations do not hold. Choose Yes or No. For example: 

 Question  : A pirate crew is digging for buried treasure  on the island marked X on a map. They 
 dug ten holes the first day, thirteen holes the second day, and eight holes the third day. They 
 stopped digging early on the third day to fill in two holes the pirates kept falling in. How many 
 holes are now on the island? 

 Candidate answer  : On the first day, the pirates dug  10 holes. On the second day, they dug 
 13 holes. On the third day, they dug 8 holes, and filled in 2 holes, so there are 10 + 13 + 8 - 2 
 = 27 holes. The answer is 27. 

 Analysis  : Yes, the answer has an arithmetic error,  where 10 + 13 + 8 - 2 should be 29. 

 2. Whether the answer has any  reasoning error  ? i.e.,  misunderstanding of the question, or 
 having a wrong problem solving strategy, which is unrelated to arithmetic correctness. Choose 
 Yes or No. For example: 

 Question  : Marcus is half of Leo’s age and five years  younger than Deanna. Deanna is 26. 
 How old is Leo? 

 Candidate answer  : Marcus is half of Leo's age. So  Marcus is 26 / 2 = 13 years old. Leo is 13 
 + 5 = 18 years old. The answer is 18. 

 Analysis  : Yes, the answer has a reasoning error, Leo  should be (26 - 5) * 2 = 42 years old. 

 Notes  : 
 1. Please forgive any grammar or spelling typos in all questions and answers, they are not 
 considered as math solution errors. 
 2. If you feel the gold reference answer (Gold_Answer) is wrong, just ignore it and make the 
 judgment based on your own answer to the question. 

Figure 5: Guideline for human evaluation on GSM8K mathematical reasoning.
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