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Abstract

State-of-the-art Large Multi-Modal Models
(LMMs) have demonstrated exceptional capa-
bilities in vision-language tasks. Despite their
advanced functionalities, the performances of
LMMs are still limited in challenging scenar-
ios that require complex reasoning with mul-
tiple levels of visual information. Existing
prompting techniques for LMMs focus on ei-
ther improving textual reasoning or leverag-
ing tools for image preprocessing, lacking a
simple and general visual prompting scheme
to promote vision-language coordination in
LMMs. In this work, we propose SCAFFOLD
prompting that scaffolds coordinates to pro-
mote vision-language coordination. Specifi-
cally, SCAFFOLD overlays a dot matrix within
the image as visual information anchors and
leverages multi-dimensional coordinates as tex-
tual positional references. Extensive experi-
ments on a wide range of challenging vision-
language tasks demonstrate the superiority of
SCAFFOLD over the textual Chain-of-Thought
prompting. Our code is released in https:
//github.com/THUNLP-MT/Scaffold.

1 Introduction

Large Multi-Modal Models (LMMs) like GPT-
4V (Achiam et al., 2023) and Gemini (Gemini et al.,
2023) have demonstrated impressive zero-shot ca-
pabilities in processing diverse visual-language
tasks. Leveraging the advanced reasoning ability
of the language model component, early attempts
have been made to deploy LMMs in realistic sce-
narios, such as autonomous driving (Wen et al.,
2023) and anomaly detection (Cao et al., 2023).

However, current LMMs display limited perfor-
mance when conducting complex reasoning over
multiple levels of visual information (Yang et al.,
2023b; Wu et al., 2023a; Wu and Xie, 2023). For
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Figure 1: The overall framework of SCAFFOLD. SCAF-
FOLD overlays a dot matrix onto the input image with
Cartesian coordinates labeled aside the dots. The co-
ordinates are also briefed in the textual prompt, which
steers the LMM to leverage the dots on the image as a
scaffold and promotes vision-language coordination.

example, in a spatial reasoning task (Liu et al.,
2023a), an LMM needs to verify or generate the
statement by elucidating the relationship between
different sources of visual information, and align-
ing its internal workings with textual expressions.
Challenges for LMMs arise in orchestrating pre-
cise visual perception with accurate language un-
derstanding and generation.

To enhance vision-language coordination, prior
efforts for LMMs can be divided into two cat-
egories: instruction tuning and prompting. In-
struction tuning uses high-quality image-text pairs
of either general purposes (Dai et al., 2023; Liu
et al., 2023c,b; Xu et al., 2023) or specialized do-
mains (Zhang et al., 2023; Chen et al., 2023a, 2024)
to facilitate additional training of LMMs for im-
proved performance. Nevertheless, instruction-
tuning consumes heavy loads of computing re-
sources and thus sacrifices flexibility in method-
ology. Prompting for LMMs, on the contrary,
steers the improved functioning of LMMs in a non-
parametric manner. While techniques for language
model prompting like Chain-of-Thought (Wei et al.,
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Question: Choose the correct image for the caption. Caption: a big cat is next to a small dog. Options: (A) image
1(left) (B) image 2(right)

GPT-4V + SCAFFOLD:
Textual Prompt for SCAFFOLD: Two images are provided, each overlaid with a grid of dots arranged in a matrix with
dimensions 6 by 6. Each dot on this grid is assigned a unique set of three-dimensional coordinates labeled as (t, x, y). ...
1. When you mention any key objects in the image, first output their nearest coordinates then identify them.
2. You can use the coordinates to determine the spatial relationships of the objects. ...
Output: In the first image (1), at coordinates (1,4,2) and (1,5,4), there is a small dog wearing a red and white checkered
outfit and a large orange and white cat sitting next to each other on the grass. This matches the caption "a big cat is next
to a small dog.". In the second image (2), at coordinates (2,3,3) and (2,5,5), there is a large black dog and a small kitten
facing each other on the grass. Therefore, the correct image for the caption is: A.

GPT-4V Output: The correct image is: (B) image 2(right). This image shows a large black dog next to a much smaller
kitten on a grassy surface. The size difference between the two animals is evident, with the dog being the "big cat" and
the kitten being the "small dog" in a metaphorical sense, as the caption likely plays on the term "big cat" which usually
refers to large wild felines. The first image (A) shows an actual cat and a small dog, which does not fit the caption.

Figure 2: An example of SCAFFOLD in double-image vision-language tasks, with correct textual reasoning illustrated
in green and incorrect textual reasoning illustrated in red. Note that only the original images and questions are
visible to GPT-4V; SCAFFOLD adds the coordinates on images and the corresponding textual prompt guidance.

2022) apply to LMMs as well, the elicited inter-
mediate reasoning steps mainly take place with the
condition of the textual prompts (Wu et al., 2023b).
As textual prompting techniques are actively being
exploited, few endeavors have been made into vi-
sual prompting, which steers the precise visual per-
ception of LMMs for vision-language coordination.

The challenge of visual prompting for LMMs
lies in the mismatch of semantic granularity be-
tween visual and textual information. While each
word is explicitly separated in a textual sentence,
different identities in an image are not isolated
with clear boundaries. Recent works on visual
prompting include leveraging tools to narrow the
semantic granularity gap between visual and tex-
tual inputs. Mitra et al. (2023) treat the LMM
itself as a scene graph extractor to generate visual
information in the textual format. Self-operating-
computer1 project uses object detection models to
draw bounding boxes for better grounding. Set-
of-mark prompting (Yang et al., 2023a) leverages

1https://github.com/OthersideAI/
self-operating-computer

advanced image segmentation models to construct
object segmentation overlays on the input image.
However, tool usage inevitably results in additional
resource burdens and potentially erroneous infor-
mation. Additional expenses from external model
deployment and scenario-specific pipeline configu-
rations limit the feasibility in practical applications
of such methods. An alternative avenue of recent ef-
forts is visual search (Wu and Xie, 2023; Nasiriany
et al., 2024), where the solution to a complex visual
task is cast as an iterative search process. Neverthe-
less, the iterative queries of LMMs throughout the
search process entail considerable expenses, limit-
ing the practical value. Therefore, it remains elu-
sive whether a simple and general visual prompting
scheme exists to promote vision-language coordi-
nation in LMMs.

In this work, we present SCAFFOLD, a simple
and versatile visual prompting scheme to promote
the coordination between vision and language in
LMMs. As shown in Fig 1, SCAFFOLD overlays
a dot matrix onto the input image, and each dot
is labeled with its multi-dimensional Cartesian co-

https://github.com/OthersideAI/self-operating-computer
https://github.com/OthersideAI/self-operating-computer
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ordinate. The dot matrix on the image forms the
scaffold that indicates relative visual positions for
LMMs. The overlaid coordinates are also included
in the textual prompt, which explicitly strengthens
the connection between visual and textual infor-
mation for LMMs. The LMMs are thus steered to
leverage the coordinates to solve different vision-
language tasks. In this way, SCAFFOLD provides
a scaffold to promote vision-language coordina-
tion in LMMs. Extensive experiments on spatial
reasoning, compositional reasoning, fine-grained
grounding, and hallucination benchmarks demon-
strate the superiority of SCAFFOLD over GPT-4V
with the textual CoT prompting. We also show
that the performance of SCAFFOLD can be further
enhanced with region cropping, which reveals the
promising future of active perception enabled by
SCAFFOLD.

2 Related Work

Large Multi-Modal Models (LMMs). State-of-
the-art LMMs like GPT-4V (Achiam et al., 2023)
and Gemini (Gemini et al., 2023) have excelled in
general vision-language tasks (Wu et al., 2023a;
Yang et al., 2023b; Fu et al., 2023b). The integra-
tion of visual capabilities in LMMs with advanced
language proficiency and instruction-following
skills pave the way for versatile visual interactive
agents, both in digital (He et al., 2024; Zheng et al.,
2024) and embodied environments (Wake et al.,
2023; Chen et al., 2023b).
GPT-4V Evaluation. As a leading LMM, GPT-
4V (Achiam et al., 2023) has significantly expanded
the boundaries of LMM capabilities, motivating re-
searchers to systematically explore its strengths
and weaknesses (Wu et al., 2023a; Yang et al.,
2023b). Despite its proficiency, researchers have
proposed challenging benchmarks that reveal large
performance gap between GPT-4V and humans, in-
cluding MMVP (Tong et al., 2024), MMMU (Yue
et al., 2023), Mementos (Wang et al., 2024), V*
Bench (Wu and Xie, 2023), Contextual (Wad-
hawan et al., 2024), etc. Extensive evaluations
indicate that plenty of room exists for state-of-the-
art LMMs to improve their certain visual-language
capabilities.
Multi-Modal Prompting Methods. Prompting
methods focus on unlocking model potentials by
carefully constructing model inputs. Chain-of-
Thought (Wei et al., 2022; Kojima et al., 2022,
CoT) and its variants (Yao et al., 2023; Besta et al.,

2023) have successfully elicited reasoning capa-
bilities in language models. However, in multi-
modal contexts such as compositional reasoning,
the original CoT is less effective (Mitra et al., 2023).
Consequently, numerous multi-modal prompting
methods have been developed for specific visual ca-
pabilities. For instance, Compositional CoT (Mitra
et al., 2023) for compositional reasoning, Spatial
CoT (Chen et al., 2024) for spatial understanding,
Set-of-Marks prompting (Yang et al., 2023a) for
visual grounding. However, these methods tend
to be tailored for specific capabilities, calling for
simple and general visual prompting schemes.

3 Methodology

In this section, we introduce SCAFFOLD prompting
for vision-language coordination in LMMs.

3.1 Visual Perspective of SCAFFOLD:
Dot Matrices and Coordinates

Visually, we enhance each input image with a uni-
formly distributed rectangular dot matrix, where
each dot is labeled with multi-dimensional coordi-
nates. These dots serve as visual positional anchors,
while their coordinates are utilized as textual refer-
ences in textual responses.
Visual Anchor Implementation. We select uni-
form rectangular dot matrices as our visual anchor
due to their simplicity, flexibility in textual descrip-
tion, and potential adaptability to image sequences.
With the size of the image as H ×W , and the co-
ordinate matrix containing X × Y dots in total, the
horizontal interval between neighboring dots is set
as W

Y+1 , and the vertical interval between neighbor-
ing dots is set as H

X+1 . Finally, we calculate the
position of dot (x, y) as follows:

Position(x, y) = (x× H

X + 1
, y × W

Y + 1
). (1)

Unlike grids, which divide images into separate
regions and may disrupt continuous visual content,
dot matrices offer a less intrusive overlay. We also
incorporate the original image as the additional
input to alleviate the potential interference between
the visual content and the dot matrix to be overlaid.
The dot matrix therefore serves as the information
enhancement for vision-language coordination.
Coordinates Implementation. For our approach,
we use multi-dimensional Cartesian coordinates
due to its simplicity and clarity. For a single image
with an overlaid dot matrix of size h×w, we assign
two-dimensional coordinates (x, y) to each dot,
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representing its relative visual position. Here, the x-
coordinate ascends from 1 to h within each column,
while the y-coordinate ascends from 1 to w within
each row. For image sequences, we extend these
coordinates to three-dimensional (t, x, y). The t-
coordinate remains constant within each image but
increases sequentially across the sequence, allow-
ing for differentiation between images and enhanc-
ing temporal perception.

In comparison, we also consider other coordinate
options and identify their limitations. Absolute
pixel coordinates, for example, consume excessive
space and are complicated to perceive and apply ac-
curately. Furthermore, one-dimensional Cartesian
coordinates and alphabetic coordinates fall short in
providing adequate positional information.
Other Factors. 1. Matrix Size. The matrix should
be visually clear and provide ample space for multi-
dimensional coordinates. For simplicity, we em-
ploy a 6 × 6 matrix for general vision-language
tasks. 2. Matrix Density. Without prior visual
knowledge, we choose rectangular dot matrices
with a uniform density for general vision-language
tasks, providing LMMs equal assistance when rea-
soning across different regions. 3. Matrix Color.
The coordinates are designed to be recognizable by
LMMs using their OCR capabilities. Consequently,
we color each dot in either black or white according
to its contrast against the background.

3.2 Textual Perspective of SCAFFOLD:
Description and Guidelines

To complement the coordinates-overlaid visual in-
puts, we prepend textual guidance to task instruc-
tions for LMMs. This includes a brief description
of the dot matrices and coordinates, accompanied
by several general guidelines for their effective use,
as detailed in Appendix A.1. The characteristics of
these descriptions and guidelines are as follows: (1)
Conciseness: The textual guidance is deliberately
brief and clear, ensuring easy comprehension. (2)
Generality: Designed to be universally applicable,
these guidelines are not specific to any particular
scenario, making them suitable for a wide range
of vision-language tasks. (3) Extensibility: The
guidelines are semantically independent, allowing
for the seamless addition of more tailored instruc-
tions based on different scenarios. (4) Composi-
tionality: The prepended texts can be easily com-
bined with other prompting methods, such as zero-
shot or compositional CoT (Kojima et al., 2022;
Mitra et al., 2023).

4 Experiments

To demonstrate the effectiveness of SCAFFOLD, we
conduct extensive experiments on top of GPT-4V
on a range of challenging vision-language tasks,
including Spatial Reasoning, Compositional Rea-
soning, Fine-Grained Visual Understanding and
Hallucination. Specifically, we perform systematic
evaluations on 11 benchmarks. We set the temper-
ature of GPT-4V as zero in our experiments. We
also conduct extended studies of SCAFFOLD with
other LMMs like Gemini (Gemini et al., 2023) in
Sec. 4.4, and comparison with Set-of-Mark (SoM)
prompting (Yang et al., 2023a) in Sec. 4.5. More
experimental details can be found in Appendix B.

4.1 Benchmarks

This subsection briefly introduces the benchmarks
used for evaluation. Due to the limited budget, for
some datasets, we sample a subset for experiments.
Spatial Reasoning evaluates LMM capability to in-
fer spatial relationships between objects. Selected
benchmarks are as follows. 1. MME (Position
split) (Fu et al., 2023a) is a subset of the MME
comprehensive evaluation suite for LMMs to in-
fer object positions. 2. Visual Spatial Reasoning
(VSR) (Liu et al., 2023a) challenges LMMs with
66 types of spatial relations to verify spatial propo-
sitions. 3. EgoThink (Spatial split) (Cheng et al.,
2023) tests the spatial reasoning ability of LMMs
from a first-person perspective.
Compositional Reasoning requires LMMs to
identify object attributes and their interrela-
tions. Selected benchmarks are as follows. 1.
Winoground (Thrush et al., 2022) is a challeng-
ing benchmark that necessitates compositional rea-
soning of LMMs to match images with captions,
reformulated as binary choice questions for our
evaluation. 2. WHOOPS! VQA (Bitton-Guetta
et al., 2023) involves compositional reasoning over
commonsense-defying images. 3. CLEVR (John-
son et al., 2017) is designed for assessing composi-
tional reasoning in program-generated scenes.
Fine-Grained Visual Understanding requires
LMMs to perform visual search and precisely per-
ceive fine-grained visual details. Selected bench-
marks are as follows. 1. V* Bench (Wu and Xie,
2023) requires LMMs to identify and reason with
fine-grained visual details in high-resolution im-
ages. 2. Spotting Differences 2 is our newly-

2https://www.crazygames.com/game/
find-the-difference

https://www.crazygames.com/game/find-the-difference
https://www.crazygames.com/game/find-the-difference


2890

Crucial Capability Dataset Size Metric Standard CoT SCAFFOLD (Ours)

MME (Position) 60 Accuracy 51.7 51.7 75.0 (+23.3)
VSR 200 Accuracy 67.8 70.4 74.4 (+6.6)

Spatial
Reasoning EgoThink (Spatial) 50 LLM as Judge 66.0 74.0 76.0 (+10.0)

Winoground 100 Text Score 64.0 72.5 72.5 (+8.5)
WHOOPS! VQA 200 BEM Score 58.6 57.6 62.7 (+4.1)

Compositional
Reasoning CLEVR 200 LLM as Judge 43.5 43.0 48.0 (+4.5)

V* Bench 238 Accuracy 27.2 30.8 44.6 (+17.4)Fine-Grained
Visual Understanding Spotting Differences 50 Accuracy 13.0 14.0 19.0 (+6.0)

POPE (Adversarial) 100 Accuracy 79.0 80.0 86.0 (+7.0)
HallusionBench (Hard) 504 Accuracy 45.6 48.8 53.0 (+7.4)Hallucination

Mementos 100 LLM as Judge 33.3 33.5 36.1 (+2.8)

Overall All 1,802 Average 50.0 52.4 58.8 (+8.8)

Table 1: Results of SCAFFOLD on 11 challenging vision-language benchmarks on top of GPT-4V, with the highest
score bold.

Dataset Metric Standard CoT SCAFFOLD

WINO Text Score 88.0 90.0 92.0
VSR Accuracy 76.0 84.0 84.0
POPE Accuracy 86.0 86.0 88.0

V* Bench Accuracy 66.0 60.0 42.0

Table 2: Results of SCAFFOLD on top of Gemini-1.5
on 4 challenging vision-language benchmarks, with the
highest score in bold. Despite the unknown differences
in the black-box Gemini model, SCAFFOLD has shown
consistent improvement on 3 out of 4 benchmarks.

collected dataset challenging LMMs to find and
pinpoint differences between two similar images,
with further details in Appendix C.3.
Hallucination measures the tendency of LMMs
to generate hallucinatory or illusory perceptions.
Selected benchmarks are as follows. 1. POPE (Ad-
versarial Subset) (Li et al., 2023b) assesses object
hallucination by querying the existence of specific
objects. 2. HallusionBench (Guan et al., 2023)
consists of meticulously crafted images to mea-
sure hallucination and visual illusion in LMMs. 3.
Mementos (Wang et al., 2024) evaluates LMM to
conduct precise reasoning over image sequences
and measures their performances in terms of object
and behavior hallucinations.

4.2 Baselines

This section presents the baseline prompting meth-
ods used in our experiments: 1. Standard Prompt-
ing utilizes original images and user instructions
as inputs for LMMs, establishing a straightfor-
ward baseline without any prompt optimization.
2. CoT (Kojima et al., 2022) guides LMMs to per-
form step-by-step reasoning before outputting the
final answer. The prompt text “Let’s think step by
step." is prepended to task descriptions.

Dataset Metric Standard SoM SCAFFOLD

WINO Text Score 70.0 72.0 81.0
VSR Accuracy 64.0 80.0 73.0
POPE Accuracy 73.0 80.0 84.0

V* Bench Accuracy 24.0 34.0 45.0

Table 3: Performance comparison with Set-of-Mark
Prompting (Yang et al., 2023a) on 4 challenging vision-
language benchmarks on top of GPT-4V, with the high-
est score in bold. SCAFFOLD outperforms SoM on 3
out of 4 benchmarks.

4.3 Results and Analyses

As presented in Table 1, the results demonstrate that
SCAFFOLD significantly enhances the visual capa-
bilities of LMMs, surpassing zero-shot CoT (Ko-
jima et al., 2022) in most evaluated benchmarks.
With standard prompting and CoT prompting aver-
aging 50.0 and 52.4 respectively, SCAFFOLD suc-
cessfully obtains an overall improvement of 8.8.
The integration of SCAFFOLD and CoT also leads
to further improvement (detailed in Appendix E.1).
Spatial Reasoning: SCAFFOLD notably enhances
the spatial reasoning capabilities of LLMs across
the three benchmarks, with an average improve-
ment of 13.3. Fig. 3 illustrates how SCAFFOLD

enabled GPT-4V adeptly identifies crucial objects
and records accurate positional information using
two-dimensional coordinates, leading to the correct
assessment of spatial relations through the numeri-
cal analysis of their x-coordinates.
Compositional Reasoning: With SCAFFOLD,
GPT-4V demonstrates improved abilities in com-
positional reasoning with an average improvement
of 5.7, showing enhanced perception of key visual
elements and smoother reasoning processes. As
Fig. 7 in Appendix D shows, SCAFFOLD associates
crucial objects with their textual positions, assisting
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Question: Determine whether the following
statement is true or false: The bench is at the left

side of the potted plant.

Ground-Truth: True.
GPT-4V + CoT: The statement is false. In the image
provided, the bench is on the right side of the potted
plant, not the left. Therefore, the statement is false.
GPT-4V + SCAFFOLD: The bench is located near
coordinates (3,2) through (6,4), and the potted plant
is near coordinates (3,6) through (6,6). Given the
arrangement of the coordinates, the bench is to the
left of the potted plant. true.

Figure 3: An example from the Visual Spatial Reason-
ing (VSR) dataset. SCAFFOLD facilitates better vision-
language coordination than other methods.

GPT-4V to accurately identify and localize signifi-
cant visual details.

Fine-Grained Visual Understanding: On bench-
marks such as V* Bench (Wu and Xie, 2023) and
Spotting Differences, SCAFFOLD has markedly im-
proved the capabilities of LMMs in conducting
visual search and localizing fine-grained visual de-
tails, with an average improvement of 11.7. Taking
Fig. 8 in Appendix D as an example, with the sup-
port of coordinates, GPT-4V effectively pinpoints
and documents the precise locations of target visual
elements, contributing to its accurate perception of
the target attribute. Additionally, we notice that
without coordinates, GPT-4V is more easily to give
up and apologize for its search failure.

Hallucination: With an average improvement of
5.7, utilizing coordinates as a scaffold enables GPT-
4V to recognize objects within a scene and fur-
ther accurately describe their positions, guiding
its textual reasoning to focus on precise visual in-
formation. With an example shown in Fig. 9 in
Appendix D, GPT-4V with coordinates is capable
of precisely capturing visual details and prevent-
ing hallucinating non-existent objects, promoting
accurate visual grounding.

4.4 Effect of SCAFFOLD Atop Other LMMs

Given the impressive performance gains on top
of GPT-4V, we continue to apply SCAFFOLD to
Gemini-1.5-Flash (Gemini et al., 2023) to explore
its generalization ability. Due to limited resources,
we selected one dataset from each crucial capabil-
ity and randomly sampled 50 samples from each.
The results, detailed in Table 2, demonstrate that
SCAFFOLD can still remarkably boost LMM perfor-
mances in 3 out of 4 datasets. We also surprisingly
notice that in the V* Bench, the standard prompt-
ing outperforms both CoT and SCAFFOLD. The
results may come from two reasons: (i) Being a
close-sourced LMM system, Gemini models may
conduct specific optimizations for visual search
in high-resolution images, which could hinder the
effects of external prompting schemes. (ii) Some-
times the LMM tends to directly output the answer
without leveraging the coordinates, without fully
fulfilling the power of SCAFFOLD.

As for open-sourced LMMs, we apply SCAF-
FOLD on LLaVa-1.5 (Liu et al., 2023c) and find that
it fails to leverage coordinates for textual reasoning,
lacking both instruction following and visual un-
derstanding capabilities. To enable open-sourced
models with SCAFFOLD may require instruction
fine-tuning, which we leave for future research.

4.5 Comparison with Set-of-Mark Prompting

To further validate the effectiveness of SCAFFOLD,
we compare SCAFFOLD with Set-of-Mark Prompt-
ing (Yang et al., 2023a), which leverages external
segmentation models as tools. More experiment
details are included in Appendix F. The results on
4 challenging benchmarks, as detailed in Table 3,
illustrate the superior performance of SCAFFOLD

on most benchmarks. Without external model de-
ployment, SCAFFOLD, being significantly simpler,
can achieve comparable performances with Set-of-
Mark prompting, demonstrating its effectiveness
and broad potential applications.

5 Integration with Active Perception

In complex visual environments, humans would
proactively engage with their surroundings to en-
hance scene understanding, like zooming in or
changing perspectives. Similarly, we recognize that
LMMs should possess such capabilities in realistic
scenarios and propose that SCAFFOLD can function
as a scaffold for effective active perception.

To validate this, we integrate SCAFFOLD with
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Question:
What’s the color of the bench?

Initial Answer:
Sorry, there is no bench in the image.

First identify key objects and output 
their nearest coordinates.

Visual Search Answer:
The bench is near coordinates (7,9). 
But I’m not sure about its color …

Based on the cropped image, what’s 
the color of the bench?

Final Answer:
Upon closer look, the color of the 
bench is green.

Coordinates

For Visual Search

Image Cropping

For Closer Look

Figure 4: The procedure of combined SCAFFOLD and active perception techniques on V* Bench.

Method N.F.R. ↓ (%) S.R. ↑ (%)

Standard 72.2 21.7
CoT 71.3 21.7

SCAFFOLD 26.2 31.3
SCAFFOLD + A.P. (Re-use) 14.8 45.2

SCAFFOLD + A.P. (Re-overlay) 13.0 47.8

Table 4: Results of SCAFFOLD + active perception on
V* Bench (Wu and Xie, 2023) direct_attributes subset,
where A.P. denotes active perception detailed in Sec. 5,
N.F.R. denotes Not Found Rate and S.R. as Success Rate.

active perception in the experiments on the di-
rect_attributes subset of V* Bench (Wu and Xie,
2023), which requires LMMs to perceive fine-
grained details in high-resolution images. This
challenge encompasses both the localization of tar-
get objects and the identification of their attributes
under resolution constraints. Consequently, we
adopt two metrics to measure LMM performance,
including Not Found Rate representing the percent-
age of invalid responses, and Success Rate repre-
senting the percentage of correct responses.

Depicted in Fig. 4, our combined method unfolds
in two phases: an initial visual search to locate the
target details, then cropping the image around the
pinpointed coordinates to focus on the target at-
tributes. As for processing the cropped images, we
develop two types of variants: Re-use the coordi-
nates overlaid in the original image, and Re-overlay
the cropped image with a new set of X × Y dot
matrices following Eq. (1).

The results, presented in Table 4, reveal a per-
formance enhancement of 14.1% and 16.5% com-
pared with SCAFFOLD alone, underscoring the util-
ity of coordinates in facilitating active perception.
Furthermore, the results reveal two notable per-
formance leaps. The initial improvement (CoT
→ SCAFFOLD) is attributed to the use of coordi-
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Figure 5: Impact of matrix sizes. Better accuracies are
illustrated in darker green.

nates, significantly reducing the Not Found Rate
and thereby aiding in the visual search process. The
subsequent gain (SCAFFOLD → SCAFFOLD + A.P.)
results from the combined implementation of active
perception, which enables LMMs to discern target
attributes within the cropped regions accurately.

6 Ablation Studies

We conduct extensive ablation studies on key fac-
tors such as matrix size and textual-only prompt
guidance to validate and further explore SCAF-
FOLD. Additional ablation studies, e.g., the in-
tegration of SCAFFOLD and CoT and the effect of
matrix color, are included in Appendix E.

6.1 Experimental Setup

Due to limited GPT-4V access quota, we each
sample 50 questions from Visual Spatial Reason-
ing (Liu et al., 2023a), Winoground (Thrush et al.,
2022), and POPE (Adversarial Subset) (Li et al.,
2023b), creating an ablation subset of 150 samples.
Overall accuracy per question is adopted as the
metric and GPT-4V is used for our experiments.
Additionally, for stable results, we run each experi-
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Method WNG VSR POPE Overall

Standard 70.0 64.0 73.0 69.0
Text-Only Guideline 75.0 63.0 76.0 71.3

SCAFFOLD 81.0 73.0 84.0 79.3

Table 5: Results of the textual-only guidance base-
line in ablation experiments, where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023b) Adversarial subset.

ment twice and report average accuracy.

6.2 Effect of Matrix Size
The matrix size h and w may influence the pre-
cision of textual reference and the granularity of
visual information. Consequently, we incorporate
matrices of difference sizes varying from 3× 3 to
7× 7 and measure their performances.

Fig. 5 depicts the performance variations with
different matrix sizes, suggesting 6× 6 as the op-
timal size for our ablation dataset. Additionally,
the sizes in the upper right section tend to perform
better than those in the lower left section. It may
be due to the sampled images usually possessing
equal or larger widths than heights, suggesting ma-
trix sizes may ideally align with image sizes.

Additionally, the 6 × 6 size did not yield the
best results across all three subsets, hinting at po-
tential improvements by customizing matrix sizes
for specific tasks. It may be beneficial to automat-
ically and dynamically adjust the matrix size and
we leave this open problem to future research.

6.3 Ablation with Textual-Only Guidance
Since SCAFFOLD consists of both visual and tex-
tual guidance, we add an instruction-only ablation
experiment with only textual guidance, to validate
the effectiveness of the dots. The textual guideline
we used for the baseline is as follows:

You need to complete a task. When identifying key
objects in the image, you can first generate approxi-
mate locations of the objects then complete the task.

The results, detailed in Table 5, show that the
text-only guidelines can slightly improve the per-
formance but the improvement is marginal com-
pared with SCAFFOLD. It further demonstrates the
effectiveness of the coordinates.

7 Discussion

The effect of resolution and ratios of the tested
images. In our work, we have conducted ex-
periments on 11 challenging datasets with diverse
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Figure 6: The distribution of the image ratios and sizes
in our experiments.

Method WINO VSR POPE Overall

Standard 70.0 64.0 73.0 69.0
1-shot, Standard 76.0 66.0 76.0 72.7

1-shot, SCAFFOLD, w/o text inst. 79.0 70.0 81.0 76.7
0-shot, SCAFFOLD, w/ text inst. 81.0 73.0 84.0 79.3

Table 6: Results of few-shot explorations, where WNG
denotes the Winoground (Thrush et al., 2022) dataset
and POPE denotes the POPE (Li et al., 2023b) Adver-
sarial subset.

image ratios and resolutions to examine the flexi-
bility and generalizability of SCAFFOLD. To show
the diversity of the image inputs, we collect all the
images in our experiments and illustrate the statis-
tics about their width-height ratios and resolutions.
The distribution is visualized in Fig 6. As the distri-
bution shows, SCAFFOLD remains effective across
images with varying ratios and resolutions.

Potential usage of in-context examples. SCAF-
FOLD leverages general textual guidelines to steer
LMMs to reason via the coordinates. Being a zero-
shot method, SCAFFOLD does not require users to
carefully curate samples for each task. However,
in-context examples are also effective in eliciting
LMM capabilities, we explore few-shot approaches
and the result are detailed in Table 6.

In our one-shot experiments, we curate one ex-
ample from each dataset and remove the textual
guidelines in our standard implementation (denoted
as 1-shot, SCAFFOLD, w/o text inst. in the table).
The example contains a user query and a curated re-
sponse which utilizes coordinates to better perceive
the image. Unsurprisingly, we found that GPT-4V
can leverage the capabilities of the coordinates in
1-shot setting without textual instructions and ex-
hibit remarkable improvement compared with the
1-shot standard setting (without coordinates). Ad-
ditionally, due to simplicity and effectiveness, we
still recommend our standard zero-shot implemen-
tation.
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8 Conclusion

In this work, we propose SCAFFOLD, a simple and
general visual prompting method that utilizes scaf-
folding coordinates to promote vision-language co-
ordination in LMMs. Extensive experiments show
that SCAFFOLD successfully elicits LMM capabili-
ties in several challenging vision-language tasks.

Limitations

Here we discuss two limitations of this work.
(1) To automatically adjust dot matrix attributes.
In this work, for simplicity and clarity, we adopt
matrices of size 6× 6 in our implementation. How-
ever, our ablation study in Section 6 suggests that a
one-size-fits-all matrix size can yield good, but not
the best results across all datasets. Given the diver-
sity of visual tasks and the varying granularity of
information in different scenes, it stands to reason
that tailoring the matrix attributes, such as size and
coordinates format, to the specific requirements of
each task or even each sample could improve per-
formance. Addressing the dynamic and automatic
adjustment of these attributes to better suit different
scenarios remains an area for future exploration.
(2) To enhance precision in visual localization.
By integrating dot matrices with coordinates onto
images, we aimed to facilitate improved vision-
language coordination by associating key objects
with their closest coordinates. However, our ob-
servations indicate that, particularly in complex or
clustered scenes, GPT-4V occasionally struggles
to accurately associate textual reasoning with the
nearest coordinates. This challenge underscores
the need for LMMs to achieve improved visual lo-
calization and grounding capabilities in intricate
environments. With SCAFFOLD, we expect the fu-
ture of LMMs and visual prompting techniques to
be further improved in terms of visual localization.
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A Prompts

This section exhibits the prompts used in SCAF-
FOLD implementation and our experiments.

A.1 SCAFFOLD implementation
In SCAFFOLD implementation, we use the follow-
ing textual guidelines to describe the effective use
of coordinates.

Single-Image Setting. In the single-image setting,
we label all the dots with two-dimensional coordi-
nates and deliver both the original image and the
coordinates-overlaid image to the model. Conse-
quently, we use the following guidelines.

I will provide you with two images of the same scene.
The second image is overlaid with a dot matrix of the
shape of HEIGHT * WIDTH to help you with your
task, and each dot is labeled with two-dimensional
coordinates (x,y).
1. When you mention any key objects in the image,
first output their nearest coordinates then identify
them.
2. You use the coordinates to determine the spatial
relationships of the objects. Within each column,
the x-coordinate increases from top to bottom, and
within each row, the y-coordinate increases from left
to right.
3. You can search and reason region by region with
the help of the dots.
4. Finally, conclude your answer in format [[AN-
SWER]], such as [[A]], [[B]], [[C]] or [[D]].

Note that the fourth guideline serves as a con-
straint for specific output formats and may vary
among different tasks.
Double-Images Setting. In a double-images set-
ting, we label all the dots with three-dimensional
coordinates, with the first coordinate serving to dis-
tinguish between two images. Consequently, we
use the following guidelines.

Two images are provided, each overlaid with a grid
of dots arranged in a matrix with dimensions h by
w. Each dot on this grid is assigned a unique set
of three-dimensional coordinates labeled as (t, x, y).
The first coordinate, ’t’, serves to distinguish between
the two images: ’1’ is assigned to the first image on
the left, and ’2’ to the second image on the right.
The other two coordinates, ’x’ and ’y’, are used to
specify the dot’s spatial location within its respective
image. This labeling system is designed to assist you
in identifying and referring to specific points within
each image.
1. When you mention any key objects in the image,
first output their nearest coordinates then identify
them.
2. You use the coordinates to determine the spatial
relationships of the objects. within each column,
the x-coordinate increases from top to bottom, and
Within each row, the y-coordinate increases from left
to right.
3. You can search and reason region by region with
the help of the dots.
4. Finally, you must conclude your answer in format
[[ANSWER]], such as [[A]] or [[B]].

Note that the fourth guideline serves as a con-
straint for specific output formats and may vary
among different tasks.
Image-Sequence Setting. In the image sequence

https://doi.org/10.18653/v1/2023.acl-long.641
https://doi.org/10.18653/v1/2023.acl-long.641
https://doi.org/10.18653/v1/2023.acl-long.641
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setting, we label all the dots with three-dimensional
coordinates. For simplicity and efficiency, we only
deliver the coordinates-overlaid image to the model.
Consequently, we use the following guidelines.

A sequence of images is provided, each overlaid with
a grid of dots arranged in a matrix with dimensions
HEIGHT by WIDTH. Each dot on this grid is as-
signed a unique set of three-dimensional coordinates
labeled as (t, x, y). The first coordinate, ’t’, serves to
distinguish between the images, for instance, ’1’ is
assigned to the first image, and ’8’ to the last image.
The other two coordinates, ’x’ and ’y’, are used to
specify the dot’s spatial location within its respective
image. This labeling system is designed to assist you
in identifying and referring to specific points within
each image.
1. When you mention any key objects in the image,
first output their nearest coordinates then identify
them.
2. You use the coordinates to determine the tempo-
ral and spatial relationships of the objects. Within
the image sequence, the t-coordinate increases as
time grows; within each column, the x-coordinate
increases from top to bottom; within each row, the
y-coordinate increases from left to right.
3. You can search and reason region by region with
the help of the dots.
4. you need to keep your descriptions concise and
clear.

Note that the fourth guideline serves as a con-
straint for specific output formats and may vary
among different tasks.

A.2 Integration Experiments

We list the prompts used in the integration experi-
ments.

SCAFFOLD + Active Perception Firstly, we guide
the LMM to visually search the image and localize
target objects using the following prompt.

Based on the question: question you should first iden-
tify key objects in the question and link them with
their nearest coordinate, and finally conclude the co-
ordinates in format [[(x,y)]] in the end(you don’t need
to answer the question).

Secondly, we crop the image based on the out-
put coordinates and guide the LMM to answer the
question based on the cropped images in the second
turn of the conversation.

Here are the cropped images from the scene accord-
ing to your selected coordinates, you can take a closer
look and answer the question. If I don’t provide
cropped images or the target does not exist in the
cropped image, please visually search the original
image and answer the question.
Question: QUESTION
Options: OPTIONS

B Experimental details

This section details the setting of our experiments.
The model version adopted in GPT series is gpt-4v-
vision-preview(referred as GPT-4V in our paper)
to purely study its vision abilities without the in-
tervention of external tools in more advanced mod-
els. The model version adopted in Gemini series
is Gemini-1.5-Flash(referred as Gemini-1.5 in our
paper) for its advanced vision-language capabili-
ties and test efficiency. In our experiments, we set
the temperature to zero to increase stability of the
results.

C Benchmarks

This section details the benchmarks used in our ex-
periments to evaluate our method. The benchmarks
are divided into four categories and elaborated re-
spectively.

C.1 Spatial Reasoning

Spatial reasoning is a crucial capability of LMMs
to determine spatial relationships between objects
in the image. To evaluate the effectiveness of
our method to elicit spatial reasoning capabilities,
we select several challenging datasets including
MME (Fu et al., 2023a) Position split, Visual Spa-
tial Reasoning (Liu et al., 2023a) dataset, Ego-
Think (Cheng et al., 2023) Spatial split. Note that
we only select a subset related to spatial reason-
ing in comprehensive evaluation benchmarks like
MME (Fu et al., 2023a) and EgoThink (Cheng
et al., 2023) because the other subsets don’t con-
stitute spatial reasoning and our GPT-4V access
quota is limited. The details of the benchmarks are
as follows.
MME (Position) (Fu et al., 2023a)
Dataset Introduction. The MME (Fu et al., 2023a)
benchmark is a comprehensive evaluation suite de-
signed to measure the perception and recognition
capabilities of LMMs in 14 tasks. To evaluate spa-
tial reasoning capabilities, we only select Position
split from 14 subtasks. It contains 60 questions
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about the spatial relationship among the objects in
the scene, such as left, above, etc..
Metric. All questions are formatted as general in-
terrogative sentences, which can be answered with
either "yes" or "no". Therefore, we guide the model
to output the final answer within double square
brackets [[]], and then use accuracy as the metric
to evaluate the model’s performance.
Visual Spatial Reasoning (VSR) (Liu et al.,
2023a)
Dataset Introduction. The VSR (Liu et al., 2023a)
dataset is designed to comprehensively evaluate
LMM capabilities to perform spatial reasoning in
images, containing 66 types of spatial descriptions
in language. Each sample provides an image and a
corresponding spatial description in terms of two
individual objects in the scene. Because of the
limited GPT-4V (Achiam et al., 2023) access quota,
we randomly sample 200 samples from the dataset
for evaluation.
Metric. The task is to determine the correctness
of the given spatial description, which can be an-
swered with either "true" or "false". Therefore, we
guide the model to output the final answer within
double square brackets [[]], and then use accuracy
as the metric to evaluate the model’s performance.
EgoThink (Spatial) (Cheng et al., 2023)
Dataset Introduction. The Egothink (Cheng
et al., 2023) dataset is intended for first-perspective
vision-language problem-solving capabilities. To
evaluate spatial reasoning capabilities, we only se-
lect Spatial split from it. The Spatial split contains
50 questions about the spatial relationship among
the objects, particularly requiring LMMs to per-
ceive and reason from the first perspective.
Metric. The task is to answer spatial questions from
the first perspective. We adopt the evaluation script
in EgoThink official implementation 3, which uses
GPT-4 (Achiam et al., 2023) as the judge model to
score the answers.

C.2 Compositional Reasoning

Compositional reasoning represents the capabil-
ity of LMMs to perceive and reason in terms of
objects’ attributes and their relationships, signif-
icant for visual perception. To evaluate the ef-
fectiveness of our method to elicit compositional
reasoning capabilities, we select several challeng-
ing datasets including Winoground (Thrush et al.,
2022), WHOOPS! (Bitton-Guetta et al., 2023) and

3https://github.com/AdaCheng/EgoThink

CLEVR (Johnson et al., 2017).
Winoground (Thrush et al., 2022)
Dataset Introduction. Winoground (Thrush et al.,
2022) proposes a novel dataset that challenges
LMMs to correctly match two images and two
captions. The captions use the same words but
in a different order, requiring a precise understand-
ing of both images and captions. The challenging
dataset is a suitable benchmark for compositional
reasoning.
Metric. Given two images and two captions, we
compose a sample into four binary-choice ques-
tions for the effective evaluation of LMMs, includ-
ing choosing the correct caption given two images
and choosing the correct image given two captions
respectively. Finally, we adopt group score to mea-
sure LMM performance: only when the model an-
swers all four questions correctly is it considered
completely correct for this sample.
WHOOPS! (Bitton-Guetta et al., 2023)
Dataset Introduction. The WHOOPS! (Bitton-
Guetta et al., 2023) is designed to challenge LMMs
to perform compositional reasoning in terms of
purposefully commonsense-defying images. It re-
mains challenging for LMMs to recognize and in-
terpret these unconventional images. Furthermore,
several tasks are posed over the dataset, and we
select the visual question-answering task.
Metric. We adopt the BEM score in WHOOPS!
official implementation 4 to evaluate LMM perfor-
mances.
CLEVR (Johnson et al., 2017)
Dataset Introduction. The CLEVR (Johnson et al.,
2017) is designed as a standard evaluation suite
for compositional vision-language reasoning with
program-rendered images and correctly generated
annotations. Containing objects like a metal cube
or red sphere, the dataset poses questions in terms
of object existence, object attributes, and object re-
lationships. For effective evaluation, we randomly
sampled 200 samples in the dataset.
Metric. We guide the LMMs to answer the ques-
tions in an open-ended generative manner. Due
to the complexity of the question and the answer,
we adopt GPT-4 (Achiam et al., 2023) as a judge
model to determine the correctness of answers.
Our judge prompt is as follows, adapted from MT-
Bench (Zheng et al., 2023).

4https://whoops-benchmark.github.io/

https://github.com/AdaCheng/EgoThink
https://whoops-benchmark.github.io/
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[Instruction] Please act as an impartial judge and eval-
uate the quality of the response provided by an AI
assistant to the user question displayed below. Your
evaluation should consider correctness and helpful-
ness. You will be given a reference answer and the
assistant’s answer. Begin your evaluation by compar-
ing the assistant’s answer with the reference answer.
Identify and correct any mistakes. The assistant has
access to an image along with questions but you will
not be given images. Therefore, please consider only
how the answer is close to the reference answer. If
the assistant’s answer is not exactly the same as or
similar to the answer, then he must be wrong. Be as
objective as possible. Discourage uninformative an-
swers. Also, equally, treat short and long answers and
focus on the correctness of answers. After providing
your explanation, you must rate the response with
either 0, 0.5, or 1 by strictly following this format:
"[[rating]]", for example: "Rating: [[0.5]]".
[Question] question
[The Start of Reference Answer] ground_truth [The
End of Reference Answer]
[The Start of Assistant’s Answer] answer [The End
of Assistant’s Answer]

C.3 Fine-Grained Visual Understanding
Fine-grained Visual Understanding represents the
capability of LMMs to precisely capture, perceive,
and describe certain visual details in the scene. To
evaluate the effectiveness of our method to elicit
Fine-grained Visual Understanding, we select sev-
eral challenging datasets including V* Bench (Wu
and Xie, 2023) and Spotting Differences.
V* Bench (Wu and Xie, 2023)
Dataset Introduction. The V* Bench (Wu and Xie,
2023) is designed to challenge LMMs to perform
visual search and identify fine-grained visual de-
tails in high-resolution images. The challenges lie
in the necessity of visual search, while GPT-4V
sometimes fails to capture visual details, respond-
ing with I’m sorry, I couldn’t find XXX in the image.
Note that we conduct our evaluation in an open-
ended generative manner, GPT-4V sometimes fails
to identify targets and refuses to choose an option.
Metric. The questions are multiple-choice ques-
tions. Due to the generative nature of current
LMMs, we pose a question to the target LMM and
let it generate an open-ended response. Finally, we
guide the model to output the final answer within
double square brackets [[]], and then use accuracy
as the metric to evaluate the model’s performance.
Spotting Differences 5

Dataset Introduction. The dataset was designed
to challenge the spatial analysis capabilities and
object localization abilities of LLMs. Inspired and

5https://www.crazygames.com/game/
find-the-difference

derived by the "Spot the Difference" web game,
each level consists of two images. The goal is to
locate the differences between the two images at
10 specific locations. The first 50 levels, increas-
ing in difficulty, were selected as samples for this
dataset. The challenge lies in the LLM’s ability
to first analyze the images and then accurately lo-
calize the correct object positions. GPT-4V may
sometimes return I’m sorry, but I cannot assist with
this request..
Metric. We guide GPT-4V to answer the pixel or
matrix positions of the difference by dividing the
prompt into question text + standardized answer
requirement + prompt trick. We use OpenCV’s
Hough Circle Transform to locate the correct im-
age position of the difference. When the distance
between the correct position and the position given
by GPT-4V is less than 50 pixels, the difference
positioning is considered successful.

C.4 Hallucination

Hallucination in vision-language contexts repre-
sents a misalignment between visual inputs and
textual outputs in terms of object existence, at-
tributes, and relationships. To evaluate the effec-
tiveness of our method to mitigate hallucination in
vision-language tasks, we select several challeng-
ing datasets including POPE Adversarial subset (Li
et al., 2023b), HallusionBench (Hard) (Guan et al.,
2023) and Mementos (Wang et al., 2024). The
details of these benchmarks are as follows.
POPE (Li et al., 2023b)
Dataset Introduction. The POPE (Li et al., 2023b)
benchmark is designed for measuring object hallu-
cination in images. The questions are built based
on the object annotations, challenging LMMs to
determine object existence in images.
Metric. All questions are formatted as general in-
terrogative sentences, which can be answered with
either "yes" or "no". Therefore, we guide the model
to output the final answer within double square
brackets [[]], and then use accuracy as the metric
to evaluate the model’s performance.
HallusionBench (Li et al., 2023b)
Dataset Introduction. The HallusionBench (Li
et al., 2023b) is designed for evaluating language
hallucination and visual illusion in LMMs. The
images and questions are meticulously crafted by
human experts, posing great challenges to current
LMMs. Due to the limited GPT-4V quota, we
evaluate our method on the Hard set.

https://www.crazygames.com/game/find-the-difference
https://www.crazygames.com/game/find-the-difference
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Dataset Standard CoT SCAFFOLD SCAFFOLD + CoT

Wino. 17.0 33.0 33.0 41.0
V* 27.2 30.8 44.6 47.9

Table 7: Results of SCAFFOLD combined with Chain-
of-Thought (Wei et al., 2022) on V* Bench (Wu and
Xie, 2023) and Winoground (Thrush et al., 2022).

Metric. All questions are formatted as general in-
terrogative sentences, which can be answered with
either "yes" or "no". Therefore, we simplify the
evaluation process 6 and guide the model to output
the final answer within double square brackets [[]],
and then use accuracy as the metric to evaluate the
model’s performance.
Mementos (Wang et al., 2024)
Dataset Introduction. The Mementos (Wang et al.,
2024) is designed for evaluating reasoning capa-
bilities across image sequences. Featuring 4,761
diverse image sequences with varying lengths, the
dataset adopts a GPT-4_assisted metric to evaluate
the correctness of objects and behaviors in gener-
ated descriptions, reflecting both reasoning capa-
bilities and hallucination levels.
Metric. The task is to generate a description of the
image sequences. We adopt the evaluation script
in Mementos official implementation 7, which uses
GPT-4 (Achiam et al., 2023) as the judge model to
extract the objects and behaviors in the description,
then calculates F1 score in terms of objects and
behaviors respectively. Finally, we use the average
F1 score to measure the performance.

D Complementary Cases

This section complements more cases on our evalu-
ated benchmarks.

E Additional Ablation Studies

E.1 Integration of SCAFFOLD with
Chain-of-Thought

Our prompting method, characterized by its sim-
plicity, can seamlessly integrate with zero-shot CoT
by appending Let’s think step by step. to user in-
structions. To test its effectiveness, we conduct ex-
periments on Winoground (Thrush et al., 2022) and
V* Bench (Wu and Xie, 2023). Results from Ta-
ble 7 demonstrate that combining our method with
CoT enhances LMM performance beyond what

6the official evaluation process of HallusionBench involves
GPT-4 as judge model

7https://github.com/umd-huang-lab/Mementos

Choose the correct caption for the image. (A) a frog
is above rocks which are under the water (B) a frog
is under rocks which are above the water.

Ground-Truth: B
GPT-4V + CoT: The frog is visible above the rocks,
and the rocks are partially submerged in water, indi-
cating that the frog is not under the rocks but rather
resting on top of them or between them above the
water level. A.
GPT-4V + SCAFFOLD: The frog is located near
coordinates (3,3) and (4,3), and it is clearly visible
underneath the rocks, which are near coordinates
(1,3), (2,3), (1,4), and (2,4). The water is visible
around the frog, particularly near coordinates (5,4)
and (6,4). Based on the spatial relationships, the
rocks are above the water, and the frog is under the
rocks, which are above the water. The correct caption
for the image is: B.

Figure 7: An example from the Winoground dataset.

either method achieves independently. These find-
ings underscore our method’s substantial compati-
bility and potential for performance improvement
when combined with other methods.

E.2 Effect of Matrix Color

In terms of matrix color, we design different color-
ing strategies and compare their performances. As
illustrated in Fig. 10, uniform coloring strategies
adopt the same color for various scenes, occasion-
ally blending into the surroundings. Complemen-
tary colors introduce large amounts of colors and
may mislead model attention. Consequently, for
simplicity and visibility, we choose the most con-
trasting color from black and white at each dot
location. To assess the efficacy of our approach,
we compared it against baseline coloring strate-
gies, including uniform black, uniform white, and
complementary coloring. As shown in Table 8,
our binary coloring strategy slightly surpasses the
alternatives in performance.

https://github.com/umd-huang-lab/Mementos
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Question: What is the color of the little girl’s shirt?
Options: (A) pink. (B) white. (C) yellow. (D) black.

Ground-Truth: A
GPT-4V + CoT: I’m sorry, but there seems to be
a misunderstanding. The image provided does not
contain a little girl or any individuals wearing a shirt
that can be described. Therefore, I cannot provide an
answer to the question about the color of a little girl’s
shirt based on this image.
GPT-4V + SCAFFOLD: The little girl is located
near coordinates (7,9) and (7,10). Her shirt appears
to be pink in color. Therefore, the answer is A.

Figure 8: An example from the V* Bench dataset.

Coloring Strategy WNG VSR POPE Overall

None (Baseline) 70.0 64.0 73.0 69.0
White 78.0 72.0 78.0 76.0
Black 79.0 73.0 82.0 78.0

Complementary 77.0 71.0 81.0 76.3
Binary (Ours) 81.0 73.0 84.0 79.3

Table 8: Results of different coloring strategies
in ablation experiments, where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023b) Adversarial subset.

E.3 Effect of Dot Placement Perturbations
To assess the resilience of SCAFFOLD, we intro-
duce Gaussian noise to the dots, slightly adjusting
their positions without significantly changing their
relative placements, as illustrated in Fig. 11. We
model the original dot positions as (X,Y ), with lh
and lw representing the distances between neigh-
boring dots along the x and y axes, respectively.
The perturbed coordinate (Xnew, Ynew) reads:

[
Xnew
Ynew

]
=

[
X
Y

]
+

N (
0,
(
1
4 · lh

)2)
N

(
0,
(
1
4 · lw

)2)
 (2)

According to the findings depicted in Fig. 11,
the overall performance of perturbed coordinates

Question: Is there a person in the image?

Ground-Truth: Yes.
GPT-4V + CoT: There is no person visible in the
image. The image shows a plate with some food and
a pair of chopsticks, and there is a fork in the process
of picking up food, but no person is seen in the frame.
So, the answer is no..
GPT-4V + SCAFFOLD: In the provided images,
there is no complete person visible. However, there
is a hand holding a fork in the upper right area of
the image, near coordinates (1,6) through (3,6). This
indicates the presence of a person, but only a part of
them (the hand) is shown. Therefore, the answer is
yes.

Figure 9: An example from the POPE (adversarial)
dataset.
are marginally lower than the standard implemen-
tation but still show impressive improvement on
the baseline, indicating their robustness. We also
surprisingly notice that in the VSR subset, the per-
turbed dots is slightly better. The results may come
from two reasons. Firstly, the perturbation is minor,
therefore it would not severely change the positions
of the dots, making it still effective. Secondly, it is
possible that some perturbed dots are closer to cer-
tain objects, and may slightly increase grounding
capabilities. Furthermore, the experiments imply
that it may be potentially beneficial to tailor the
placement of the dots instead of uniform distribu-
tion in certain application fields.

E.4 Effect of Coordinate Formats

Coordinates, as textual references for dots, are vi-
tal for aligning visual inputs with textual outputs.
To assess the effectiveness of our implementation,
we experiment with various coordinate formats,
including alphabetic, one-dimensional numerical,
and pixel absolute coordinates. The examples of
these formats are exhibited in Fig. 12.

The results, detailed in Table 9, reveal that our
approach surpasses alternative coordinate designs
in performance. Additionally, all the coordinates
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(a) Black (b) White (c) Complementary (d) Binary (Ours)

Figure 10: Examples of different color configurations of dot matrices and coordinates.

60 80 100
Accuracy

POPE

VSR

WNG

Baseline
Standard
Perturbed

Figure 11: The results of perturbed and stan-
dard coordinates (left) and a perturbed coordinates-
overlaid example (right), where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023b) Adversarial subset.

Coordinates WNG VSR POPE Overall

None (Baseline) 70.0 64.0 73.0 69.0
Alphabet 80.0 72.0 79.0 77.0

Pixel 78.0 75.0 77.0 76.7
One-Dimensional 72.0 71.0 81.0 74.7
Cartesian (Ours) 81.0 73.0 84.0 79.3

Table 9: Results of different coordinates designs
in ablation experiments, where WNG denotes the
Winoground (Thrush et al., 2022) dataset and POPE
denotes the POPE (Li et al., 2023b) Adversarial subset.

designs perform better than the baseline without
coordinates, indicating the flexibility of coordinates
design and the adaptability to different scenarios.

F Set-of-Mark Experiment Setup

To apply Set-of-Mark prompting (Yang et al.,
2023a) to the selected vision-language benchmarks,
we adopt the official implementation 8. Since SoM
incorporate various object segmentation models
with different visual granularities, we need to se-
lect the proper setting for our selected tasks. Based
on our primary tests, we find that Semantic-SAM
model (Li et al., 2023a) can produce segmentation
maps of proper granularity. Therefore, we use the

8https://github.com/microsoft/SoM

Semantic-SAM model for all the tasks evaluated
and set the segmentation level to 3. Additionally,
SAM model (Kirillov et al., 2023) generates too
many labels that hinder visual understanding of
LMMs.

https://github.com/microsoft/SoM


2903

(a) Alphabet (b) Pixel

(c) One-dimensional (d) Cartesian (Ours)

Figure 12: Examples of different coordinate formats.
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