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Abstract

Object categories are typically organized into a
multi-granularity taxonomic hierarchy. When
classifying categories at different hierarchy lev-
els, traditional uni-modal approaches focus
primarily on image features, revealing limi-
tations in complex scenarios. Recent studies
integrating Vision-Language Models (VLMs)
with class hierarchies have shown promise, yet
they fall short of fully exploiting the hierar-
chical relationships. These efforts are con-
strained by their inability to perform effectively
across varied granularity of categories. To
tackle this issue, we propose a novel framework
(HGCLIP) that effectively combines CLIP
with a deeper exploitation of the Hierarchical
class structure via Graph representation learn-
ing. We explore constructing the class hierar-
chy into a graph, with its nodes representing
the textual or image features of each category.
After passing through a graph encoder, the tex-
tual features incorporate hierarchical structure
information, while the image features empha-
size class-aware features derived from proto-
types through the attention mechanism. Our
approach demonstrates significant improve-
ments on 11 diverse visual recognition bench-
marks. Our codes are fully available at https:
//github.com/richard-peng-xia/HGCLIP.

1 Introduction

Hierarchical image classification (Salakhutdinov
et al., 2011; Guo et al., 2018) aims to enhance
classification accuracy by identifying objects at
various levels of granularity and capturing sub-
tle relationships among them. Specifically, all the
classes are organized into a multi-granularity taxo-
nomic hierarchy (see in Figure 1a), where the top-
level nodes represent broader categories (“Mam-
mal”), while the lower-level nodes encompass finer-
grained subcategories (“Dog”). The inherently hier-
archical nature of the task compounds its complex-
ity, as models must exhibit a keen understanding
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Figure 1: An illustration of the graph representation
based on class hierarchy. (a) The class hierarchy is pre-
sented in a tree structure. (b) The hierarchical labels are
constructed into a graph, with nodes representing the
text/image features of each class. The graph is fed into
a graph encoder, where the nodes update the parame-
ters by aggregating the messages from their neighboring
nodes. Thus, the class features are fused with hierarchi-
cal information via graph representation learning.

of semantic hierarchies, balancing the trade-off be-
tween capturing fine-grained details for subclasses
while maintaining a broad understanding of super-
classes (Chen et al., 2018). Previous works (Chang
et al., 2021; Guo et al., 2018) mainly focus on en-
hancing image features according to the hierarchy
of multiple branch outputs. These uni-modal meth-
ods only focus on the image modality, leading to
certain limitations in complex scenarios, such as
the inability to effectively utilize the textual de-
scriptions of hierarchical labels and adapt to new
classes or datasets. Therefore, leveraging multi-
modal models (e.g., VLMs) to address hierarchical
image classification presents stronger potential, of-
fering richer information and greater scalability.

Given the powerful generalization capabilities of
VLMs (Radford et al., 2021; Jia et al., 2021; Zhai
et al., 2022) demonstrated on downstream tasks,
harnessing their capabilities to address hierarchical
image classification tasks presents a highly valu-
able exploration. These models are pre-trained on
large-scale text-image pairs to align features from

https://github.com/richard-peng-xia/HGCLIP
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the image and text modalities in a shared latent
embedding space. The predicted probabilities are
obtained by calculating the similarity between im-
age features and text features.

Recently, some works have explored improv-
ing accuracy based on VLMs via class hierarchies.
Specifically, CHiLS (Novack et al., 2023) employs
hierarchical mappings to transform each class into
a list of subcategories. However, this approach has
significant drawbacks when applied to fine-grained
datasets, as the subcategories of these labels tend
to be specialized and rare, resulting in an overly de-
tailed and contextually sparse representation. Uti-
lizing these specific labels as prompts may over-
whelm the model, lacking broader contextual rele-
vance. Hierarchy-CLIP (Ge et al., 2023) proposes
a label augmentation method that leverages the
WordNet (Fellbaum, 2010) label hierarchy, enrich-
ing each class with its parent and child classes. This
method aims to provide a richer semantic expan-
sion of class descriptions. It enhances surface-level
semantic associations rather than delving into the
deeper and more structured connections inherent
in a hierarchical structure. This limitation becomes
apparent in scenarios requiring classification across
multiple hierarchical levels, where a nuanced un-
derstanding of these relationships is crucial. More-
over, these methods are both training-free. While
this offers the advantage of simplicity and direct
application, it lacks the capacity for further model
adaptation to specific datasets. Additionally, these
methods do not fully exploit the potential of VLMs
to adapt to the diverse and complex nature of hier-
archical understanding.

Hence, the limitations of these approaches give
rise to a new question: How can models leverage
the class hierarchy thoroughly to simultaneously
improve the prediction accuracy of categories at
different semantic granularity levels?

To address this issue, we first introduce prompt
learning (Zhou et al., 2022; Khattak et al., 2023a) as
an efficient method to adapt VLMs to downstream
tasks. HGCLIP introduces prompt tokens within
the multi-modal branches of CLIP to facilitate the
learning of hierarchical contextual representations.
More importantly, as demonstrated in Figure 1b,
HGCLIP explores the integration of CLIP with
graph representations for hierarchical image clas-
sification. Specifically, hierarchical relationships
are modeled as a graph, given that they inherently
form a tree-like structure. Based on this graph, we
employ a graph encoder (Veličković et al., 2018a)

to encode text features, enabling them to incorpo-
rate hierarchical structural information. Moreover,
since image features represent features of individ-
ual patches/pixels rather than categories, we utilize
prototype learning to represent image features for
each category. Similarly, a graph encoder is lever-
aged to allow the prototypes to learn hierarchical
relationships, and subsequently utilize the atten-
tion mechanism to enable the spatial feature map
of images to focus more on the class-aware fea-
tures derived from prototypes. On hierarchical im-
age classification, HGCLIP outperforms existing
CLIP-based approaches across both generic and
fine-grained datasets. In scenarios where hierarchi-
cal labels are unavailable, HGCLIP also improves
accuracy when utilizing class hierarchies queried
by ChatGPT (OpenAI, 2023). Further, HGCLIP
demonstrates favorable generalization ability and
robustness in domain generalization and subpopu-
lation shift settings, resulting in consistent improve-
ments over existing methods. To sum up, the main
contributions of this work include:

• We propose HGCLIP, a state-of-the-art (SoTA)
method in hierarchical image classification for
adaptation of CLIP.

• To better utilize label hierarchies, we explore the
graph representations to incorporate hierarchi-
cal structural information into vision-language
feature representations for effective hierarchical
understanding.

• Our approach exhibits new SoTA performance
across eleven hierarchical image classification
benchmarks.

2 Related Work

Prompt Learning in Vision-Language Models:
VLMs leverage information from both image and
text modalities to encode multimodal representa-
tions. VLMs, e.g., CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and LiT (Zhai et al.,
2022) are pre-trained on large-scale image-text
pairs and demonstrate remarkable representation
abilities on various downstream tasks (Gao et al.,
2023; Zhu et al., 2022; Ding et al., 2022; Xia et al.,
2024c,e,d,a). However, efficiently adapting them to
downstream tasks is still a major challenge. Prompt
learning (Li and Liang, 2021; Lester et al., 2021;
Jin et al., 2024a,b,c), as a parameter-efficient tech-
nique, is well-suited for utilizing the representa-
tion capacity of pre-trained VLMs to boost perfor-
mance, instead of the resource-intensive process
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of full fine-tuning. Many works (Shu et al., 2022;
Zhou et al., 2023; Li et al., 2024) have demon-
strated powerful performance on specific down-
stream tasks by combining VLMs and prompt tun-
ing.
Hierarchical Image Classification: Hierarchical
image classification (Salakhutdinov et al., 2011;
Guo et al., 2018) aims to categorize images into
a hierarchical structure that organizes classes into
a tree-like taxonomy. It acknowledges the inher-
ent hierarchical nature of visual concepts, allow-
ing for more nuanced and contextually rich image
categorization. Prior research has explored vari-
ous methodologies, including model architectures
tailored for hierarchical classification (Guo et al.,
2018; Chang et al., 2021; Chen et al., 2018), and ex-
ploiting the relationship of the categories in the hier-
archy (Liu et al., 2022). Furthermore, the develop-
ment of hierarchical classification has spurred some
works (Ju et al., 2023, 2024; Yi et al., 2022) that
harness the class hierarchy across diverse domains,
as these models tend to focus more on fine-grained
and semantically relevant features. Recently, hier-
archical labels are integrated with VLMs (Novack
et al., 2023; Ge et al., 2023). Nonetheless, these
methods roughly overlook the hierarchical relation-
ships among labels. Our work comprehensively
leverages the hierarchical relationships among la-
bels, resulting in performance improvements on
both generic and fine-grained datasets.
Graph Representation Learning: Modern graph
analysis methods rely on graph representation
learning, encompassing graph embedding, graph
neural networks (GNNs), and transformers. Early
graph embedding techniques (Perozzi et al., 2014;
Grover and Leskovec, 2016) typically map nodes
into a low-dimensional space, capturing structural
information. Recently, GNNs (Kipf and Welling,
2016; Veličković et al., 2018a) have become the
mainstream technique in graph representation learn-
ing. They rely on a message-passing framework
where each node refines its representation by re-
cursively aggregating messages from its neighbors.
Moreover, some recent approaches have also ex-
plored transformer-based architectures (Yun et al.,
2019; Hu et al., 2020). Furthermore, the boom
of graph representation learning also advances the
research and development in other communities
such as CV (Shi et al., 2019) and NLP (Zhang
et al., 2023). In this work, we employ hierarchical
graph representations to enrich multi-modal fea-
tures, thus improving the model performance and

generalization.

3 Preliminaries

In this work, our goal is to learn hierarchical multi-
modal knowledge via graph encoder based on CLIP.
We will introduce related concepts and definitions
in the following.

3.1 Revisiting CLIP

We denote the CLIP image and text encoder
as I(·) and T (·). The dataset contains K cate-
gories, i.e., {C1, · · · , CK}. CLIP leverages a struc-
tured approach by inserting all category names into
a predefined textual template represented by the
[CLASS] token, e.g., creating expressions like “a
photo of a [CLASS].". This results in the genera-
tion of textual inputs denoted as TK . Subsequently,
textual features, represented as Ft ∈ RK×D, are
extracted. Each input image I is divided into M
fixed-sized patches, and each patch is embedded
into D-dimensional latent space. Then CLIP de-
rives its spatial feature map Fs ∈ RH×W×D and
computes the global visual representations fv ∈
R1×D through pooling operations, where H and
W denote the height and width of the feature map.
The integration of features from both encoders is
achieved through cosine similarity measures, ul-
timately yielding classification logits ∈ R1×K .
This comprehensive process can be summarized as
follows

Ft = T (TK), (1)

fv = POOLING(Fs), Fs = I(I), (2)

logits = fvFt
T . (3)

The matrix multiplication operation between fv
and Ft is equivalent to calculating cosine similari-
ties, assumed to be L2-normalized features. logits
signifies the computed probabilities for all K cat-
egories, and CLIP identifies the category with the
maximum output probability argmaxCK

(logits) as
its final prediction.

3.2 Graph Encoder

Graph. A graph is represented as G = (V,E),
with V denoting the set of nodes and E the set of
edges. Equivalently, the graph can be represented
by an adjacency matrix A, such as Aij = 1, if
(vi, vj) ∈ E, for any vi, vj ∈ V .
Graph Encoder. GNNs are popular choices of
graph encoder, most of which employ a message-
passing mechanism (Wu et al., 2020). Specifically,
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Figure 2: t-SNE plots of image embeddings in SOTA method CoCoOp, MaPLe, and HGCLIP on two datasets with
distinct semantic granularities. HGCLIP shows better separability in both fine-grained and coarse-grained levels.

each node in the graph aggregates messages (i.e.,
input features or embeddings) from its neighbor-
ing nodes to update its own embedding. Multiple
layers of neighborhood aggregation can be stacked,
facilitating recursive message passing across the
graph. Formally, in the l-th GNN layer, the embed-
ding of node v, denoted by f lv, is calculated based
on the embeddings in the previous layer, as follows

f lv = AGGR(f l−1
v , {f l−1

u : u ∈ Nv}; θl), (4)

where Nv is the set of neighboring nodes of v, θl is
the learnable GNN parameters in layer l. AGGR(·)
is the neighborhood aggregation function and can
take various forms, ranging from the simple mean
pooling (Kipf and Welling, 2016) to advanced neu-
ral networks such as neural attention (Veličković
et al., 2018a) or multi-layer perceptrons (Xu et al.,
2019). Note that the initial node embedding f0v is
simply given by the input feature. We abstract the
multi-layer encoding process as

fv = GRAPHENCODER(f0v ,Nv; Θ), (5)

where Θ = (θ1, . . . , θL) is the collection of
weights across the layers. Note that graph em-
bedding methods (Perozzi et al., 2014; Tang et al.,
2015; Grover and Leskovec, 2016) and graph trans-
formers (Yun et al., 2019; Hu et al., 2020; Ying
et al., 2021) could also serves as GRAPHENCODER.

4 Methodology

In this section, as shown in Figure 3, we present
our proposed method, i.e., HGCLIP for adapt-
ing pre-trained VLMs for hierarchical understand-
ing. Our approach aims to enhance the capacity
for understanding multiple semantic levels. Most
prior approaches focus on single-label classifica-
tion, whereas hierarchical classification necessi-
tates that the model attends to features relevant

to multi-granularity hierarchies. To this end, HG-
CLIP entails: a) introducing learnable prompt to-
kens within multiple transformer blocks in both the
visual and textual branches to learn hierarchical
contextual representations; b) employing a graph
encoder to encode textual features, integrating them
with hierarchical structural information; c) utiliz-
ing prototype learning to represent image features
of each category and similarly modeling them uti-
lizing a graph encoder, thereafter employing the
attention mechanism to enable the spatial feature
map of images to focus more on class-aware and
hierarchy-guided image features.

4.1 Hierarchy Setting

The ground truth class hierarchy currently avail-
able in a dataset is usually obtained by querying a
WordNet (Fellbaum, 2010)-like dictionary, but in
the real world, our dataset may have no available
class hierarchy. In this case, we turn to LLMs, i.e.,
ChatGPT, to approximate the hierarchy diagram.
Specifically, given some label set size K, seman-
tic granularity levels h, class names, and optional
context, we query ChatGPT with the prompt:
Generate h-tier hierarchical labels

for the following K categories:
{C1, · · · , CK}.

4.2 Multi-modal Hierarchical Prompt

In order to comprehensively and efficiently lever-
age the capabilities of pretrained VLMs, we ex-
plore the potential of multi-modal prompt, en-
compassing both textual and visual prompt. As
highlighted in (Khattak et al., 2023a), the acqui-
sition of prompt at deeper transformer layers is
crucial, as it progressively models hierarchical fea-
ture representations. Learnable tokens are intro-
duced at multiple transformer blocks of both tex-
tual and visual branches of VLMs, given as textual



273

Image

Encoder

Text

Encoder
A photo of a 

<CLASS>.

plant

fruit tree

cherry

…

…

…

𝐾 × 𝐷

…

𝐾 × 𝐷

…

…

… …

…

…

C
o

a
rs

e
F

in
e

…

…

… …

…

…

C
o

a
rs

e
F

in
e

Image

Encoder

Textual Prompt
Visual Prompt

Graph

Encoder

Graph

Encoder

Attention 

Map

SoftMaxor

prototypes

… … … … ……
…

Coarse Fine

Frozen

Learnable

Multiplication

Addition

Hierarchical 

Label 

Source

Figure 3: The pipeline of HGCLIP for adapting CLIP to hierarchical image classification. We introduce multi-modal
hierarchical prompt to learn contextual representations. Then we construct the label hierarchy into a graph, with its
nodes representing the textual or image features of each class. Features integrate hierarchical structure information
through message passing in the graph encoder. Textual features directly combine hierarchical representations, while
image features focus on class-aware prototypes through the attention mechanism.

prompt PT = {pT
1 , · · · ,pT

t } and visual prompt
PV = {pV

1 , · · · ,pV
v }, respectively. Therefore, the

image encoder processes the input tokens added
visual prompt PV to generate prompted spatial fea-
ture map represented as F̃s ∈ R(HW+v)×D and
prompted global visual representations f̃v ∈ R1×D.
Similarly, textual prompt PT are incorporated into
the input tokens for encoding, and textual features
are obtained as F̃t ∈ RK×D. These hierarchical
prompt tokens leverage the knowledge encoding ca-
pabilities of VLMs to effectively learn task-relevant
contextual representations across different seman-
tic levels.

4.3 Delving into Graph Representations

The hierarchical structure among labels naturally
forms a tree structure, hence we leverage graph rep-
resentations to model the hierarchy and integrate it
into multi-modal features. In Figure 2, we visualize
and compare the image embeddings of HGCLIP
with those of previous SoTA CoCoOp and MaPLe.
It is worth noting that the image embeddings of
CLIP, CoOp, CoCoOp, and KgCoOp would be
identical, as they do not learn prompts in the visual
branch. The visualization reveals that the image
embeddings of HGCLIP are more separable, indi-
cating that incorporating hierarchical information
can better adapt CLIP.
Encoding Text: Clearly, textual features F̃t =
{f̃ tn}Kn=1 can be directly employed as input for a
graph encoder, as they possess corresponding D-
dimensional textual features for each category. The
class hierarchy is constructed into a graph, where
vertices and edges represent individual classes and
pairs of classes with hierarchical relationships, re-
spectively. As a result, each node n of the text-
attributed graph is associated with text features

cat
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mammal

fruit

car

Fine Coarse

sample
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Figure 4: Semantic prototypes are constructed to guide
the learning of hierarchical semantics of images.

of the corresponding category f̃ tn. The graph en-
coder approaches node classification by using the
structural interactions between nodes. The textual
features F̂t = {f̂ tn}Kn=1 integrating hierarchical in-
formation are encoded as follows:

{f̂ tn}Kn=1 = GRAPHENCODER(f̃ tn,Nn; Θt), (6)

where Θt denotes the parameters of the graph en-
coder for textual modality, Nn denotes the neighbor
nodes of n.
Encoding Image: In contrast to textual features,
the spatial feature map represents the features of
each patch, and the global visual representations
characterize the image holistically, rather than rep-
resenting features for each category. Therefore, the
image features of each image cannot be directly
input into the graph encoder. To address this issue,
as shown in Figure 4, we first leverage prototype
learning to represent the image features for each
category. The global features F∗

v = {fv∗n }Kn=1 ∈
RK×1×D of all images {In}Kn=1 (only in the train-
ing set) belonging to each class are extracted as
prototypes for all categories. These prototypes can
then be utilized by the graph encoder to be encoded.
The procedure is as follows

F∗
v = POOLING(F∗

s), F∗
s = I(IK). (7)
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In the image-attributed graph, each node n is
associated with image features {fv∗n }Kn=1, while
the rest is consistent with the text-attributed graph.
Similarly, the image features F̂v∗ are encoded as
follows

{ ˆfnv∗}Kn=1 = GRAPHENCODER(fv∗,Nn; Θv), (8)

where Θv denotes the parameters of the graph
encoder for visual modality. After the visual graph
encoder effectively leverages structural knowledge,
we then employ the attention mechanism to obtain
the attention weights of visual features F̃s with
respect to the prototypes F̂v∗. The calculation of
attention weights is as follows

ψ = F̃sF̂v∗
T ∈ R(HW+v)×K , (9)

where ψ denotes the attention map. Each ele-
ment of ψ represents the attention weight, namely,
the feature similarity between a class prototype and
one image pixel/site. Based on ψ, we update the
spatial feature map as follows

F̂s = SoftMax(ψ/α)F̂v∗, (10)

where α modulates the attention magnitude.
Weighted by the attention scores representing sim-
ilarity, the image features incorporate structured
information from the prototypes. As the prototypes
F̂v∗ encode K-category visual knowledge, the sig-
nals of classes appearing in the image would be
more notable. Meanwhile, the spatial feature map
provides pixel-level fine-grained information for
the interaction, contributing to the thorough inte-
gration of class-aware features from the prototypes
into the image features.
Classification Logits: Finally, we obtain the
attention-interacted global visual feature by pool-
ing and output the classification logits as

f̂v = POOLING(F̂s) ∈ R1×D, (11)

logits = λ1 · f̃vF̂t
T
+ λ2 · f̂vF̂t

T
, (12)

where λ1 and λ2 denote hyper-parameters to con-
trol the weight assigned to the logits that incorpo-
rate structured image features.

For hierarchical image classification, the model
is required to simultaneously predict several labels
at different granularities. Consequently, it is nec-
essary to partition the predicted logits into their
respective hierarchical categories logitsi, with each
level corresponding to the ground truth labels GTi,

where i = 1, · · · , h. The overall loss function can
be defined as follows

L =
h∑

i=1

wi · LCE(GT i, logitsi), (13)

where wi denotes the weights for learning features
at different hierarchical levels and LCE(·, ·) repre-
sents a cross-entropy loss. A higher wi prioritizes
the learning of features at the i-th level, and vice
versa.

5 Experiment

5.1 Benchmark Setting

Hierarchical Image Classification: We consider
11 visual classification datasets, covering a wide
range of recognition tasks. These include two gen-
eral object datasets, CIFAR-100 (Krizhevsky et al.,
2009) and Caltech-101 (Fei-Fei et al., 2004); six
fine-grained datasets, FGVC-Aircraft (Maji et al.,
2013), StanfordCars (Krause et al., 2013), Food-
101 (Bossard et al., 2014), Fruits-360 (Mureşan and
Oltean, 2017), OxfordPets-37 (Parkhi et al., 2012)
and ETHEC (Dhall et al., 2020); a scene recogni-
tion dataset SUN397 (Xiao et al., 2010); a texture
dataset DTD (Cimpoi et al., 2014) and a satellite
image dataset EuroSAT (Helber et al., 2019). The
aim is to demonstrate our method under general
situations of data diversity, where the label hierar-
chical levels range from two to four.
Domain Generalization: We evaluate the ro-
bustness of HGCLIP on out-of-distribution
datasets (Xia et al., 2024b; Hu et al., 2024). The
source distributions correspond to the original Ima-
geNet (Deng et al., 2009). The task is to classify im-
ages from the target datasets (ImageNetV2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al.,
2019), ImageNet-A (Hendrycks et al., 2021b) and
ImageNet-R (Hendrycks et al., 2021a)), which con-
sist of images that contain various types of domain
shifts.
Implementation Details: We use top-1 accuracy
to evaluate the prediction performance. We adopt
CLIP ViT-B/16 as the visual encoder and use the
corresponding CLIP Transformer as the text en-
coder. We set λ1 = 1 and λ2 = 0.2 to weight the
proportion of hierarchical structural information.
For hierarchical classification, we use deep prompt-
ing with v = t = 4 in the first 9 transformer layers
and train the models for 50 epochs. All models are
trained with a batch size of 64 and a learning rate
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Dataset CLIP
ICML’21

CoOp
IJCV’22

CoCoOp
CVPR’22

VPT
ECCV’22

MaPLe
CVPR’23

KgCoOp
CVPR’23

PromptSRC
ICCV’23

HGCLIP
(Ours)

CIFAR-100* l1 43.22 83.76 82.60 88.75 90.67 78.65 88.18 91.87
l2 66.57 76.81 75.73 83.94 85.81 73.49 82.24 86.55

Caltech-101
l1 58.47 96.19 96.95 96.62 98.06 93.50 95.70 98.50
l2 69.01 95.12 94.18 95.06 97.38 93.56 95.57 97.51
l3 84.56 95.88 95.85 96.12 96.88 94.81 95.51 97.03

FGVC-
Aircraft*

l1 31.08 54.30 54.80 56.81 70.79 53.31 55.99 79.24
l2 35.49 51.59 50.42 53.00 68.87 50.38 50.20 70.70
l3 24.69 37.74 36.10 35.00 52.58 35.56 34.21 61.33

Stanford
Cars*

l1 61.75 82.39 83.31 83.46 83.35 82.78 82.85 83.61
l2 63.59 73.35 73.86 76.53 76.92 69.01 73.24 77.84

Food-101 l1 61.38 87.04 89.13 89.28 88.16 85.18 87.37 91.12
l2 85.53 86.94 87.10 88.46 88.04 86.00 86.89 88.73

Fruits-360
l1 75.43 93.73 99.21 99.46 99.59 90.95 94.41 99.71
l2 34.40 86.87 96.46 98.65 98.31 76.43 94.60 98.51
l3 23.55 85.90 96.58 97.12 97.78 72.80 92.13 97.73

Oxford
Pets-37

l1 99.97 99.86 99.86 99.92 99.91 99.89 99.89 99.92
l2 88.14 91.94 91.97 91.81 92.14 91.81 92.19 92.31

EuroSAT l1 62.97 91.50 91.77 92.41 93.03 91.38 91.96 95.57
l2 41.01 86.68 87.36 88.94 90.16 87.88 88.30 92.79

SUN397*
l1 70.29 88.01 88.60 90.82 90.59 87.62 88.18 92.16
l2 63.59 84.28 84.20 86.29 86.72 85.11 85.40 88.39
l3 60.85 78.67 78.66 80.66 81.37 79.16 80.08 83.41

DTD l1 55.17 80.86 80.98 83.83 83.41 87.45 81.83 86.82
l2 48.09 74.60 72.19 78.34 78.36 75.68 75.79 81.08

ETHEC*

l1 31.12 89.45 89.61 90.87 92.17 86.03 90.64 95.76
l2 2.65 85.10 86.07 86.79 89.60 83.11 87.91 93.40
l3 17.94 74.67 75.02 75.81 78.48 71.33 77.46 82.98
l4 1.52 49.48 51.27 51.99 55.73 47.62 55.75 60.39

Table 1: Top-1 accuracy (%) comparison on hierarchical image classification of HGCLIP with previous CLIP-based
prompt tuning methods. The best result is bold and the second best is underlined. * denotes that the dataset is with
available class hierarchy, and hierarchies of others are queried through ChatGPT. li represents the classification
accuracy at the i-th hierarchical level, where a smaller i indicates a coarser granularity level, and vice versa.

of 3e-4 via SGD optimizer, and decay by the cosine
annealing rule during training.

5.2 Hierarchical Image Classification

CLIP-based prompt tuning methods. Table 1
displays the comparative performance of zero-
shot CLIP, recent works on prompt learning and
HGCLIP on 11 diverse hierarchical classification
datasets. In the case of CLIP, we utilize handcrafted
specific prompts designed for each dataset. In com-
parison with state-of-the-art MaPLe (Khattak et al.,
2023a) and PromptSRC (Khattak et al., 2023b),
HGCLIP exhibits improved performance across
all levels on all the datasets, with the exception
of a slight decline in performance on Fruits-360.
With the contribution of graph representations, as
opposed to SoTA MaPLe and PromptSRC, HG-
CLIP demonstrates superior generalization across
multiple hierarchical categories on all the datasets,
achieving an absolute average gain of 2.2% and
5.7% respectively.
CLIP-based feature adaptation methods. In
Table 2, we compare HGCLIP with prior fea-
ture adaption methods based on CLIP. CLIP-
Adapter (Gao et al., 2023) learns two residual-

style adapters after CLIP. Tip-Adapter (Zhang et al.,
2022) constructs a key-value cache model by ex-
tracting features from few-shot data, then views
the cache model as a well-performing initialization
and fine-tunes the cache keys. CALIP (Guo et al.,
2023) is proposed to boost CLIP performance via
a parameter-free attention module between multi-
modal representations. In comparison with these
feature adaption approaches, HGCLIP exhibits ex-
cellent feature representation capabilities, with an
accuracy on CIFAR-100 that is 8.7%, 6.2%, and
13.3% higher than theirs, respectively.
Visual-only hierarchical image classification
methods. We have analysed various multi-modal
methods above, and to demonstrate the effective-
ness of HGCLIP, we compare visual-only fine-
grained visual classification methods, as shown
in Table 3. Our method still achieve a significant
advantage. Additionally, the visual-only FGVC
methods are more time-consuming compared to
ours (100 v.s. 50 training epochs).

5.3 Distribution Shifts

Domain Generalization: Table 5 summarizes the
results of HGCLIP and prior approaches on out-
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Method Acc. %

l1 l2

CLIP (Radford et al., 2021) ICML’21 43.22 66.57
Linear probe 75.60 71.27
CLIP-Adapter (Gao et al., 2023) IJCV’23 83.91 77.03
Tip-Adapter (Zhang et al., 2022) ECCV’22 84.57 81.42
CALIP (Guo et al., 2023) AAAI’23 77.51 74.28
HGCLIP (Ours) 91.87 86.55

Table 2: Comparision with CLIP-based feature adaption
methods.

Method Acc. %

l1 l2

PMG (Du et al., 2020) ECCV’20 87.16 83.02
FGN (Chang et al., 2021) CVPR’21 87.88 83.60
GHORD (Zhao et al., 2021) CVPR’21 87.93 84.36
CHRF (Liu et al., 2022) ECCV’22 88.67 84.91
TFGIC (Xu et al., 2023) AAAI’23 89.20 85.17
HGCLIP (Ours) 91.87 86.55

Table 3: Comparison with visual-only SOTA FGVC
methods.

of-distribution datasets. We verify the transferabil-
ity of models trained on ImageNet to various Im-
ageNet variants with domain shifts. On the target
datasets, the performance of HGCLIP surpasses
previous SoTA methods. This achievement under-
scores the efficacy of hierarchical graph represen-
tations to enhance multi-modal features. Such an
integration improves the generalization capabili-
ties, enabling it to perform well across varying
domains. This indicates that HGCLIP not only
captures the intricate relationships within the data
but also adapts effectively to new and unseen do-
mains.
Subpopulation Shift: We also examine HG-
CLIP’s robustness to subpopulation shift within a
dataset. The source and target distributions, though
encompassing identical class categories, feature
distinct subpopulations within those classes. Our
empirical investigations are executed on the four
BREEDS (Santurkar et al., 2021) ImageNet sub-
sets: Living17, Nonliving26, Entity13, and En-

Module CIFAR-100 FGVC-Aircraft

TP TG VP VG l1 l2 l1 l2 l3

✗ ✗ ✗ ✗ 43.22 66.57 31.08 35.49 24.69
✓ ✗ ✗ ✗ 84.21 77.22 54.96 52.67 38.72
✗ ✗ ✓ ✗ 84.21 77.22 56.81 53.00 35.00
✓ ✓ ✗ ✗ 87.42 81.24 61.56 57.90 42.83
✗ ✗ ✓ ✓ 87.18 80.87 61.52 58.13 43.17
✓ ✗ ✓ ✗ 90.67 85.81 70.79 68.87 52.58
✓ ✗ ✓ ✓ 91.28 86.04 74.61 69.27 55.66
✓ ✓ ✓ ✗ 91.43 85.96 75.37 69.28 57.50
✓ ✓ ✓ ✓ 91.87 86.55 79.24 70.70 61.33

Table 4: Component Analysis of HGCLIP. TP and VP
serve as textual and visual prompts. TG and VG denote
graph encoder for textual and visual modality.

Source Target
Method

ImageNet -V2 -Sketch -A -R

CLIP 86.11 80.19 72.13 46.11 70.85
CoOp 85.44 79.71 70.85 45.63 70.91
CoCoOp 85.03 79.49 72.96 46.99 72.47
MaPLe 91.22 85.12 74.19 49.28 73.79
PromptSRC 89.89 83.79 75.04 49.37 74.22
HGCLIP 92.19 86.24 77.40 50.38 76.07

Table 5: Domain generalization. Comparison with
CLIP-based methods on robustness to domain shifts.

tity30. We further evaluate the generalizability of
HGCLIP on four datasets from BREEDS (subsets
of ImageNet) that exhibit subpopulation shifts and
provide available class hierarchies. Figure 5 de-
picts the performance of HGCLIP and previous
methods under subpopulation shifts. The models
are trained only on base classes and tested on novel
classes. The results suggest that HGCLIP pos-
sesses strong generalization capabilities even when
confronted with feature-level shifts, underscoring
the efficacy of hierarchical structure information
in enhancing model generalizability. This success
demonstrates the robustness of HGCLIP in han-
dling variations within subpopulations, ensuring
consistent accuracy and reliability across diverse
and shifting data landscapes.

Entity13 Base

Entity13 Novel

Entity30 Base

Entity30 Novel

Living17 Base

Living17 Novel

NonLiving26
Base

NonLiving26
Novel

76.5

87.0
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66.0
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86.5

89.75

78.2586.594.75

73.5
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80.5

N/A

CLIP
CoOp
CoCoOp
MaPLe
PromptSRC
HGCLIP

Figure 5: Results for different methods on the four
BREEDS datasets (Santurkar et al., 2021) to measure
robustness to subpopulation shift.

5.4 Ablative Analysis

Components Analysis. HGCLIP primarily con-
sists of multi-modal prompts and graph encoders.
In Table 4, we ablate on the performance of each
module. The prompts facilitate the model in
learning hierarchical contextual features, while the
graph encoders effectively integrate hierarchical
structure information into the feature representa-
tions. This enables the model to achieve impressive
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results across multiple semantic granularities.
Noisy Hierarchies Queried by LLMs. It is im-
portant to note that LLMs may output sub-optimal
hierarchical labels. LLMs produce inconsistent hi-
erarchical labels based on a set of input category
names or generate hierarchical labels of different
levels, leading to certain biases in the model per-
formance. However, even when utilizing the noisy
hierarchy, HGCLIP still enhances accuracy within
the original categories in the dataset.
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Figure 6: Example decisions from our model, MaPLe
and CLIP.

5.5 Qualitative Analysis

Figure 6 presents illustrative cases showcasing the
predicted probabilities of the models at different
semantic granularity levels. CLIP shows inconsis-
tencies in classification results at different levels,
indicating that CLIP does not grasp the semantic
relationship between different hierarchical levels.
MaPLe improves prediction accuracy via learning
hierarchical feature representation. However, it still
displays inconsistencies when predicting classifi-
cations across different levels. Our method largely
mitigates this issue, leveraging hierarchical graph
representation to bolster the learning of inter-level
class features.

5.6 Graph Encoder Analysis

We further conduct experiments to analyze the im-
pact of various graph encoders. We apply three of
the most commonly used graph learning models:
GCN (Kipf and Welling, 2016), GAT (Veličković
et al., 2018b), and GraphSAGE (Hamilton et al.,
2017) to HGCLIP, the results are illustrated in
Figure 7. First, for both hierarchical levels, GAT
consistently exhibits superior performance, particu-
larly at the fine-grained level, where GAT surpasses
the other encoders. Second, with the increase of
layer depth of the graph encoder, the accuracy ini-
tially rises. Upon reaching a peak (3 layers), the
accuracy begins to gradually decline with further

increase in layer depth. Therefore, we use a 3-layer
GAT as graph encoder in our experiments.
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Figure 7: The impact of various GNN variants and
the number of layers on hierarchical classification. We
report accuracy results on two hierarchical levels.

6 Conclusion

In this work, we propose a novel view that com-
bines VLMs with graph representations. Deep
prompts are incorporated into the multi-modal
branches, allowing VLMs to better learn hierarchi-
cal representations. The graph-based hierarchical
relationships are encoded into features, strengthen-
ing the connection of features across multiple gran-
ularities. When integrating image features with
graph representation, given that image features are
pixel/region-level, prototype learning is employed
for class-level image features, which are then fused
with the image features through the attention mech-
anism. HGCLIP achieves SoTA results on several
hierarchical image classification benchmarks.

Limitations

Although this work has achieved results by utilizing
graph representations to characterize hierarchical
information, it merely employs a simple graph en-
coder (such as GCN, GAT, GraphSAGE) to encode
structural information. With the advancement of
graph learning, it is anticipated that there will be
better graph learning methods for representing hi-
erarchical structures, which could further enhance
features. We separately employ graph encoders for
different modalities, yielding the best performance,
outperforming cross-modal graph encoders with
shared weights. This may be because current multi-
modal models lack the ability to accurately extract
features from each modality. With the development
of multimodal models, this limitation is expected to
be addressed, significantly reducing training time
and improving inference speed. Additionally, we
leverage multi-modal prompt learning but have not
integrated it with graph learning, perhaps combin-
ing the two could yield better results.
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