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Abstract

Large language models (LLMs) are increas-
ingly deployed for general problem-solving
across various domains yet remain constrained
to chaining immediate reasoning steps and de-
pending solely on parametric knowledge. In-
tegrating an information retrieval system di-
rectly into the reasoning process of LLMs
can improve answer accuracy but might dis-
rupt the natural reasoning sequence. Conse-
quently, LLMs may underperform in complex,
knowledge-intensive tasks requiring multiple
reasoning steps, extensive real-world knowl-
edge, or critical initial decisions. To overcome
these challenges, we introduce a novel frame-
work, Topology-of-Question-Decomposition
(ToQD), which activates retrieval only when
necessary. Globally, ToQD guides LLMs in
constructing a topology graph from the in-
put question, each node representing a sub-
question. Locally, ToQD employs self-verify
inference to determine whether a sub-question
should retrieve relevant documents, necessi-
tate further decomposition, or directly pro-
vide an answer. Experiments demonstrate
that ToQD achieves superior performance and
robustness in complex, knowledge-intensive
tasks, significantly enhancing system response
efficiency. The code repository is accessible at
https://github.com/DCVDB/ToQD

1 Introduction

Despite the increased model size enabling large
language models (LLMs) to excel in general
knowledge domains (Hendrycks et al., 2021;
Kwiatkowski et al., 2019), LLMs (OpenAI, 2020)
continue to struggle with factual errors in the
complex knowledge-intensive tasks (Petroni et al.,
2021; Zelikman et al., 2022) that require multi-
reasoning. To address the inherent knowledge
constraints of LLMs (Zhang et al., 2023; Mallen
et al., 2023), retrieval-augmented generation (RAG)
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(Lewis et al., 2021; Gao et al., 2024) augment the
input of LLMs with the relevant documents, thus re-
ducing factual hallucination (Yu et al., 2023; Yoran
et al., 2024) and bolstering performance in intri-
cate tasks (Yang et al., 2018; Joshi et al., 2017).
Additionally, advanced prompting strategies such
as chain-of-thought (CoT) (Wei et al., 2023) en-
hance the reasoning capabilities of models by en-
couraging them to generate additional reasoning
steps (Mavi et al., 2024). In light of these enhance-
ments, prompt strategies incorporated within the
RAG framework can be classified into two primary
categories: local reasoning and global planning.

Local reasoning methods, primarily based on
CoT approaches such (Auto-CoT (Zhang et al.,
2022), Self-Consistency (Wang et al., 2023c),
Recite-and-answer (Sun et al., 2023) and Tree-of-
Thought (Yao et al., 2023a)), facilitate sequential
reasoning steps to enhance response accuracy incre-
mentally. However, these methods often generate
reasoning steps without logical connection rather
than a cohesive global planning strategy, frequently
resulting in a disorganized reasoning process with
significant redundancy (Figure 1). Moreover, inte-
grating the RAG framework, as demonstrated by
Self-Ask (Press et al., 2023b) and DSP (Khattab
et al., 2023), disrupts sequential reasoning, limit-
ing LLMs to localized sub-questions and curtail-
ing their broader reasoning abilities (Jain et al.,
2024). Consequently, in primarily local reasoning
methods, interaction with IR typically involves re-
trieving all relevant documents upfront rather than
as needed, contradicting the view that ’LLMs are
knowledge warehouses.’ (Yin et al., 2023).

Compared to local reasoning, global planning
methods like Plan-and-Solve (Wang et al., 2023a),
Least-to-Most (Zhou et al., 2023), and SearChain
(Xu et al., 2024) significantly enhance response
accuracy by pre-planning a chain of reasoning to
clarify logical relationships (Figure 1). However,
the inherent rigidity of these methods limits their

https://github.com/DCVDB/ToQD
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Figure 1: Schematic illustrating various approaches to problem-solving with LLMs. Each green box represents an
intermediate thought aimed at resolving a problem, while the blue box symbolizes the global planner. The red box
denotes a redundant thought, and the purple box indicates a dynamically adjusted thought. Local reasoning: (1)
CoT (2) Tree-of-Thought. Global planning: (3) Plan-and-Solve. Our method: (4) ToQD.

capacity to dynamically respond to complex rea-
soning steps, thus impeding deeper analytical pro-
cessing. Simultaneously, it should be noted that
complex knowledge-intensive tasks do not invari-
ably require sequential reasoning; parallel reason-
ing can accelerate the process, a facet frequently
neglected by chain reasoning methodologies.

In addressing the limitations of local reasoning
and global planning methods, this study proposes
a novel approach termed Topology-of-Question-
Decomposition (ToQD), which enables retrieval
only when necessary (Figure 1 and 2). Globally,
ToQD instructs LLMs to construct a topology graph
Gtop based on the input question, where each node
encapsulates a specific subquestion. Within Gtop

should the nodes align either parallelly or sequen-
tially, LLMs are programmed to adjust their re-
sponses to expedite the resolution process. Locally,
at each subquestion node within Gtop, LLMs apply
self-verify inference to ascertain whether to retrieve
relevant documents, necessitate further decomposi-
tion, or directly provide an answer. Following inter-
actions with IR and subsequent reasoning, ToQD
executes summarization at each node to construct
the final answer for the input question.

Experiments demonstrate that ToQD surpasses
state-of-the-art baselines in complex knowledge-
intensive tasks while enhancing overall efficiency.
Moreover, the ToQD prompt templates deliberately
omit numerical examples to reduce dependency
on the in-context learning capabilities of LLMs,
thereby enhancing its applicability to models rang-
ing from 2B to over 100B parameters.

2 Related Work

Chain-of-Thought Prompting. Chain-of-thought
(CoT) prompting (Wei et al., 2023; Suzgun et al.,

2022), a gradient-free method, systematically fa-
cilitates the generation of intermediate reasoning
steps by LLMs before delivering the final an-
swer, with multiple task-specific variants (SelfAsk
(Press et al., 2023b), Ask-me-anything (Arora et al.,
2022), and ReSP (Jiang et al., 2024)). The funda-
mental principle underlying CoT prompting is its
systematic decomposition of complex problems
into a series of intermediate reasoning steps (Ser-
vantez et al., 2024; Kojima et al., 2023). However,
CoT predominantly rely on the model’s in-context
learning capabilities (Shi et al., 2024; Chung et al.,
2022), limiting their applicability to smaller and
medium-sized models (Raffel et al., 2023; Jiang
et al., 2023). Moreover, methods (Yao et al., 2023a;
Besta et al., 2024) employ LLMs to decompose
complex questions and sequentially answer each
sub-question iteratively.
Retrieval-Augmented LLMs. Recent studies
show that retrieval-augmented generation (RAG)
pipeline can enhance the reasoning ability of LLMs
(Trivedi et al., 2023; He et al., 2022; Shao et al.,
2023), make the responses more credible and trace-
able (Xu et al., 2024), reduce the factual halluci-
nations. However, the RAG still struggles with
sourcing and assimilating factual evidence from
multiple documents for complex multi-hop queries,
often leading to factual errors that mislead LLMs
(Tang and Yang, 2024; Mallen et al., 2023).
Self-Knowledge in LLMs. The concept of ’self-
knowledge’ in LLMs, initially introduced by (Ka-
davath et al., 2022), is further defined as the LLMs’
ability to understand limitations concerning the
unknowns and has been evaluated by (Yin et al.,
2023). Simultaneously, recent scholarly focus on
the quality of training data (Gunasekar et al., 2023;
Touvron et al., 2023) indicates that inaccuracies in
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1. Q: Who is the individual associated with the industry facing a criminal trial as reported by Verge?
    A: Verge: Bankman-Fried made himself out to be the Good Boy of crypto's the trustworthy face of industry.
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2. Q: Who is facing a criminal trial on fraud and conspiracy charges as reported by TechChurch?
    A: TechCrunch: The highly anticipated criminal trial for Sam Bankman-Fried started Tuesday to determine
whether he’s guilty of seven counts of fraud and conspiracy.
3. Q: Who is accused by prosecutors of committing fraud for personal gain?
    A: The prosecution painted Bankman-Fried who knowingly committed fraud to achieve great wealth.  

      Who is the individual associated with
the industry facing a criminal trial on
fraud and conspiracy charges, as reported
by both Verge and TechCrunch, and is
accused by prosecutors of committing
fraud for personal gain?

Q

Figure 2: The Topology-of-Question-Decomposition (ToQD) process involves several key steps. Globally, ToQD
guides the LLM to construct a topology graph Gtop from the question Q, where each node symbolizes a subquestion
q. Locally, at each node q ∈ Gtop, the LLMs employs self-verify inference to decide if q should retrieve documents,
requires further decomposition, or can be answered outright. In the final stage, each node within Gtop contributes to
answering the question Q.

Algorithm 1 ToQD Inference
Require: Generator LMM, Self-Verify inference

1: Input: Input the original question Q, Output: the
answer A of the input questionQ

2: M decomposes Q into the sub-questions set Q′ and
evaluate IsRel for q ∈ Q′ ▷ Critique

3: M construct Gtop fromQ and Q′ ▷ Construct
4: Initialize: indegree, queue, qa, path as per Gtop
5: while not queue.empty() do
6: q ← queue.popleft()
7: Use the Self-verify to predict Decomposition and

answer a based on the path ▷ Self-verify
8: if Decomposition == YES then
9: Though ▷ Critique and ▷ Construct to add a
Gchild for Gtop; Update status

10: else if Decomposition == NO then
11: qa.append((q, a)); Update status
12: end if
13: end while
14: M predicts A forQ based on qa

LLMs responses to complex knowledge-intensive
questions are more likely due to the model’s fabri-
cation of information rather than the propagation
of erroneous learned content. Consequently, this
paper posits that model knowledge should be the
same as factual evidence.

3 Topology-of-Question-Decomposition

This section delineates the design of the Topology-
of-Question-Decomposition (ToQD). The overall
pipeline of ToQD is shown in Figure 2, which
includes decomposing the input question Q into
topology graph Gtop and using self-verify inference
to answer each sub-question.

3.1 Overview

Algorithm 1 delineates the comprehensive proce-
dural framework of ToQD. Given the input ques-
tion Q, we use the prompts like "Decompose orig-
inal question reasoning steps into 2 to 6 simply
and logically connected sub-questions for help-
ing students reason towards the answers." to in-
struct LLMs for decomposing Q into sub-questions
Q′ = {q1, q2, ..., qn}. Subsequently, employing
the prompt like "Filter out any off-topic or irrel-
evant sub-question," ToQD guides the LLMs to
critique (▷ Critique) the relevance of each q ∈ Q′

in addressing Q, thereby eliminating redundant rea-
soning steps (IsRel indicates relevance). Through-
out the processes of decomposition and critique,
each q ∈ Q′

rel is sufficiently simplified for LLMs
to determine their ability to respond, ideally re-
stricting the focus to a single entity. These stream-
lined sub-questions enhance the precision of IR
from knowledge sources by focusing exclusively
on a single entity, thereby facilitating more ef-
ficient retrieval, predominantly through seman-
tic search methodologies (Reimers and Gurevych,
2019; Chen et al., 2024). Following this, LLMs an-
alyze the relationships between Q and Q′

rel as well
as among Q′

rel themselves to construct a topol-
ogy graph Gtop (▷ Construct), wherein each node
within Gtop represents a sub-question q ∈ Gtop.
In the resolution process of Gtop, LLMs employ
self-verify (▷ Self-Verify) inference to determine
whether q should retrieve documents, necessitates
further decomposition (Decomposition is ’YES’),
or can be directly answered. Within Gtop, if nodes
align either in parallel (‘Composition’) or sequen-
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Algorithm 2 Self-Verify Inference
Require: Generator LMM, RetrieverR , Large-scale docu-

ment collections {d1, . . . , dN}
1: Input: input question qt, preceding sub-questions

(q<t, a<t) Output: new (qt, at) or Decomposition
2: M rewrite qt for qnew if given (q<t, a<t) for qnew and

predicts the Retrieve based on the qt or qnew ▷ Rewrite
3: if Retrieve == YES then
4: Retrieve relevant documents D usingR given qnew

5: M predicts Decomposition given qnew,each d ∈ D
6: if Decomposition == YES then
7: Return Decomposition for ToQD inference
8: else if Decomposition == NO then
9: M predicts at given qnew, each d ∈ D

10: end if
11: else if Retrieve == NO then
12: M predicts at given qnew

13: end if

tially (‘Bridge’), the LLMs adjust their responses
to expedite the resolution process. Upon resolv-
ing the sub-questions through topological sorting,
ToQD summarizes each node of q ∈ Gtop to pre-
dict the final answer A for Q. Throughout the
ToQD pipeline, ToQD employs selective retrieval
via LLMs only when necessary to enhance the
traceability of generated content and accelerate the
reasoning process through expedited parallel rea-
soning. Appendix B illustrates ToQD’s manage-
ment of three prevalent question types in multi-hop
questions: "Composition," "Bridge," and "Bridge
and Composition."

3.2 Self-Verify

Within the structure of q ∈ Gtop, each sub-question
node q is subject to distinct processing pathways.
If q qualifies as an internal node, ToQD systemat-
ically rewrites q into a new formulation question
qnew adhering to the established reasoning path
within Gtop (▷ Rewrite). Additionally, ToQD eval-
uates the necessity to procure pertinent documents
D from an extensive knowledge source. In con-
trast, for leaf nodes within Gtop, ToQD utilizes the
prompt like "Can you directly answer the question

’{question}’" to gauge whether LLMs can directly
answer subquestion q, thereby autonomously de-
termining the necessity for immediate document
retrieval. We hypothesize that LLMs are not ca-
pable (or capable) of solving the question when
they respond with "NO!" (Retrieve is "YES"). Si-
multaneously, the ToQD commences interaction
with IR to retrieve the relevant documents D us-
ing the retriever R. If LLMs respond with "YES",
the LLMs will directly answer the subquestion q.
Direct prompting operates intuitively and is inde-

pendent of the model’s intrinsic in-context learning
capabilities, thus enabling effective performance
even on models with reduced parameter sizes and
better assisting the model in assessing and evalu-
ating its ability to answer the subquestion q. After
obtaining the relevant documents D, ToQD em-
ploys the prompt like "Can you directly answer the
question ’{question}’ based on the document ’ {doc-
ument}’?" as a template to ascertain whether LLMs
can answer the subquestion q based on the rele-
vant documents D. Similarly, ToQD employs the
LLMs criterion to determine whether to answer the
question directly or decompose it further within the
ToQD inference process. When further decompo-
sition is required, the processes of decomposition,
critique, and construct are employed to add a child
graph to the existing Gtop, dynamically adjusting
the reasoning steps in response to evolving analyti-
cal needs. The global perspective embedded within
ToQD prompts LLMs to intensify their exploration
of potential answers when encountering intermedi-
ate challenges. By minimizing interaction with IR
and maximizing the use of LLMs’ self-knowledge,
the self-verify strategy accelerates reasoning speed
and reduces the potential factual errors from IR.

3.3 Awareness of Unknowns in Large
Language Models

LLMs, often referred to as ’knowledge warehouses’
can generate well-calibrated predictions for to-
ken probabilities under on-distribution (Guo et al.,
2017). LLMs such as GPT (Radford et al., 2019)
predominantly utilize the Transformer architecture
(Vaswani et al., 2023) for generating textual se-
quences. The probability of predicting the subse-
quent token wt+1 in the Transformer architecture,
based on the preceding sequence (w1, w2, ..., wt),
is mathematically expressed as:

P (wt+1|w1, w2, . . . , wt) = softmax(htW + b)

where, ht indicates the hidden state at time t, W de-
notes a weight matrix, and b is a bias vector. When
LLMs encounter an unfamiliar entity, the likeli-
hood of correctly predicting related subsequent to-
kens is low, indicating limited model familiarity.
Thus, to determine whether black-box LLMs are
capable of solving it is simple to ask them directly
for a ’YES/NO,’ as detailed in Algorithm 2. Ex-
periments (Section 4.4) also show that LLMs pre-
dominantly recognize their knowledge limitations,
regardless of the prompting style used—whether
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Multi-Hop QA Long-Form QA
HotPotQA MuSiQue 2WikiMultiHopQA ELI5

Without Information Retriever
Direct Prompting 31.95 5.91 25.82 21.90

Auto-CoT 33.53 10.55 29.15 21.55
CoT 35.04 9.46 30.41 21.79

CoT-SC 36.85 10.02 32.68 22.05
Recite-and-answer 36.49 10.97 32.53 22.10
Self-Ask w/o IR 33.95 11.10 35.65 21.73
Least-to-Most 34.05 11.45 32.88 21.95
Plan-and-Solve 36.33 12.95 35.68 22.23

SearChain w/o IR 38.36 13.61 40.49 22.54
ToQD w/o IR 39.47 15.91 43.85 23.17

Interaction with Information Retriever
Direct Retrieval 34.09 10.22 30.01 23.40

ToolFormer 36.75 12.98 35.49 23.05
Self-Ask 40.05 14.28 39.58 23.25

Plan-and-Solve w/ IR 41.65 15.07 42.05 24.56
React→ CoT-SC 43.15 15.49 40.36 24.05
Verify-and-Edit 44.03 15.57 40.83 23.80

Tree-of-Thought w/ IR 50.65 15.61 42.49 24.20
DSP 51.97 15.83 43.52 23.46

SearChain 56.91 17.07 46.27 25.57
ToQD w/ IR 49.16 19.39 51.06 26.23

Table 1: Performance of ToQD and baselines on complex knowledge-intensive tasks. Bold text denotes the best
result in different settings. Metric for Long-Form QA: ROUGE-L. Metric for others: cover-EM.

"Directly," "CoT," or "RAG". Appendix B shows
more visual cases illustrating how LLMs recognize
their knowledge limitations.

4 Experiments

For detailed descriptions of the experimental im-
plementation, readers are directed to Appendix A,
while further visual illustrations of the ToQD pro-
cess can be found in Appendix B. Additionally, the
comprehensive prompt utilized within the ToQD
pipeline can be found in Appendix C.

4.1 Experiments Setup

Baselines. Our baseline models are categorized
into two groups. The first group focuses on en-
hancing the reasoning capabilities of LLMs on
complex tasks, including CoT (Wei et al., 2023),
CoT-SC (Wang et al., 2023c), Auto-CoT (Zhang
et al., 2022), Recite-and-answer (Sun et al., 2023),
and Least-to-Most (Zhou et al., 2023). The sec-
ond group not only introduces IR to LLMs but also
aims to enhance their reasoning abilities, featur-
ing Direct prompt, Plan-and-Solve (Wang et al.,
2023b), SelfAsk (Press et al., 2023a), ToolFormer
(Schick et al., 2023), React (Yao et al., 2023b),
DSP (Khattab et al., 2023), Verify-and-Edit with
CoT-SC (Zhao et al., 2023), and Tree-of-Thought
(Yao et al., 2023a).
Datasets and Evaluation Metrics. To enhance

the assessment of the ToQD, we engage with two
complex knowledge-intensive tasks: multi-hop
question-answering (HotPotQA (Yang et al., 2018),
MuSiQue (Trivedi et al., 2022b), and 2WikiMulti-
HopQA (Ho et al., 2020)) and long-form question-
answering (ELI5 (Fan et al., 2019)). For the eval-
uation metrics, ROUGEL (Lin, 2004) is utilized
for ELI5, given its long and free-form ground truth.
For other tasks, the metric applied is cover-EM
(Rosset et al., 2021), which assesses whether the
ground truth answer is encapsulated within the gen-
erated response.
Implementation Details. By default, the LLM
employed in this study is gpt-3.5-turbo, sourced
from the OpenAI API1. We utilized the top five
documents from Contriever-MS MARCO (Izacard
et al., 2022) for the Wikipedia 20172 as the knowl-
edge corpus. A single RTX 4090 GPU powers the
corresponding IR model. Additionally, within the
experimental framework of this study, the inter-
action duration for the single-instance IR system
was recorded at 1.72 seconds. All LLM APIs were
tested under settings where both the temperature
and top_p were set to 0.1 to minimize randomness
in the responses, thereby facilitating the LLMs’
recognition of their knowledge limitations during
the self-verify inference process.

1https://openai.com/index/openai-api/
2https://www.wikipedia.org/

https://openai.com/index/openai-api/
https://www.wikipedia.org/
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4.2 Main Results

The main results are shown in Table 1.

Effect of Topology-of-Question Decomposition.
We compare ToQD against recent state-of-the-art
baselines in settings without IR. Comparative anal-
yses demonstrate that ToQD without IR merely
surpasses all CoT-based baselines (CoT, Auto-CoT,
CoT-SC, and Recite-and-Answer), highlighting the
efficacy of topology-graph reasoning through struc-
tured sub-questions over mere presentation of in-
termediate results. Furthermore, ToQD without
IR outshines both Self-Ask without IR and Least-
to-Most, demonstrating the superior efficacy of
employing a global topology-graph reasoning ap-
proach over sequentially generating and addressing
sub-questions step by step. Finally, ToQD with-
out IR almost consistently outperforms SearChain
without IR and Plan-and-Solve across all datasets.
This suggests that explicitly defining logical rela-
tionships in a topology graph among sub-questions
provides a distinct advantage over merely employ-
ing a chain-of-reasoning approach.

Effect of Minimizing Interactions with IR. In
settings involving interaction with IR, ToQD still
marginally outperforms all baselines. By lever-
aging self-verify inference strategies to minimize
redundant interactions with information retrieval
systems, ToQD enhances the utilization of intrinsic
knowledge and mitigates the influence of potential
factual errors from IR compared to the Verify-and-
Edit approach. Additionally, ToQD increases the
precision of IR retrieval by decomposing multi-
reasoning questions into sub-questions that are as
simple as possible and involve only a single simple
entity. By initially decomposing complex questions
into a topology graph (Globally) and employing
self-verify inference at each node (Locally), ToQD
not only ensures the coherence of LLM reasoning
but also exhibits superior coherence compared to
methods used in Self-Ask, DSP, and React. Simul-
taneously, by preemptively applying critical filter-
ing to sub-questions through critique (▷ Critique),
ToQD avoids redundant reasoning, thereby enhanc-
ing the effectiveness of the inference process com-
pared to Tree-of-Thought, DSP, and SearChain.
Lastly, ToQD allows for the further decomposi-
tion of overly complex sub-questions, enabling the
LLM to modify the direction of reasoning com-
pared to Plan-and-Solve dynamically.

Method #n ↓ #m ↓ #r ↓ t(s) ↓ Perf. (Avg) ↑
ToQD 370 110 1.30 6.29 36.46
- w/o Critique 487 145 1.47 10.05 34.95
- w/o Construct 329 87 1.16 9.97 34.41
- w/o Self-Verify 512 153 2.27 11.36 35.78
- w/o Rewrite 337 93 1.53 5.72 35.39

(a) Ablation analysis of removing each trigger action.

Method #n ↓ #m ↓ #r ↓ t(s) ↓ Perf. (Avg) ↑
Self-Ask 401 63 2.19 6.63 29.29
Plan-and-Solve 450 71 1 6.05 30.83
React → CoT-SC 938 110 2.35 8.25 30.76
Verify-and-Edit 565 307 2.40 13.90 31.06
Tree-of-Thought 622 341 2.29 13.28 33.24
DSP 1759 155 2.15 10.47 33.70
SearChain 390 189 2.21 8.52 36.46
ToQD 370 110 1.30 6.29 36.46

(b) Efficiency analysis of methods

Table 2: Efficiency and Ablation analysis: n (input
words), m (output words), r (interaction rounds), t (time
per interaction), Perf(Avg) (average accuracy). The
bold text indicates the best performance.

4.3 Analysis

Detailed setups of the retrieval effectiveness and
robustness experiments can be found in Appendix
A, with the results of the robustness tests displayed
in Appendix A.1. For further visual illustrations of
ToQD, readers are directed to Appendix B.
Effects of Removing Each Trigger Actions. To
rigorously assess the efficacy of each triggered ac-
tion in ToQD, systematic ablation studies were
conducted by removing each trigger action from
the ToQD. Table 2.a presents metrics for individ-
ual queries, including the number of words in the
LLM’s input (n) and output (m), interaction rounds
with IR (r), and overall running time (t). Addition-
ally, the average performance score (Perf(Avg)),
representing aggregate results across all datasets, is
also detailed. Exceptionally, when actions such as
critique (▷ Critique), construct (▷ Construct), and
rewrite (▷ Rewrite) were removed, the efficiency
of ToQD marginally increases. However, the sig-
nificant decrease in average performance scores in-
dicates that excessive ineffective reasoning, overly
complex sub-questions, and a chain-like approach
to answering sub-questions can reduce the accuracy
of responses. On the other hand, when the action
self-verify (▷ Self-Verify) inference was removed,
the efficiency of ToQD significantly decreased, and
the frequency of interactions with IR substantially
increased. Concurrently, a slight decrease in accu-
racy suggests reducing the impact of factual errors
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(a) HotPotQA (b) MuSiQue (c) 2WikiMultiHopQA

Figure 3: Accuracy and proportion of ’YES!’/’NO!’ responses using different templates (Directly Prompt, CoT,
and RAG) across four evaluation datasets. The upper section of the image displays the accuracy for ’YES!’/’NO!’
responses, while the lower section shows the percentage for ’YES!’/’NO!’ responses.

from IR. The results show a performance drop no
matter which action was removed, illustrating that
each action contributed to improving the efficiency
and accuracy of generation.

Effects of Self-Verify Inference. To rigorously
assess the efficacy of utilizing self-verify inference
to minimize interactions with IR systems in ToQD,
systematic efficiency experiments and their results
are detailed in Table 2.b. This table demonstrates
that our method significantly enhances task perfor-
mance by minimizing interactions with IR, whereas
most baselines still require multiple rounds of in-
teraction between IR and LLMs. Additionally, the
reduced number of characters in input and output
text and accelerated reasoning speeds demonstrate
the improvements in reasoning efficiency result-
ing from minimizing interactions with IR. Con-
currently, our efficiency experiments confirm two
critical insights: (1) In multi-reasoning tasks, not
all reasoning steps must be sequential; implement-
ing parallel reasoning can accelerate the process.
(2) LLMs are knowledge warehouses.—by lever-
aging the intrinsic knowledge of the model rather
than heavily relying on the RAG pipeline for query
responses, we can streamline reasoning processes,
reduce the impact of factual errors from IR systems,
and consequently enhance the accuracy of LLMs’
generations.

Effects of Different Templates on Eliciting
Self-Knowledge in LLMs. To systematically
elicit self-knowledge from large language models
(LLMs), we designed and implemented three dis-
tinct prompting templates: Direct, CoT, and RAG,
consistent with those used in the ToQD frame-

work. We evaluated these templates using complex
knowledge-intensive questions from four multi-hop
datasets—HotPotQA, MuSiQue, and 2WikiMulti-
HopQA —that LLMs had initially deemed chal-
lenging. The outcomes of these evaluations are
depicted in Figure 3. The experimental procedures
consisted of two distinct phases: initially, LLMs
responded directly to questions using the specified
templates. In a subsequent phase, we modified the
prompts for each template to probe the LLMs’ self-
assessment capabilities. This modification aimed
to assess the LLMs’ self-awareness regarding their
problem-solving abilities. We then quantitatively
measured the accuracy of their self-assessment re-
sponses to determine their reliability in affirming
or denying their capacity to solve the presented
questions. This bifurcated methodology facilitated
a thorough examination of both the direct response
capabilities and the introspective accuracy of the
LLMs across diverse prompt templates (Direct,
CoT, and RAG).

Initially, across all prompt templates, LLMs ex-
hibited either a positive response—directly provid-
ing the predicted answers—or a negative response,
which indicated the necessity for external informa-
tion or further decomposition in addressing specific
questions. Secondly, regardless of the prompt tem-
plate used, the gpt-3.5-turbo consistently demon-
strated awareness of its limitations, a phenomenon
colloquially known as “known unknowns.” Concur-
rently, the proportion of "NO!" responses from gpt-
3.5-turbo aligned with its error rate when directly
responding to queries from the dataset, revealing
its ability to predominantly identify what LLMs do
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Method Hits@10 MAP@10 MRR@10
Native 0.586 0.160 0.353
HyDE 0.611 0.164 0.362
SubQuestion 0.334 0.040 0.085
MultiQuery 0.426 0.092 0.217
ToQD 0.614 0.168 0.329

w/o critique 0.573 0.142 0.357
w/o rewrite 0.597 0.151 0.334

Table 3: Retrieval performance of different rewrite
query method in the MultiHop-RAG dataset.

not know.
Effects of Decomposing Complex Questions. To
more accurately assess the impact of decompos-
ing complex questions into simpler, single-entity
questions on IR retrieval accuracy, we conducted
our evaluation using the MultiHopRAG dataset
(Tang and Yang, 2024). Our approach was com-
pared against four query-rewrite baselines—native,
HyDE (Gao et al., 2023), MultiQuery, and Sub-
Question 3—employing retrieval evaluation metrics
such as Mean Average Precision at K (MAP@K),
Mean Reciprocal Rank at K (MRR@K), and Hit
Rate at K (Hit@K) to assess retrieval quality. Ta-
ble 3 indicates that our method not only facilitates
reasoning but also enhances the precision of IR
retrieval, surpassing the performance of directly re-
trieving factual evidence and various baselines. Fur-
thermore, the reduction in retrieval effectiveness
resulting from the removal of the trigger actions
of critique (▷ Critique) and rewrite (▷ Rewrite)
underscores the significant role these actions play
in aiding retrieval. The experimental results from
the MultiHop-RAG dataset demonstrate that em-
ploying a simple, single-entity question format can
substantially improve retrieval effectiveness.

4.4 Robustness Test

We analyzed models with varying parametric capac-
ities to rigorously assess the robustness of our pro-
posed method’s reasoning capabilities. Figure 4 de-
picts the comparative performance of CoT with IR
(•) and ToQD with IR (△) on models ranging from
2B to over 100B parameters within the 2WikiMul-
tiHop subdataset (5k questions). The models eval-
uated encompass Gemma-2b (Team et al., 2024),
Chatglm-2-6B (GLM et al., 2024), LLama-2 se-
ries (Touvron et al., 2023), LLama-3 series (Dubey
et al., 2024), Mistral series (Jiang et al., 2023), and

3https://www.llamaindex.ai/

Figure 4: Evaluation of robustness across varying model
sizes on the 2WikiMultiHop dataset. Key: • indicates
CoT with IR; △ denotes ToQD with IR. Color varia-
tions represent different models, with model parameters
increasing from left to right.

the GPT series4. The analysis reveals that ToQD
with IR consistently outperformed CoT across all
tested parametric scales. This improvement is as-
cribed to implementing simpler prompt templates
without numerical examples, significantly reducing
the reliance on the models’ in-context learning ca-
pabilities. Consequently, these findings corroborate
the enhanced robustness of reasoning performance
afforded by ToQD compared to CoT.

5 Conclusion

This paper examines the limitations of integrat-
ing IR into LLMs from perspectives of reasoning
and knowledge while exploring how to more ef-
fectively utilize the inherent knowledge of LLMs
for addressing complex, knowledge-intensive tasks.
We introduce ToQD, a novel framework tailored to
facilitate efficient interaction between IR systems
and LLMs. ToQD methodically constructs a rea-
soning process by organizing sub-questions into a
topology graph and employs self-verify inference
to ascertain whether a sub-question requires further
decomposition, the retrieval of relevant documents
or can directly provide an answer. Experimental
results demonstrate that ToQD surpasses state-of-

4https://openai.com/

https://www.llamaindex.ai/
https://openai.com/
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the-art baselines in handling complex tasks and sig-
nificantly reduces interactions with IR, enhancing
reasoning efficiency. Additionally, ToQD’s simpli-
fied template extends its applicability across mod-
els with parameters ranging from 2B to over 100B,
showcasing robustness.

Limitations

In this paper, we introduced ToQD, a novel frame-
work intended to improve interactions between IR
systems and LLMs. A key aspect of our approach
involved utilizing self-verify inference to identify
the constraints of LLMs. Despite its utility, this
method has not achieved sufficient accuracy, high-
lighting a need for further research to enhance our
understanding of the inherent limitations of black-
box LLMs. This is crucial for assisting large mod-
els in accurately addressing knowledge gaps. Addi-
tionally, the tasks of self-verification and topology
graph construction were managed exclusively by
LLMs. Future work should focus on optimizing
these processes by investigating how smaller mod-
els might be employed to decrease dependency on
LLMs.
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baseline methods, which utilize at least two exam-
ples, the ToQD prompt templates employ 0 exam-
ples yet achieve superior performance, surpassing
competitive baselines. This approach significantly
enhances the applicability of the templates across
a range of models, with parameters extending from
2B to over 100B, by minimizing reliance on in-
context learning.

A.2 Supplementary Details for Main
Experiment Settings

The primary LLM utilized in this study segment
is gpt-3.5-turbo, sourced from the OpenAI API.
The top five documents from the Contriever-MS
MARCO (Izacard et al., 2022) indexed from
Wikipedia 2017 were employed for the knowledge
corpus. A single RTX 4090 GPU powers the corre-
sponding IR model. All LLM APIs were calibrated
with temperature and top_p parameters set to 0.1
to curtail randomness in the generated responses.
This configuration was pivotal in enabling LLMs
to ascertain their knowledge limitations during the
self-verify inference process. Moreover, the limit
of inference processes, rmax, is restricted to 6, a
measure to mitigate excessive cognitive extrapola-
tion and constrain the topology graph’s expansion
within the ToQD framework. Following method-
ologies such as DSP, Self-ASK, and SearChain,
the model was evaluated on complete development
datasets of MuSiQue and HotPotQA and selected
subsets of 2WikiMultiHopQA (5k questions) and
ELI5 (1.2k questions).

A.3 Supplementary Details for Retrieval
Experiment Settings.

MultiHop-RAG (Trivedi et al., 2022a) introduces
an innovative dataset designed to support queries
that require the retrieval and synthesis of multi-
ple evidence pieces, thus more accurately reflect-
ing real-world scenario complexities. The dataset
comprises 2,556 multi-query instances, such as
"Which company among Google, Apple, and Nvidia
reported the largest profit margins in their third-
quarter reports for 2023?", which necessitates com-
piling evidence from multiple documents to derive
an answer. It categorizes these multi-hop queries
into four types—Inference, Comparison, Tempo-
ral, and Null—each mirroring the complexities
often encountered in real-world situations. Con-
currently, the MultiHop-RAG dataset defines the
corpus content, enhancing the precision of search
experiments and tests. When retrieving the top_k

chunks, denoted as |Rq = K|, several retrieval
evaluation metrics are employed, including Mean
Average Precision at K (MAP@K), Mean Recip-
rocal Rank at K (MRR@K), and Hit Rate at K
(Hit@K). MAP@K assesses the average precision
of top-K retrievals across all queries, MRR@K
calculates the average reciprocal ranks of the first
relevant chunk for each query within the top-K set,
and Hit@K gauges the proportion of relevant evi-
dence within the top-K retrieved chunks. For this
experimental setup, ChromaDB5 was utilized as
the vector database, with gte-base(Li et al., 2023)
employed for embedding text chunks and facilitat-
ing retrieval, the size of each chunk being 256.

Detailed analyses of the four baseline methods6

employed in our retrieval experiment are presented
below:

(1) Native: This method straightforwardly re-
trieves relevant documents from the knowledge
source based on the query.

(2) HyDE: The Hypothetical Document Embed-
dings (HyDE) method improves retrieval by gener-
ating and embedding a hypothetical document to
represent a query, using this representation to find
and retrieve similar real documents effectively.

(3) SubQuestion: This approach employs a sub-
question query engine designed to address com-
plex queries using multiple data sources. Initially,
the method decomposes a complex query into sub-
questions tailored to each relevant data source. Sub-
sequently, it aggregates the intermediate responses
from these sources and synthesizes a comprehen-
sive final response.

(4) MultiQuery: This approach features a multi-
step query engine designed to decompose complex
queries into a series of sequential sub-questions,
enabling detailed and focused information retrieval
from various data sources.

A.4 Details of the Robustness Test

To rigorously evaluate the robustness of our pro-
posed method’s reasoning capabilities with IR, we
analyzed models with parametric capacities rang-
ing from 2 billion to over 100 billion parameters,
explicitly focusing on the 2WikiMultiHop sub-
dataset, which comprises 5,000 questions. The re-
maining baseline settings are consistent with those
of the main experiment. The ablation of 6 presents
the detailed improvements of ToQD with IR over

5https://www.trychroma.com/
6The API source is https://www.llamaindex.ai/

https://www.trychroma.com/
https://www.llamaindex.ai/
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2WikiMultiHopQA
Model CoT w/ IR ToQD w/ IR Imp (%)↑
gemma-2b 34.63 38.17 3.54
chatglm-2-6B 23.57 25.79 2.19
llama-2-7B 39.85 44.33 4.48
gemma-7B 40.14 41.95 1.81
mistral-7B 36.31 40.27 3.96
llama-3-8B 41.89 42.74 0.85
llama-2-13B 44.62 48.67 4.05
mistral-8*7B 42.88 52.10 9.22
llama-2-70B 43.83 49.50 5.67
llama-3-70B 42.17 45.63 3.46
gpt-3.5-turbo 41.01 51.06 10.05
gpt-4.0-turbo 48.73 56.14 7.41

Table 5: Robustness tests for models of various sizes in
2WikiMultiHopQA: CoT w/ IR vs. ToQD w/ IR. Red
text indicates ToQD’s accuracy percentage points lead
over CoT.

CoT with IR, with the enhancement ranging from
0.8% to 10.05%.

B Case study

In this section, we evaluate the efficacy of ToQD,
Direct, and CoT under various experimental con-
ditions, including scenarios without IR, with IR,
and in solely retrieval-focused contexts, within the
framework of a case study on generated content.
We also employ a case study of the ToQD overall
pipeline to analyze further why ToQD demonstrates
superior reasoning abilities compared to baselines
and to self-verify its inferences, thereby illustrating
what LLMs predominantly do not know.
Case study for ToQD vs. Baselines in Reasoning.
The case study associated with Table 6 delineates
the reasoning processes employed by ToQD ver-
sus baseline models in environments without IR in
three multi-hop reasoning question type: "Bridge,"
"Composition" and "Bridge and Composition".
Compared to baselines, ToQD enhances logical
clarity in reasoning by decomposing the input ques-
tions into sub-questions and analyzing their rela-
tionships to construct a topology graph. Further-
more, in scenarios without IR, ToQD employs self-
verify inferences to determine whether a direct
answer is feasible or if further decomposition is
required, thereby dynamically adjusting the reason-
ing process. This approach compels LLMs to exert
additional effort when confronted with intermedi-
ate difficulties, ultimately enabling them to address
complex questions effectively.
Case study for ToQD vs. Baselines with IR. The

Q: Who lived longer, Giuseppe Cesari or Nicos
Poulantzas? (Bridge)
Direct: Nicos Poulantzas lived longer than
Giuseppe Cesari. ✗

CoT: Nicos Poulantzas lived longer than Giuseppe
Cesari. Poulantzas was born on 1936, and passed
away on 1979, 43 years old. Giuseppe Cesari, also
known as Cavaliere d’Arpino, was born on 1568,
and died on 1640, 72 years old. ✗

ToQD: 1. What are the birth and death dates
of Giuseppe Cesari? Giuseppe Cesari was born
on 1568, and died on 1640. 2. What are the
birth and death dates of Nicos Poulantzas? Nicos
Poulantzas was born on 1936, and he passed away
on 1979. So. Giuseppe Cesari lived longer than
Nicos Poulantzas. Cesari lived for 72 years , while
Poulantzas lived for 43 years. ✓

Q: Who is Marie Zephyrine Of France’s paternal
grandmother? (Composition)
Direct: Marie Zéphyrine of France’s paternal
grandmother is Maria Josepha of Saxony. ✗

CoT: Marie Zéphyrine Of France’s paternal grand-
mother is Empress Maria Theresa of Austria. ✗

ToQD: 1. Who is Marie Zéphyrine Of France’s fa-
ther? King Louis XVI of France 2. whose father is
King Louis XVI of France? Marie Leszczyeska So,
Marie Zéphyrine of France’s paternal grandmother
is Marie Leszczyeska. ✓

Q: Which film has the director who was born later,
A Quiet Place In The Country or When Were You
Born? (Bridge, Composition)
Direct: The director of "When Were You Born"
was born later. ✗

CoT: To determine which film has the director who
was born later, we need to find out the birthdates of
the directors of both films. Let’s start by looking
up the birthdates of the directors of "A Quiet Place
In The Country" and "When Were You Born?".✗
ToQD: 1. Who is the director of "A Quiet Place In
The Country" The director of Elio Petri 2. What
is the birth date of Elio Petri? January 29, 1929.
3. Who is the director of "When Were You Born"?
Vondie Curtis-Hall 4. What is the birth date of
Vondie Curtis-Hall? September 30, 1956. So, the
final answer is The director of "A Quiet Place
In The Country" has the director who was born
later.✓

Table 6: Case study for ToQD vs Baselines in Reasoning
without IR in three different question types: (Bridge),
(Composition) and (Bridge, Composition). ✓ means
right, while ✗ is error. Red text is the right answer.
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case study associated with Table 7 delineates the
reasoning processes employed by ToQD versus
baseline models with IR environments for complex,
knowledge-intensive tasks. ToQD enhances the
precision of IR by decomposing multi-reasoning
questions into sub-questions that are as simple as
possible and involve only a single entity, thereby
improving document retrieval compared to direct
approaches. Furthermore, ToQD minimizes inter-
actions with IR by using self-verify inferences to
ascertain whether to retrieve relevant documents,
require further decomposition, or directly provide
an answer, as further substantiated in Table 7.
Case study for ToQD vs Baselines in Retriev-
ing. The case study corresponding to Table 8
delineates the process of retrieving relevant docu-
ments for complex, knowledge-intensive questions,
which are classified into two types: "Bridge" and
"Composition". As evidenced in Table 8, the strate-
gic decomposition of these questions into simpler,
single-entity sub-questions significantly improves
retrieval accuracy.
Case study for ToQD in Overall Pipeline. The
case study associated with Table 9 provides a de-
tailed examination of the overall ToQD pipeline,
applied to complex, knowledge-intensive questions
categorized into two distinct types: "Bridge" and
"Composition". This categorization facilitates a
nuanced understanding of the various mechanisms
employed by the ToQD pipeline to manage and
resolve multifaceted inquiry challenges.
Case study for ToQD in Self-Verify Inference.
The case study detailed in Table 10 lucidates
the mechanism by which LLMs utilize structured
prompts, specifically "Can you directly answer
the question ’question’", to autonomously ascer-
tain their capacity for direct question answering,
thereby enabling an assessment of their intrinsic
response capabilities.

C Prompts in Experiment

We present the comprehensive prompt template
utilized in the ToQD across Tables 11 though 19.
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Q: When did Burma change its name to the country of origin of Zaw Win Thet, that he represented at the
2012 Olympics?
A: 1989
Relevant Documents for CoT and ToQD:
1. single sculls rower Shwe Zin Latt competed at their second consecutive Olympics. Pistol shooter Maung
Kyu, who competed at his first Olympics, was the oldest member of the team, at age 41. Meanwhile,
track runner Zaw Win Thet, the youngest of the team, at age 21, was appointed by the committee to be
Myanmar’s flag bearer at the opening ceremony. Myanmar also marked its Olympic return in judo after
a twenty-year absence. Myanmar, however, has yet to win its first ever Olympic medal. Myanmar sent
archers to the Olympics for the fourth time, seeking the nation’s first Olympic medal in
2. training center is the Yangon City Development Committee Sports Centre. Bodybuilding in Burma
Bodybuilding in Burma has a long history, dating back to the 1936 Summer Olympics. Burmese
bodybuilders were competing internationally for the country in 2014. Myanmar Bodybuilding and
Physique Sports Federation is the national governing body. The country’s interest in weightlifting predates
the 1936 Summer Olympics in Berlin where Burmese weightlifter named Zaw Weik competed at the
Games, where for geopolitical reasons he was put on the Indian national team. He finished fifteenth. In
2013, Aung Swe Naing was the country’s most successful bodybuilder. He had won the
Direct:
Burma officially changed its name to Myanmar in 1936 . Therefore, Zaw Win Thet represented the
country of Myanmar at the 2012 Olympics. ✗

CoT:
To determine when Burma changed its name to the country of origin of Zaw Win Thet, we need to
consider the information provided in the texts. From the first text, we know that Zaw Win Thet represented
Myanmar at the 2012 Olympics. From the second text, we see that Zaw Weik, a Burmese weightlifter,
competed at the 1936 Summer Olympics in Berlin. This indicates that at that time, the country was known
as Burma. Therefore, based on the information provided, Burma changed its name to Myanmar before
Zaw Win Thet represented the country at the 2012 Olympics. ✗

ToQD:
q1: What was the original name of Burma before it changed to its current name?
a1: The original name of Burma before it changed to its current name was M̈yanmar.̈
q2: When did Myanmar change it name?
Relevant Documents for q2:
A weightlifter from what is now Myanmar, U Zaw Weik, competed for India in the 1936 Olympics. The
National Olympic Committee of Burma was formed in 1947 and recognized by the International Olympic
Committee (IOC) on 20 June 1947 at the IOC session in Stockholm. After gaining independence in 1948,
it made its Olympic début at the London Games that same year. It has competed at all Olympic Games
since then, with the exception of the 1976 Olympics. The country changed its name to Myanmar in May
1989, and has used that name at the Olympics since the 1992 Barcelona Olympics.
a2: May 1989
So, 1. What was the original name of Burma before it changed to its current name? The original name of
Burma before it changed to its current name was Myanmar 2. When did Myanmar change it name? May
1989. The final answer is May 1989. ✓

Table 7: Case study for ToQD vs Baselines with IR. ✓ means right, while ✗ is error. Red text is right answer.
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Q: Where was the composer of song The Trail Of The Lonesome Pine (Song) born? (Bridge)
Direct:
1. The Trail of the Lonesome Pine (song) The Trail of the Lonesome Pine" is a popular song published in
1913, with lyrics by Ballard MacDonald and music by Harry Carroll. ...
3. included "The Trail of the Lonesome Pine". Released as a single, the song reached No. 2 in the UK
Singles Chart, thanks largely to being championed by disc jockey John Peel on his Radio 1 evening show.
The song was also recorded by Vivian Stanshall and (as "Blue ...
4. Starring Sylvia Sidney, Henry Fonda, and Fred MacMurray, the film was nominated for an Academy
Award for Best Original Song for Louis Alter and Sidney D. Mitchellś "A Melody for the Sky." ...
ToQD:
q1: Who is the composer of song The Trail Of The Lonesome Pine (Song)?
1. The Trail of the Lonesome Pine (song) "The Trail of the Lonesome Pine" is a popular song published
in 1913, with lyrics by Ballard MacDonald and music by Harry Carroll. Inspired by John Fox, Jr. ..
2. novelś author: it was designated the "official outdoor drama" by the Commonwealth of Virginia in
1994, and is now the sixth longest running outdoor drama in the United States. The song was the favorite
song of Gertrude Stein. ...
q2: Where was Harry Carroll born?
1. Harry Carroll (November 28, 1892, in Atlantic City, New Jersey – December 26, 1962, in Mount
Carmel, Pennsylvania) was an American songwriter, pianist, and composer. ...
2. Angeles and became involved in early movies. ...
Q: Are Edmonton/Villeneuve Airport and Pembroke Airport located in the same country? (Composition)
Direct:
1. Edmonton/Villeneuve Airport Edmonton/Villeneuve Airport or Villeneuve Airport is located
west of Villeneuve in Sturgeon County, Alberta, Canada. The closure of the Edmonton City Centre
(Blatchford Field) Airport has stimulated expansion of the Villeneuve Airport as a partial replacement. ...
2. after year. Static displays ...
3. the facilities in 2015. Edmonton has scheduled daily non-stop service to all major Canadian cities and
several major US hubs including Denver, Las Vegas, Minneapolis, Phoenix and Seattle. ...
4. The show follows the airport’s day-to-day operations and how the staff are able to keep the airport
running smoothly, even during the extreme winter weather. ...
ToQD:
q1: Where was Edmonton/Villeneuve Airport located?
1. Edmonton/Villeneuve Airport or Villeneuve Airport is located west of Villeneuve in Sturgeon
County, Alberta, Canada. The closure of the Edmonton City Centre (Blatchford Field) ...
2. after year. Static displays and food services are expected to grow. Edmonton Economic Development
Corporation award the airshow the 2017 Outstanding Event award at the Edmonton Events Award Gala
for the 10,000+ category, ...
q2: Where was Pembroke Airport located?
1. Pembroke Airport (IATA: YTA, ICAO: CYTA) is located 5.2 nautical miles (9.6 km; 6.0 mi)
northwest of the city of Pembroke, Ontario, Canada. Pem-Air operated ...
2. Haverfordwest Airport Haverfordwest Airport, also known as Withybush Airport, is a minor airport
located north of Haverfordwest, Pembrokeshire. ...

Table 8: Case study for ToQD for vs Baslines in retrieving in two typical question type (Composition) and (Bridge).
Red text is the factual evidence.
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Q: Who is the mother of the director of film Polish-Russian War? (Bridge)
Q′: 1.What is the name of the director of the film Polish-Russian War?; 2.Who is the mother of the
director of the film Polish-Russian War?; 3.What is the relationship between the director of the film and
his mother?; 4.How can we determine the identity of the director’s mother based on available information?
Qrel: 1. What is the name of the director of the film Polish-Russian War? 2. Who is the mother of the
director of the film Polish-Russian War?
Gtop: 1 → 2 → Q
Self-verify for q1 ∈ Qrel: Can you answer the following question: ’What is the name of the director of
the film Polish-Russian War?’? If you couldn’t, just simple respond with ’NO!’; otherwise, please provide
a simple answer to the question. A: Xawery Żuławski.
Rewrite q2 for qnew based on the (q1, a1): q1: Who is the mother of the director of the film Polish-Russian
War? → qnew: Who is the mother of Xawery Żuławski?
Self-verify for qnew ∈ Qrel: Can you answer the following question: ’Who is the mother of Xawery
Żuławski?’? If you couldn’t, just simple respond with ’NO!’; otherwise, please provide a simple answer
to the question. A: NO!.
Retrieve D: Xawery Żuławski (born 22 December 1971 in Warsaw) is a Polish film director. In 1995
he graduated National Film School in Łódź. He is the son of actress Małgorzata Braunek and director
Andrzej Żuławski. ...
Self-verify for qnew: Given the context information: Xawery Żuławski ... Can you answer the following
question based on the context information: ’Who is the mother of Xawery Żuławski?’ If you could, please
provide the answer of the question. If not, simply respond with ’NO!’. A: Małgorzata Braunek
Summary: 1.What is the name of the director of the film Polish-Russian War? Xawery Żuławski. 2.Who
is the mother of Xawery Żuławski? Małgorzata Braunek. So, the answer is: Małgorzata Braunek ✓

Q: Which music group has more members, Bleeker or Bracket? (Composition)
Q′: 1. How many members are in the music group Bleeker? 2. How many members are in the music
group Bracket? 3. How can we compare the number of members in Bleeker and Bracket to determine
which group has more members?
Qrel: 1. How many members are in the music group Bleeker? 2. How many members are in the music
group Bracket?
Gtop: 1 → Q, 2 → Q

Self-verify for q1 ∈ Qrel: Can you answer the following question: ’How many members are in the music
group Bleeker?’? If you couldn’t, just simple respond with ’NO!’; otherwise, please provide a simple
answer to the question. A: Four.
Self-verify for q1 ∈ Qrel: Can you answer the following question: ’How many members are in the music
group Bracket?’? If you couldn’t, just simple respond with ’NO!’; otherwise, please provide a simple
answer to the question. A: Three.
Summary: 1.How many members are in the music group Bleeker? Four. 2.How many members are in
the music group Bracket? Three. So, the final answer is Bleeker ✓

Table 9: Case study for ToQD for overall pipeline in two typical question type in multi-hop question: "Bridge" and
"composition". ✓ means right, while ✗ is error. Red text is the LLM’s response.



2832

Relevant Context
[1]: Şemsettin Baş (born January 4, 1973, in Istan-
bul, Turkey) is a retired Turkish professional bas-
ketball player and lastly was head coach of CSO
Voluntari. At 6 ft 5.75 in (1.97 m), he played as a
shooting guard and small forward. He is of Bosniak
origin and cousin of former NBA and Euroleague
player Mirsad Türkcan.
[2]: Loïc Gwenc’hlan Le Scouëzec (11 November
1929, Plouescat, Finistère – 6 February 2008[1])
was a Breton medical doctor, writer, and Grand
Druid of Brittany.

Directly Prompt
q1: When was the Şemsettin Baş born?
a1: January 4, 1973 ✓

q1: When was the Loïc Gwenc’hlan Le Scouëzec
born?
a1: November 29, 1932 ✗

Self-verify
q1: Can you answer the following question: ’When
was the Şemsettin Baş born?’? If you couldn’t,
just simple respond with ’NO!’; otherwise, please
provide a simple answer to the question.
a1: Şemsettin Baş born in January 4, 1973 ✓

q2: Can you answer the following question: ’When
was the Loïc Gwenc’hlan Le Scouëzec born?’?
If you couldn’t, just simple respond with ’NO!’;
otherwise, please provide a simple answer to the
question. ✓

a2: NO!

Table 10: Awareness of Unknowns in Large Language
Models Case. ✓ means right, while ✗ is error. Red text
is the factual evidence.

Given the original question:
————————————
{original_question}
————————————
Your task is to decompose original question rea-
soning steps into 2 to 4 logically connected sub-
questions for helping students reason towards
the answers of the original question. Each sub-
question should capture diverse critical context
of the original question clearly, concisely and en-
tirely. These sub-questions should be logically
connected and are designed to guide students
towards constructing a comprehensive answer
through structured reasoning. Just output the
sub-questions like this: ’1. ...’

Table 11: Decompose the question Q into sub-questions
Q′.

Given the main question and its sub-questions:
————————————
Main question:’{original_question}’
Sub questions:{sub_questions}
————————————
Your task is to construct a topological graph to
analyze the reasoning process among the sub-
questions and between the sub-questions and the
main question. Represent the main question as
’Q’ and just label each sub-question by its re-
spective numbers. Use the symbol ’->’ to denote
the reasoning paths, where the left side question
(e.g., a sub-question) provides useful informa-
tion that helps answer the right side question
(e.g., the main question or another sub-question).
Ensure that all sub-questions are interconnected
in a way that they collectively and coherently
contribute to answer the main question. Clearly
depict individual arrows from each sub-question
pointing towards the main question or to another
sub-question that it helps to answer. This de-
tailed topology graph should are designed to
guide students towards constructing a compre-
hensive answer through structured reasoning.

Table 12: Construct the topology graph Gtop.

Given the main question and its sub-questions:
————————————
Main question:’{original_question}’
Sub questions:{sub_questions}
————————————
Your task is:
1. Filter out the sub-question cannot help stu-
dents reason towards the answers of the original
question.
2. Filter out the sub-question cannot capture
critical context of the original question clearly
and concisely.
3. Filter out the sub-question semantics repeti-
tion.

Table 13: Critique the irrelevant sub-questions.



2833

Given the question-answer dialog information:
————————————
{qa_dialog}
————————————
Please provide the answer of the question:
’{original_question}’.

Table 14: Summary the question-answer dialog to an-
swer the input question.

Given the answers from the sub-questions:
————————————
{qa_dialog}
————————————
Your task is to rewrite the main question: ’{ques-
tion}’ to just incorporate the answers from the
sub-questions directly into the main question.
Avoid repetition of the information already pro-
vided in the sub-questions. The new ques-
tion should be simply and concisely help stu-
dents reasoning the original question: ’{origi-
nal_question}’.

Table 15: Incorporate relevant information into the ques-
tion according to the reasoning sub-questions.

Can you answer the following question: ’{ques-
tion}’?
If you couldn’t, just simple respond with ’NO!’;
otherwise, please provide a simple answer to the
question.

Table 16: Self-verify to decide when to decompose the
question in the leaf node for Gtop.

Given the context information:
————————————
{context}
————————————
Can you answer the following question based on
the context information: ’{question}’
If you could, please provide the answer of the
’{question}’. If not, simply respond with ’NO!’.

Table 17: Self-verify to decide when to decompose the
question in the internal node for Gtop.

Given the original question and context:
————————————
Original question:{original_question}
Context:{context}
————————————
Your task is to identify aspects of the original
question that remain unresolved even with the
provided context. Decompose these unresolved
aspects int original question into two simple sub-
questions that are entirely separated from the
context. Decompose these unresolved aspects
for original question into a few sub-questions
that are entirely separated from the context. Each
sub-question should challenge students to infer
missing details or apply deeper understanding be-
yond the explicitly provided information. These
sub-questions should be focused on the unre-
solved aspects of original question and designed
to guide students towards constructing a compre-
hensive answer through structured reasoning.

Table 18: Decompose the leaf node question q into the
sub-question to add a child graph.

Given the original question and relevant infor-
mation:
————————————
Original question:{original_question}
Relevant information:{context} {qa_dialog}
————————————
Your task is to identify aspects of the original
question that remain unresolved even with the
relevant information. Decompose these unre-
solved aspects int original question into two sub-
questions that are entirely separated from the
relevant information. Each sub-question should
challenge students to infer missing details or
apply deeper understanding beyond the explic-
itly provided information. These sub-questions
should be focused on the unresolved aspects of
original question and designed to guide students
towards constructing a comprehensive answer
through structured reasoning.

Table 19: Decompose the internal node question q into
the sub-question to add a child graph Qchild .
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