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Abstract

Language Agent could be endowed with differ-
ent mechanisms for autonomous task accom-
plishment. Current agents typically rely on
fixed mechanisms or a set of mechanisms acti-
vated in a predefined order, limiting their adap-
tation to varied potential task solution struc-
tures. To this end, this paper proposes Adaptive
Language Agent Mechanism Activation Learn-
ing with Self-Exploration (ALAMA), which
focuses on optimizing mechanism activation
adaptability without reliance on expert mod-
els. Initially, it builds a harmonized agent
framework (UniAct) to Unify different mecha-
nisms via Actions. Then it leverages a training-
efficient optimization method based on self-
exploration to enable the UniAct to adaptively
activate the appropriate mechanisms accord-
ing to the potential characteristics of the task.
Experimental results demonstrate significant
improvements in downstream agent tasks, af-
firming the effectiveness of our approach in fa-
cilitating more dynamic and context-sensitive
mechanism activation.

1 Introduction

Language Agent (LA) (Sumers et al., 2024; Yao
et al., 2023; Xi et al., 2023; Gao et al., 2023) has
garnered considerable attention recently due to the
rapid advancements in Large Language Models
(LLMs) (OpenAI, 2024; AI@Meta, 2024; Yang
et al., 2023; Chowdhery et al., 2022; Radford et al.,
2018). Through the well-designed prompts and
carefully selected in-context demonstrations (Zhou
et al., 2024; Dong et al., 2023; Liu et al., 2021),
LLM-based agents can be endowed with different
mechanisms1 for environment interaction and task
solving. Existing LAs could benefit from distinct

*Kang Liu is the corresponding author.
1Here, mechanism is defined as the inherent ability of

the Language Agent which could be manifested as a special
workflow externally and activated by the specific prompting.
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Figure 1: Illustration of Language Agent with different
mechanisms. (a). Vanilla agent with fixed mechanisms
by In-Context learning. (b). ALAMA with different
mechanisms learn to fit into different environments by
Self-Exploration.

mechanisms for various tasks with unique solu-
tion structures (Zhou et al., 2024). For instance,
Reflexion (Shinn et al., 2023) is equipped with
Reflection mechanism to gain insightful re-
finement suggestions. And ReAct (Yao et al., 2023)
is equipped with External-Augmentation
mechanism to ground the solution trajectory with
additional evidence.

Despite the success of current LAs through afore-
mentioned direct prompting and in-context learn-
ing, named as manual mechanism activation, they
rely on fixed mechanisms or a predefined sequence
of mechanisms (Liu et al., 2023; Chen et al., 2023;
Song et al., 2024), as illustrated in Figure 1 (a). As
a result, such rigidity hampers activating the opti-
mal solution structures (mechanism) for a specific
task and also limits their adaptability to open-world
scenarios. There is compelling evidence that ora-
cle language agent mechanism activation, selecting
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the most appropriate mechanism for a task, can im-
prove the performance by over 15% compared to
fixed mechanism baselines (as shown in Section
5.1). Therefore, it highlights the significant poten-
tial of adaptive mechanism activation, the focus
of the paper, where mechanisms are adaptively ac-
tivated based on task characteristics, as shown in
Figure 1 (b). We view this as a critical kind of meta-
ability for LAs, and its enhancement could offer the
potential for better generalization in unseen tasks.

Intuitively, when humans encounter unfamiliar
tasks, they tend to first explore different solution
strategies and then select the most effective solu-
tion from previous experiences in similar tasks.
Inspired by this, to enable LAs to adaptively se-
lect suitable solution strategies (adaptive mech-
anism activation), this paper proposes Adaptive
Language Agent Mechanism Activation Learning
with Self-Exploration (ALAMA), a novel tech-
nique for learning adaptive mechanism activation
across various tasks. It first introduces a harmo-
nized agent framework to Unify existing known
mechanisms by Actions (UniAct). Compared with
previous agents which did not fully integrate var-
ious mechanisms (Yao et al., 2023) or only im-
plicitly incorporated specific mechanisms into the
thinking process without an explicit trigger (Zhou
et al., 2023), UniAct defines the workflows of
mechanisms as specific actions. In this way, differ-
ent mechanisms would share a unified action space.
When the agent triggers an action, the correspond-
ing mechanism is expected to be activated.

Secondly, to fulfill adaptive mechanism activa-
tion in LAs, our ALAMA adopts a self-exploration
fine-tuning way rather than simply prompting. Suf-
ficient high-quality trajectories with different acti-
vated mechanisms are important for model training
but not easy to acquire. To this end, ALAMA firstly
leverages self-exploration to obtain sufficient trajec-
tories for training. Compared with previous meth-
ods of acquiring trajectories through manual anno-
tation or distillation from proprietary models (Zeng
et al., 2023; Chen et al., 2023), self-exploration
could extremely decrease data acquisition costs
and alleviate the paucity of training signals. Specif-
ically, we manually activate different mechanisms
to facilitate multiple rounds of self-exploration.
Consequently, diverse solution trajectories are pro-
duced and then converted into the UniAct format.
To introduce implicit mechanism preferences to-
wards different tasks as well as fundamental in-
teraction and instruction-following capabilities for

the agent, this paper utilizes Implicit Mechanism
Activation Optimization (IMAO), which samples
subset of positive trajectories to fine-tune the LAs.

For further model training, different from exist-
ing exploration-based methods which use success-
failure pairwise data for behavior contrastive learn-
ing (Song et al., 2024; Yuan et al., 2024a), this
paper employs Mechanism Activation Adaptability
Optimization (MAAO) based on KTO algorithm
(Ethayarajh et al., 2024). KTO is a preference
learning algorithm that only requires binary signals
(desirable/ undesirable). In this way, the need for
assembling high-quality pairwise data (Rafailov
et al., 2023; Xie et al., 2024) is alleviated and all
trajectories with different rewards obtained during
the self-exploration phase could be utilized, which
makes training more efficient.

To validate the effectiveness of our proposed
method, the paper conducts extensive experi-
ments on mathematical reasoning (Cobbe et al.,
2021; Mishra et al., 2022; Patel et al., 2021) and
knowledge-intensive reasoning (Yang et al., 2018;
Joshi et al., 2017; Press et al., 2023) tasks. The
results show that ALAMA surpasses the baselines
by a large margin on both Held-in and Held-out
datasets, demonstrating its strong performance and
generalization.

In summary, our contributions are as follows:

• This paper analyzes the advantage of oracle
language agent mechanism activation and thus
claims that the adaptive mechanism activation
is a crucial meta-ability for Language Agents.

• This paper proposes Adaptive Language
Agent Mechanism Activation Learning with
Self-Exploration (ALAMA), which incor-
porates a harmonized agent framework to
unify different mechanisms and a training-
efficient optimization method based on self-
exploration.

• This paper conducts extensive experiments
to demonstrate the superior performance and
generalization of ALAMA. Further analysis
shows that it can outperform its counterparts
with fewer training data.

2 Background

With different prompts and demonstrations, the
agent can be equipped with different mechanisms
for better task-solving performance. This paper
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Thought:	The	playground	is	a	square	with	a	side	length	of	27	yards,	so	it	has	4	sides,	each	with	a	length	of	27	yards.	The	total	length	
of	fencing	for	the	playground	is	4	x	27	=	108	yards.	The	garden	is	a	rectangle	with	a	length	of	12	yards	and	a	width	of	9	yards. It	
has	2	longer	sides	and	2	shorter	sides.	The	total	length	of	fencing	for	the	garden	is	2	x	12	+	2	x	9	=	36	yards.	In	total,	the	playground	
and	garden	have	108	+	36	=	144	yards	of	fencing.	Action:	Finish[144]

Reason

Thought:	Devising	a	detailed	plan	before	solving	this	problem	may	be	helpful.	Action:	Make_plan
Observation:	Let's	first	understand	the	problem,	extract	relevant	variables	and	their	corresponding	numerals,	and	make	a	complete	plan.
Thought:	My	plan:	(the	plan	content	…	…)	Action:	Carry_out_plan
Observation:	Let's	carry	out	the	plan,	calculate	intermediate	variables	(pay	attention	to	correct	numerical	calculation	and	commonsense),	
solve	the	problem	step	by	step.
Thought:	The	playground	has	a	perimeter	of	…	Action:	Finish[150]

Plan

Thought:	Based	on	the	given	question,	I	will	retrieve	from	my	memory	to	get	a	similar	question	and	the	corresponding	wrong	solution	as
the	reference	to	avoid	such	type	of	errors	and	solve	the	given	problem	step	by	step.	Action:	Retrieve_memory
Observation:	Observation:	case:	(the	retrieved	wrong	case	…	…).	Try	to	avoid	such	type	of	errors.
Thought:	The	playground	has	a	square	fence	with	a	side	length	of	27	yards,	so	the	…	Action:	Finish[150]

Memory

Thought:	The	playground	has	a	square	fence	with	a	…	…	and	garden	have	108	+	36	=	144	yards	of	fencing. Action:	Reflect
Observation:	Reflection:	The	reasoning	path	is	correct.	…	…	The	answer,	144	yards,	is	accurate. Based	on	the	reflection	reviews,	please	
refine	the	thought	and	action.
Thought:	The	playground	has	a,	…	the	playground	and	garden	have	108	+	36	=	144	yards	of	fencing. Action:	Finish[144]

Reflection

Thought:	First,	I	should	calculate	the	perimeter	of	the	playground. Action:	Calculate[4	*	27]
Observation:	108
…	…
Thought:	The	total	amount	of	fencing	is	150	yards.	Action:	Finish[150]

Ext-Aug

Question:	There	is	a	playground	that	is	surrounded	by	a	square	fence	that	has	a	side	length	of	27	yards.	There	is	a	12	yard	by	9	yard garden	that	has	fencing	
around	it.	How	many	yards	of	fencing	do	the	playground	and	garden	have	together?
Answer:	150

Figure 2: The UniAct trajectory examples for five mechanisms. The underlined contents are generated by the vanilla
agent or from external feedback.

selects five essential agent mechanisms as the fo-
cus of our study: (1) Reason (Wei et al., 2022):
Directly obtaining the answer through step-by-step
reasoning. (2) Plan (Wang et al., 2023a; Zhou
et al., 2023): First understanding the task and de-
velop a plan to decompose it into smaller, more
easily solvable sub-tasks, and then progressively
solving each sub-task to arrive at the final an-
swer. (3) Memory (Sun et al., 2023; Gao et al.,
2024): Initially building a database of failed ex-
amples. During each subsequent task execution,
similar cases are retrieved from this database based
on task similarity (cosine of task description em-
bedding), and the agent could try to avoid simi-
lar errors. (4) Reflection (Shinn et al., 2023;
Madaan et al., 2023): Introducing a Critic Model
into the environment to reflect on the previously
reasoned answers by the agent when necessary. (5)
External-Augmentation (Yao et al., 2023;
Schick et al., 2023): Calling task-specific toolk-
its for solving different tasks, such as a calculator
for mathematical reasoning or a search engine for
knowledge-intensive reasoning. As shown in Fig-
ure 2, we demonstrate the examples of trajectories
with different mechanisms in UniAct format2. We
defer the implementation details of each mecha-
nism to the appendix D.

2We describe the UniAct format and how to transform the
agent trajectories into it in Section 3.

3 ALAMA: Adaptive Language Agent
Mechanism Activation Learning with
Self-Exploration

This section describes our method in detail. Firstly,
we introduce a harmonized agent framework to
unify existing known mechanisms (UniAct). Sec-
ondly, we elaborate on a self-exploration fine-
tuning method for enhancing the meta-ability of
adaptive mechanism activation. In specific, we
leverage Self-Exploration with manual mecha-
nism activation to sample various UniAct trajecto-
ries. Next, we employ Implicit Mechanism Activa-
tion Optimization (IMAO) and Mechanism Activa-
tion Adaptability Optimization (MAAO) to adapt
the agent to different tasks based on the recognized
characteristics and potential solution structures.

UniAct: Unify Agent Mechanisms by Ac-
tions Currently, ReAct (Yao et al., 2023)
serves as the foundational framework for LLM-
based agents, employing the Thought, Action,
Observation (τ, a, o as the abbreviation) for-
mat to govern agent control. This format only
unifies reasoning, action generation, and the ac-
quisition of feedback from external environments
into natural language space. Based on this, we
propose UniAct to integrate diverse mechanisms
into a unified framework explicitly. As depicted
in the upper of Figure 3 (a), we define distinct
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Reason	Traj.	𝑠!, # +	reward 𝑟!, #

Plan	Traj.	𝑠$, # +	reward 𝑟$, #

Memory	Traj.	𝑠%, # +	reward 𝑟%, #

Reflection	Traj.	𝑠&, # +	reward 𝑟&, #

Ext-Aug	Traj.	𝑠', # +	reward 𝑟', #

Finish

Make_plan,	Carry_out_plan,	Finish

Retrieve_memory,	Finish

Reflect,	Finish

Call_tool	(Calculator,	Wiki_search),	Finish

Self-Exploration
Unify	all	mechanisms
by	Actions Thought +

Thought:	…Observation:	…	Action:	Finish[150] Thought:…Observation:	…Action:	Finish[150]

Thought:	…	Observation:	…	Action:	Finish[150]Thought:	… Observation:	…	Action:	Finish[144]

Reason Plan Memory

Reflection Ext-Aug
Thought:	…	Action:	Finish[144]

𝒰!"#$ 𝒰"##$

Implicit	Mechanism	Activation	Optimization	(IMAO)
Finetune	with	positive	
UniAct	trajectories	
using	SFT loss

Finetune	with	postive	and	
negative	UniAct	trajectories	
using	KTO loss

Mechanism	Activation	Adaptability	Optimization	(MAAO)
Postive	UniAct	Trajs.

(a).	UniAct	trajectories	collection	with	Self-Exploration

(b).	Train	Language	Agent	for Adaptive Mechanism	Activation	with IMAO	and	MAAO
Negative	UniAct	Trajs.

Self-Exploration	with	Manual	
Mechanism	Activation:

UniAct_Transform	(Transfrom	the	original	ICL	format	to	our	UniAct	format,	form	𝒔𝟏)𝟓, 𝒋 to	𝒖𝟏)𝟓, 𝒋):
Plan:	The	playground	has	a	square	fence	with	a	side	…	…	We	need	to	calculate	the	yards	of	fencing	of	the	playground	…	…
Solution:	The	playground	has	a	perimeter	of	…	
Answer:	150

Thought:	Devising	a	detailed	plan	before	solving	this	problem	may	be	helpful.	Action:	Make_plan
Observation:	Let's	first	understand	the	problem,	extract	relevant	variables	and	their	corresponding	numerals,	and	make	a	complete	plan.
Thought:	My	plan:	(the	plan	content	…	…) Action:	Carry_out_plan
Observation:	Let's	carry	out	the	plan,	calculate	intermediate	variables	(pay	attention	to	the	correct	calculation	and	commonsense),	solve	the	problem	step	by	step.
Thought:	The	playground	has	a	perimeter	of	…	Action:	Finish[150]

𝒰"##$𝒰!"#$

+	Task	𝑡#
(In-Context	Learning	with	
Demonstration	𝑑!)')

(UniActTransform	with
𝑠!)', # )	

Figure 3: The illustration of ALAMA process. The UniAct trajectories are collected by Self-Exploration with
manual mechanism activation. For tasks with mechanism sensitivity, we use the corresponding positive trajectories
for Implicit Mechanism Activation Optimization, and utilize both positive and negative ones for Mechanism
Activation Adaptability Optimization.

Actions for each mechanism to unify the differ-
ent workflows into a shared action space. Specif-
ically, we define make_plan for detailed plan
generation, Carry_out_plan for plan execution,
Retrieve_memory to get potential error cases,
Reflect to get insightful correction suggestions
from the expert Critic model, Call_tool to invoke
external tools, and Finish to output the final re-
sults and terminate the solution trajectories. We
take the Thought as the thinking process before
generating the actions, and the Observation
as the environmental feedback. Furthermore, we
have adapted the external environment to not only
provide task-related feedback but also return appro-
priate prompt to facilitate the activation of corre-
sponding mechanisms. Details regarding the Uni-
Act format including the actions and corresponding
grounding prompts are provided in Appendix F.

Self-Exploration We refer to the base agent with
parameter θ as LAθ and all the mechanisms as

M = {mi}Ni=1. We construct a demonstration tra-
jectory di where only that specific mechanism mi is
activated. As shown in upper of Figure 3 (a), given
Tasks T = {tj}|T |

j=1, we manually activate different
mechanisms by prompting with the corresponding
di to get the exploration solution trajectory si,j and
corresponding reward ri,j . And then we transform
all these trajectories into UniAct format ui,j .

si,j , ri,j = LAθ(di, tj) (1)

ui,j = UniActTransform(si,j)

= (τ1, a1, o1, · · · , om−1, τm, am)i,j (2)

where τ, a, o represent thought, action, and observa-
tion respectively. For UniActTransform(·), we ex-
tract the self-generated contents and external feed-
back from the ICL solutions, and then fill them
into the UniAct format with explicit actions. As
depicted in the bottom part of Figure 3 (a), we show
a transformation example of Plan. Please refer
to the Appendix E for other mechanisms. Finally,
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we obtain all self-exploration UniAct trajectories U .
Furthermore, these trajectories will be used for self-
optimization towards better adaptive mechanism
activation.

U = {Uj}|T |
j=1 = {{ui,1}Ni=1, · · · , {ui,|T |}Ni=1} (3)

Notably, not every mechanism could fit all tasks
and obtain correct results. As illustrated in the
upper of Figure 3 (b), certain tasks are successfully
solved by specific mechanisms, while remaining
unsolved when the other are activated. We refer to
these as tasks with mechanism sensitivity.

IMAO: Implicit Mechanism Activation Opti-
mization To equip the model with the basic abil-
ity to follow the UniAct format in the zero-shot
setting and adaptively activate appropriate mecha-
nisms, we sample a subset of positive trajectories
from U for supervised fine-tuning, as shown in the
left bottom part of Figure 3 (b). To introduce im-
plicit preferences for different mechanisms across
tasks, we use the UniAct trajectories with r = 1 of
the tasks with mechanism sensitivity as the training
data, referred to as UIMAO.

Thoughts and actions are generated by the
vanilla agent, while observations are gathered from
the environment. Consequently, we compute the
next token prediction loss on thought τ and action
a, while masking the loss on observation o.

LIMAO(LAθ) = Eu∈UIMAO − logP (u|t) (4)
= Eu∈UIMAO − logP (am, τm, · · · , a1, τ1|t) (5)

= Eu∈UIMAO

[
−

m∑
k=1

logP (τk|ok−1, ak−1, · · · , t)

−
m∑

k=1

logP (ak|τk, ok−1, · · · , t)
]

(6)

where the t and u represent the task and the corre-
sponding self-generated trajectory.

MAAO: Mechanism Activation Adaptability
Optimization For all tasks with mechanism sen-
sitivity, we collect all corresponding trajectories as
training data, referred to as UMAAO. We treat those
with a reward equal to 1 as UMAAO-pos, and the
other as UMAAO-neg. Instead of only using positive
trajectories in IMAO, our MAAO utilizes the con-
trastive information between positive and negative
examples to update the agent using KTO loss (Etha-
yarajh et al., 2024). KTO is a preference learning
(Jiang et al., 2024) algorithm which can optimize
the model using binary feedback. The behavior of

the agent is biased towards positive examples and
away from negative ones. This approach enhances
the model’s meta-ability for adaptive mechanism
activation:

z0 = Et′∈UMAAO [KL(LAθ(u
′|t′)||LAref(u

′|t′))] (7)

v(t, u) = (−1)1(u∈UMAAO-pos)λpos/neg×

σ

(
β

(
z0 − log

LAθ(u|t)
LAref(u|t)

))
(8)

LMAAO(LAθ,LAref) = Eu∈UMAAO [λpos/neg − v(t, u)]
(9)

When u ∈ UMAAO-pos, (−1)1(u∈UMAAO-pos) = −1 ,
λpos/neg = λpos, and vice versa.

The pseudo-code of the optimization method is
shown in Algorithm 1.

4 Experiment

4.1 Setup

Model and Datasets We utilize GPT-3.5-turbo-
0125 as the closed-source model baseline, ac-
cessed through the OpenAI API. We employ Meta-
Llama3-8B-Instruct as the backbone for ALAMA.
For datasets, the paper employs the GSM8K
(Cobbe et al., 2021) and HotpotQA (Yang et al.,
2018) as Held-in tasks for exploration, training,
and testing. Additionally, we select NumGLUE
(Mishra et al., 2022), SVAMP (Patel et al., 2021),
TriviaQA (Joshi et al., 2017), and Bamboogle
(Press et al., 2023) as Held-out tasks to evaluate the
generalization performance. For dataset processing
details, please refer to Appendix A.

Baselines We select the following baselines for
comparisons, like (1) Fixed single mechanism
(Reason, Plan, Memory, Reflection and
External-Augmentation shown in Table 1):
we manually construct one in-context demonstra-
tion example to activate different mechanisms (2)
Average: The average performance of differ-
ent mechanisms. (3) Majority Voting: Se-
lecting the most consistent (Wang et al., 2023b)
answer among the solutions obtained by activat-
ing different mechanisms as the final answer. (4)
Self-Adapt Consistency: We apply self-
consistency (Wang et al., 2023b) technique to
ALAMA. For training and inference details, please
refer to Appendix B.

4.2 Main Results

Adaptive Mechanism Activation outperforms
fixed Manual Mechanism Activation. As
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Mathematical Reasoning (Acc) Knowledge-intensive Reasoning (EM)

Held-in Held-out Held-in Held-out

GSM8K NumGLUE SVAMP HotpotQA TriviaQA Bamboogle

GPT-3.5-turbo (one-shot Activation)

Reason 63.91 60.63 71.20 22.20 28.80 28.80
Plan 77.94 59.84 83.40 22.80 51.20 37.60
Memory 76.42 65.75 81.10 25.80 55.60 44.80
Reflection 79.38 66.14 86.10 30.80 60.80 41.60
External-Augmentation 70.66 70.47 79.00 22.20 44.00 30.40
Average 73.66 64.57 80.16 24.76 52.16 36.64
Majority Voting 82.25 66.54 86.30 28.40 56.00 41.60

Llama-3-8B-Instruct (one-shot Activation)

Reason 73.08 41.73 66.10 17.60 41.40 29.60
Plan 77.56 68.11 82.90 19.80 44.40 31.20
Memory 77.03 70.47 77.80 16.20 41.20 30.40
Reflection 80.06 74.40 85.90 26.00 55.80 37.60
External-Augmentation 71.80 61.02 75.80 15.80 38.60 20.80
Average 75.90 63.15 77.70 19.08 44.28 29.92
Majority Voting 82.71 70.87 85.50 21.60 48.60 37.60

ALAMALlama-3-8B

IMAO 78.77 72.83 83.30 24.00 40.40 27.20
IMAO + MAAO 82.18 78.35 88.20 27.60 43.60 32.80
Self-Adapt Consistency 85.06 79.13 89.80 31.00 49.40 36.80

Table 1: Performance of different methods. We use Accuracy and EM as metric for Mathematical Reasoning and
Knowledge-intensive Reasoning.

shown in Table 1, ALAMA outperforms all single
mechanism baselines and the average performance
of different mechanisms on the Held-in tasks. We
consider the Average as the bottom performance for
introducing multiple mechanisms into one agent.
After IMAO (supervised learning), ALAMA sur-
passes the Average by 2.87 on GSM8K and 4.92
on HotpotQA, indicating that it has the ability to
adaptively activate different mechanisms based on
the task characteristics.

Furthermore, after MAAO (preference learning),
ALAMA continues to improve by 3.41 on GSM8K
and 3.60 on HotpotQA. This suggests that MAAO
can enhance the adaptability of the agent to poten-
tial solution structures of different tasks. Behavior
contrastive learning enables the model to preferen-
tially activate certain specific mechanisms while
refusing to activate the remaining ones. For ex-
ample, in manual activation, Plan outperforms
Reason by 4.48 on GSM8K. After MAAO, when
the agent encounters specific complex mathemati-
cal reasoning tasks that can not be solved directly
through reasoning, it recognizes that direct reason-
ing may lead to incorrect answers and thus chooses
to analyze the sub-problems in the question first,
decompose the problem, and solve them individu-
ally, ultimately summarizing the answers. ALAMA
based on Llama-3-8B-Instruct outperforms GPT-

3.5-turbo average on Held-in tasks after ALAMA,
demonstrating the superior effectiveness.

Compared to all fine-tuning baselines shown in
the upper of Table 2, the introduction of multiple
mechanisms in ALAMA demonstrates significant
performance gains, which adequately exemplifies
the superiority of adaptive mechanism activation
learning techniques.

Agent GSM8K (Acc)

Fine-tuning Baselines

FireActLlama-2-7B (Chen et al., 2023) 56.10
LumosLlama-2-7B (Yin et al., 2024b) 54.90
WizardMathLlama-2-13B (Luo et al., 2023) 63.90
ToRALlama-2-13B (Gou et al., 2024) 72.70
HuskyLlama-2-13B (Kim et al., 2024) 79.40
HuskyLlama-3-8B (Kim et al., 2024) 79.90
MAmmoTH2-8BLlama-3-8B (Yue et al., 2024) 70.40
MAmmoTH2-8B-PlusLlama-3-8B (Yue et al., 2024) 84.10

Train on Self-Exploration Data

ALAMALlama-3-8B-SFT 78.77
ALAMALlama-3-8B-DPO 80.52
ALAMALlama-3-8B-KTO 82.18

Table 2: Fine-tuning based Language Agent perfor-
mance comparison. ALAMA with multiple mechanisms
optimized with efficient adaptive learning using less data
demonstrates suprior performance.

ALAMA outperforms SoTA fine-tuning base-
lines with more efficient data acquisition and
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training. The agent data employed for fine-
tuning baselines as presented in Table 2 are all
curated by expert models or humans. However,
our ALAMA surpasses these baselines merely by
relying on self-exploration, which is more effi-
cient. More specifically, Husky is trained on agent
trajectories from 10 datasets including GSM8K,
MATH, and TabMWP. SoTA agent Mammoth2-
Plus first collects over 10 million instruction data
using a complicated pipeline to enhance the rea-
soning ability and then uses math instruction
datasets (including GSM8K and MATH) for su-
pervised fine-tuning. Our ALAMALlama-3-8B-KTO
uses only GSM8K for training. Despite having
much more training data, Husky underperforms and
Mammoth2-Plus is only about 2% higher in perfor-
mance than ALAMALlama-3-8B-KTO, fully demon-
strating the data efficiency of ALAMA.

In addition, we introduced a DPO (Rafailov
et al., 2023) based counterpart, i.e.
ALAMALlama-3-8B-DPO. The positive and
negative trajectories in UMAAO are then paired into
multiple preference pairs for DPO training. This
pairing approach leads to increased training costs.
Experiment results demonstrate that KTO yields
better results, further highlighting the efficiency
and effectiveness of our method.

ALAMA demonstrates superior generalization
on Held-out tasks. Apart from testing on the
Held-in datasets, we have also selected four Held-
out datasets for evaluation under the zero-shot set-
ting. On NumGLUE and SVAMP, ALAMA out-
performs the best baseline by 3.95 and 2.3, respec-
tively. With the assistance of Self-Adapt Consis-
tency, ALAMA surpasses 4.73 and 3.9, respec-
tively. Additionally, ALAMA also outperforms
most baselines, including Average, on TriviaQA
and Bamboogle. This adequately demonstrates the
effectiveness and generalization of our proposed
method.

Self-Adapt Consistency outperforms manual
mechanism activation based Majority Voting.
On GSM8K, the performance obtained by select-
ing the majority answer from the different mecha-
nisms significantly surpasses the performance of all
individual mechanisms as well as the average per-
formance. We consider this as a strong baseline for
the comprehensive utilization of multiple mecha-
nisms. For a fair comparison, we sample 5 times for
Self-Adapt consistency. It exceeds the above strong
baseline by 2.35 and 9.4 on GSM8K and HotpotQA
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Figure 4: Mechanism specificity analysis results on
GSM8K. OLAMA represents oracle mechanism activa-
tion, which selects the most appropriate mechanism
for each task. Solved-by-All represents that cor-
responding tasks could be solved by all mechanisms
respectively. And Residual represents the perfor-
mance gap (yellow part) between different mechanisms
and Solved-by-All, which shows the specificity.

respectively, indicating that the fine-tuned ALAMA
possesses the ability to adaptively activate different
mechanisms. With the help of random sampling,
ALAMA activates the most effective task-specific
mechanisms to generate diverse trajectories, ulti-
mately achieving better performance.

5 Analysis

5.1 The Specificity of Different Mechanisms

This subsection tries to investigate the impact of
different mechanisms on downstream task perfor-
mance. In detail, we choose Llama3-8B-Instruct
(AI@Meta, 2024) as the vanilla agent and GSM8K
as the agent task. As shown in Figure 4, only
42.61% tasks could be solved by all fixed single
mechanism baselines. This result suggests that
more than 50% of tasks are of mechanism sensi-
tivity. For instance, certain tasks require external
knowledge, while others may encounter conflicts
upon the introduction of such knowledge. Conse-
quently, we believe that different tasks possess dis-
tinct underlying solution structures. Moreover, the
oracle mechanism activation results demonstrate
that the model can solve 96.89% of the tasks with
the aid of selecting the correct mechanism, high-
lighting that adaptive mechanism activation has
a very high ceiling performance. This suggests
a significant potential for identifying the inherent
characteristics of tasks and their solution structures.
Our ALAMA still falls short of the performance
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ceiling, which anticipates further optimization of
the mechanism activation methods.

5.2 The Effects of Mixing Different
Mechanism Data

To investigate the impact of individual and mixed
mechanisms data on the performance of the agent,
we divided UIMAO and UMAAO based on different
mechanisms. For UMAAO, we segment it accord-
ing to the mechanisms activated by the positive
examples, and incorporated all negative examples
of the corresponding tasks into the training set. For
IMAO, we employed Meta-Llama-3-8B-Instruct as
the base model, whereas for MAAO, we utilized
ALAMAIMAO as the base model.

In IMAO, we observed that fine-tuning the
model using single-mechanism trajectories leads
to underperformance, as the use of original data
does not effectively enhance the performance un-
der the zero-shot setting. We hypothesize this
may be due to insufficient training data resulting
from data segmentation. After sampling more data
corresponding to the specific mechanisms for fur-
ther fine-tuning, it still could not significantly im-
prove the performance of the agent. These perfor-
mances are shown as ’original’ and ’aug’ in Table
3. This suggests that under the single-mechanism
activation setting, the quality of trajectories gen-
erated through self-exploration is insufficient for
the agent to achieve performance comparable to In-
Context Learning, and it might require using expert-
generated models to attain higher performance.
Furthermore, we found that the performance using
UIMAO for training far exceeds that achieved with
single-mechanism data, proving the superiority of
mixed-mechanism data fine-tuning. In MAAO, the
performance using multiple mechanisms for fine-
tuning also surpasses that using single-mechanism
data. This indicates that an agent has mechanism
preferences for different tasks, which aligns with
the Residual performance presented in Figure 4.
However, the performance gap between full data
and partial data is not as pronounced in IMAO as it
is in MAAO, suggesting that IMAO plays a more
crucial role in agent meta-ability acquisition.

6 Related Work

6.1 Language Agent

To achieve better autonomous task accomplish-
ment, the research community has designed many
Language Agent Frameworks like ReAct (Yao

Data Number Acc

IMAO

Reason original / aug 251 / 1300 25.47 / 36.01
Plan original / aug 264 / 1300 28.73 / 36.69
Memory original / aug 240 / 1300 37.23 / 43.29
Reflection original / aug 248 / 1300 47.08 / 46.63
External-Aug original / aug 254 / 1300 37.76 / 43.97

Full 1257 78.77

MAAO

Reason original 2403 81.43
Plan original 2396 79.00
Memory original 2390 78.77
Reflection original 2524 80.21
External-Aug original 1618 70.51

Full 7120 82.18

Table 3: The performance of training agent using differ-
ent parts of data. Number means the number of the data
used in training.

et al., 2023), Reflexion (Shinn et al., 2023), and
Multi-Agent Debate (Du et al., 2023; Liang et al.,
2023; Liu et al., 2024). However, these frameworks
are labor-intensive for prompt design and work only
for big foundation models which are opaque, pro-
prietary, and API-based (OpenAI, 2022; Anthropic,
2023), hindering the research of inherent mech-
anisms. Another effective technique is adapting
open-sourced LLM to LA by imitation fine-tuning
(Ho et al., 2023; Zeng et al., 2023; Chen et al.,
2023; Xu et al., 2024; Yin et al., 2024a; Wang
et al., 2024a; Chen et al., 2024a; Yin et al., 2024b).
High-reward trajectories are collected by reformat-
ting golden rationales (Anonymous, 2024) or dis-
tilling from ChatGPT (OpenAI, 2022; Chen et al.,
2023). These endow smaller models with abilities
like planning, reasoning, and reflection. But these
LAs are limited as they do not explore the task
environments for interactive self-improvement. Ex-
ploration fine-tuning (Song et al., 2024; Yang et al.,
2024; Wang et al., 2024b) has gained attention re-
cently as it shows potential for self-improvement.

6.2 Self-evolution of Large Language Model

Self-evolution is crucial for Large Language Mod-
els (Huang et al., 2023; Tao et al., 2024; Lu et al.,
2024). Techniques like ReST ((Gulcehre et al.,
2023)), self-rewarding ((Yuan et al., 2024b)), and
self-play ((Chen et al., 2024b)) achieve it via itera-
tive generation and optimization. As LLMs evolve
beyond human intelligence, more weakly super-
vised automatic feedback signals are needed for
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self-evolution (e.g., (Burns et al., 2023; Cao et al.,
2024)). The approach in this paper is also a method
for LLM self-evolution.

7 Conclusion

In this paper, we propose Adaptive Language
Agent Mechanism Activation Learning with Self-
Exploration (ALAMA). We observed that numer-
ous tasks exhibit mechanism sensitivity. And
the oracle mechanism activation exhibits stronger
performance than fixed baselines. To this end,
we unify different agent mechanisms by actions
(UniAct) into a harmonized agent framework.
Moreover, we utilize an adaptive mechanism
activation optimization method based on self-
exploration, which requires less data than previ-
ous SoTA agents and is training-efficient. Ex-
tensive experiments demonstrate the effectiveness
and generalization of our proposed method. Fur-
ther analysis shows that increasing the number of
mechanisms and integrating trajectory data from
different mechanisms are crucial for enhancing
agent performance. Code will be available at
https://github.com/hzy312/alama.

Limitations

In this paper, the discussion of adaptive mechanism
activation is limited to the activation of a single
mechanism and does not address the simultane-
ous activation of multiple mechanisms. Activat-
ing various mechanisms concurrently could offer
additional benefits; however, it also increases the
complexity of learning adaptive mechanism activa-
tion. Therefore, we consider this an area for future
work to be explored subsequently. Moreover, in
Section 5.2, we discuss only the effects of full data
and single-mechanism data, omitting the impact
of mixing data from different mechanisms. The
five mechanisms discussed in this paper could lead
to 25 − 1 possible combinations, and our limited
computational resources did not allow for the eval-
uation of all possibilities. We plan to incorporate
these data in a formal version later for further dis-
cussion.
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A Data

Dataset #Train #Test

GSM8K 7473 1319
NumGLUE 0 254
SVAMP 0 1000
HotpotQA 10000 500
TriviaQA 0 500
Bamboogle 0 125

Table 4: The statistic of data used in our experiments.

For datasets with large test sets, we perform
down-sampling. Furthermore, to increase the dif-
ficulty of the test sets, we filter out some rela-
tively simpler data points in some datasets. For
HotpotQA, we have filtered out questions that can
be answered with "yes" or "no", and then sample
10000 from the train split. For HotpotQA and Triv-
iaQA, we have sampled 500 questions from the dev
split as the test set.

B Training and Inference

IMAO

Key Value
epoch 4
batch size 8
learning rate 1e-6
learning rate scheduler cosine
warmup ratio 0.1

MAAO

Key Value
epoch 2
batch size 16
learning rate 1e-7
learning rate scheduler cosine
warmup ratio 0.1
λDnD
λUnU

4/3

Table 5: Hyperparameters for training.

For LLMs training, we employ TRL (von Werra
et al., 2020) and Deepspeed (Rasley et al., 2020)
as the frameworks to conduct full fine-tuning. Due
to the limited availability of our computational re-
sources, we utilize Zero3+offload (Ren et al., 2021)
during the fine-tuning process. The hyperparame-
ters are listed in 5. For LLMs inference, we utilize
vllm (Kwon et al., 2023) for acceleration.

https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2405.03548
https://arxiv.org/abs/2405.03548
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://arxiv.org/abs/2402.03620
https://arxiv.org/abs/2402.03620


2880

C Algorithm

Algorithm 1 ALAMA: Adaptive Language Agent
Mechanism Activation with Self-Exploration

Require: M = {mi}5i=1; D = {di}5i=1; T =

{tj}|T |
j=1; LAθ

1: U ,R ← ∅ ▷ Initialize UniAct Trajectory and
Reward set

2: for i← 1 to 5 do ▷ Self-Exploration
3: for j ← 1 to T do
4: si,j , ri,j ← LAθ(di, tj)
5: ui,j ← UniActTrans(si,j)
6: U .append(ui,j),R.append(ri,j)
7: end for
8: end for
9: UIMAO,UMAAO-pos,UMAAO-neg ← ∅

▷ Initialize IMAO set and MAAO set
10: for j ← 1 to T do
11: if ∀i ∈ [1, 5], ri,j = 1 then
12: pass
13: else
14: for i← 1 to 5 do
15: if ri,j == 1 then
16: UMAAO-pos.append(ui,j)
17: else
18: UMAAO-neg.append(ui,j)
19: end if
20: end for
21: end if
22: end for
23: UIMAO ← UMAAO-pos
24: Update LAθ with Implicit Mechanism Activa-

tion Optimization LIMAO on UIMAO
25: Update LAθ with Mechanism Activation

Adaptability Optimization LMAAO on UMAAO
26: return LAfinal

D Implementation of Different
Mechanisms

Existing works have significantly enhanced the abil-
ity of LLM to solve different tasks through different
prompting methods. For example, CoT (Wei et al.,
2022) can improve reasoning ability, and Reflexion
(Shinn et al., 2023) can enhance the ability to find
errors and self-repair. These different prompting
methods can endow the Agent based on LLM with
different capabilities to adapt to different task en-
vironments. We regard these different capabilities
as different mechanisms of the Agent and believe
that endowing the Language Agent with different

mechanisms can bring different benefits for perfor-
mance improvement. We use In-Context Learning
to activate the corresponding mechanism. Below,
we will map the mechanisms to the correspond-
ing prompting methods to show how to implement
them and clarify the benefits brought by different
mechanisms.
Reason -> CoT (Wei et al., 2022): Chain-

of-thought significantly improves the performance
of the model in downstream tasks by explicitly
making the model generate the reasoning process.
This prompting method can endow the Language
Agent with the reasoning ability.
Plan -> Plan-and-Solve (Wang et al.,

2023a): Plan-and-Solve first decomposes the task
and then solves the sub-tasks step by step to obtain
the final answer. This method can decompose dif-
ficult tasks into multiple simple and easy-to-solve
tasks to improve performance. This prompting
method can enhance the planning and task decom-
position ability of the Language Agent.
Memory -> ExpNote (Sun et al., 2023): We

first inference on the training set of the Held-in
tasks with CoT method and collect all the wrong
trajectories, treating all these errors as a wrong-
answer notebook. During testing, we search in
the wrong-answer notebook, retrieve similar prob-
lems, and explicitly prompt the LLM not to make
similar mistakes. We use the text-embedding-3-
small3 from OpenAI as the embedding model. This
prompting method can enhance the ability of the
Language Agent to utilize past experience.
Reflection -> Reflexion (Shinn et al.,

2023): Reflexion finds and corrects possible errors
in the previous steps through the reflection method.
It is well belived that self-generation reflection
(Huang et al., 2024) might deteriorate the perfor-
mance, so we choose the Deepseek-V2 (DeepSeek-
AI et al., 2024) as the expert Critic Model. This
prompting method can enhance the ability of the
Language Agent to find errors and self-repair.
External-Augmentation -> ReAct

(Yao et al., 2023): This method gives LLM
the ability to call tools and borrow external
capabilities to improve the performance of the
model. For example, a calculator can be called
in math tasks, and a search engine can be called
in knowledge-intensive reasoning tasks. This
prompting method can significantly expand the

3https://platform.openai.com/docs/guides/embeddings/embedding-
models
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ability boundary of the Language Agent.

E UniActTransform

The corresponding extracted contents descripted
below are filled into the UniAct format in Appendix
F.
Reason: We extract the thought and answer

from the ICL trajectories and fill them into the
UniAct format.
Plan: We extract the plan, thought and answer

from the ICL trajectories and fill them into the
UniAct format.
Memory: We retrieve the failed case and extract

the thought and answer from the ICL trajectories
and fill them into the UniAct format.
Reflection We extract the first-generated

thought, reflection reviews from the expert Critic
model, and second-generated thought and corre-
sponding answer to fill into the UniAct format.
External Augmentation: We extract the

external tool output (calculator results or search
engine results) to fill into the UniAct format.

F Prompt of UniAct

We show the UniAct format template
used in this paper. We show the system,
Reason, Plan, Memory, Reflection,
External-Augmentation prompt for math-
metical reansoning and knowledge-intensive
reasoning tasks in Table 6-11 and Table 12-17.
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system

You are an agent that has five important mechanisms for solving a problem: Reason, Plan, Augmenta-
tion, Reflection, Memory.
Reason: The agent will do reasoning to solve a problem step by step.
Plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the problem
Augmentation: The agent will interleave the reasoning and action to solve the problem. The action will
call the Calculator for more precise numerical calculation.
Reflection: After reasoning, the agent will reflect on the previous reasoning and corresponding answer
and get critic reviews. Based on the reviews, the agent will refine its reasoning and answer again.
Memory: The agent has a memory database of failed reasoning trajectories. For each question, the
agent will retrieve failed case from the memory as the reference to avoid such type of errors.
You can use these mechanisms to solve problems.
You have to think and solve the problem step-by-step with interleaving Thought, Action, Observation
steps.
Thought is your reasoning process.
Action could be:
−Make plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the
problem.
− Carry out plan: The agent will carry out the plan step by step to solve the problem.
− Reflect: The agent will reflect on the previous reasoning and corresponding answer and get critic
reviews. Based on the reviews, the agent will refine its reasoning and answer again.
− Retrieve memory: The agent will retrieve failed case from the memory as the reference to avoid such
type of errors.
− Calculate: The agent will call the Calculator for more precise numerical calculation. Using format:
Calculate[the expression]
− Finish: The agent will give the final answer.
Observation is the feedback from the environment.
The answer needs to be a number and cannot contain other characters.
Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Table 6: System prompt of UniAct for Mathematical Reasoning.

Reason

Environment: Task: {task}
Agent: Thought: {thought} Action: Finish[{answer}]

Table 7: Reason format of UniAct for Mathematical Reasoning.
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Plan

Environment: Task: {task}
Agent: Thought: Devising a detailed plan before solving this problem may be helpful. Action: Make
plan
Environment: Observation: Let’s first understand the problem, extract relevant variables and their
corresponding numerals, and make a complete plan.
Agent: Thought: My plan: {plan} Action: Carry out plan
Environment: Observation: Let’s carry out the plan, calculate intermediate variables (pay attention
to correct numerical calculation and commonsense), solve the problem step by step.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 8: Plan format of UniAct for Mathmetical Reasoning.

Memory

Environment: Task: {task}
Agent: Thought: Based on the give question, I will retrieve from my memory to get a similar question
and the corresponding wrong solution as the reference to avoid such type of errors and solve the given
problem step by step. Action: Retrieve memory
Environment: Observation: Case: {case}. Try to avoid such types of errors.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 9: Memory format of UniAct for Mathematical Reasoning.

Reflection

Environment: Task: {task}
Agent: Thought: {pre thought} Action: Reflect
Environment: Observation: Reflection: {reflection} Based on the reflection reviews, please refine
the thought and action.
Agent: Thought: {post thought} Action: Finish[{answer}]

Table 10: Reflection format of UniAct for Mathematical Reasoning.

External Augmentation

Environment: Task: {task}
Agent: Thought: {thought} Action: Calculate[{expression}]
Environment: Observation: {result}
...
Agent: Thought: {thought} Action: Finish[{answer}]

Table 11: External Augmentation format of UniAct for Mathematical Reasoning.
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system

You are an agent that has five important mechanisms for solving a problem: Reason, Plan, Augmenta-
tion, Reflection, Memory.
Reason: The agent will do reasoning to solve a problem step by step.
Plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the problem
Augmentation: The agent will interleave the reasoning and action to solve the problem. The action will
call the Wikipedia Search for more precise knowledge.
Reflection: After reasoning, the agent will reflect on the previous reasoning and corresponding answer
and get critic reviews. Based on the reviews, the agent will refine its reasoning and answer again.
Memory: The agent has a memory database of failed reasoning trajectories. For each question, the
agent will retrieve failed case from the memory as the reference to avoid such type of errors.
You can use these mechanisms to solve problems.
You have to think and solve the problem step-by-step with interleaving Thought, Action, Observation
steps.
Thought is your reasoning process.
Action could be:
−Make plan: The agent will devise a detailed plan and then carry out the plan step by step to solve the
problem.
− Carry out plan: The agent will carry out the plan step by step to solve the problem.
− Reflect: The agent will reflect on the previous reasoning and corresponding answer and get critic
reviews. Based on the reviews, the agent will refine its reasoning and answer again.
− Retrieve memory: The agent will retrieve failed case from the memory as the reference to avoid such
type of errors.
− Search, which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search. Using format: Search[entity]
− Lookup, which returns the next sentence containing keyword in the current passage. Using format:
Lookup[keyword]
− Finish: The agent will give the final answer.
Observation is the feedback from the environment.
Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Table 12: System prompt of UniAct for Knowledge-intensive Reasoning.

Reason

Environment: Task: {task}
Agent: Thought: {thought} Action: Finish[{answer}]

Table 13: Reason format of UniAct for Knowledge-intensive Reasoning.
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Plan

Environment: Task: {task}
Agent: Thought: Devising a detailed plan before solving this problem may be helpful. Action: Make
plan
Environment: Observation: Let’s first understand the problem, decompose the question if necessary,
and make a complete plan.
Agent: Thought: My plan: {plan} Action: Carry out plan
Environment: Observation: Let’s carry out the plan, get the intermediate answers explicitly step-by-
step, and integrate these evidences to get the final anwer.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 14: Plan format of UniAct for Knowledge-intensive Reasoning.

Memory

Environment: Task: {task}
Agent: Thought: Based on the given question, I will retrieve from my memory to get a similar
question and the corresponding wrong solution as the reference to avoid such types of errors and solve
the given problem step by step. Action: Retrieve memory
Environment: Observation: Case: {case}. Try to avoid such types of errors.
Agent: Thought: {thought} Action: Finish[{answer}]

Table 15: Memory format of UniAct for Knowledge-intensive Reasoning.

Reflection

Environment: Task: {task}
Agent: Thought: {pre thought} Action: Reflect
Environment: Observation: Reflection: {reflection} Based on the reflection reviews, please refine
the thought and action.
Agent: Thought: {post thought} Action: Finish[{answer}]

Table 16: Reflection format of UniAct for Knowledge-intensive Reasoning.

External Augmentation

Environment: Task: {task}
Agent: Thought: {thought} Action: Search[{entity}] or Lookup[{keyword}]
Environment: Observation: {result}
...
Agent: Thought: {thought} Action: Finish[{answer}]

Table 17: External Augmentation format of UniAct for Knowledge-intensive Reasoning.
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