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Abstract

The performance of multilingual language
models (MLLMs) is notably inferior for low-
resource languages (LRL) compared to high-
resource ones, primarily due to the lim-
ited available corpus during the pre-training
phase. This inadequacy stems from the under-
representation of low-resource language words
in the subword vocabularies of MLLMs, lead-
ing to their misidentification as unknown or in-
correctly concatenated subwords. Previous ap-
proaches are based on frequency sorting to se-
lect words for augmenting vocabularies. How-
ever, these methods overlook the fundamental
disparities between model representation dis-
tributions and frequency distributions. To ad-
dress this gap, we introduce a novel Entropy-
Consistency Word Selection (ECWS) method,
which integrates semantic and frequency met-
rics for vocabulary augmentation. Our results
indicate an improvement in performance, sup-
porting our approach as a viable means to en-
rich vocabularies inadequately represented in
current MLLMs.

1 Introduction

Multilingual language models (MLLMs) (Devlin
et al., 2019; Conneau and Lample, 2019) are pre-
trained on extensive multilingual corpora to enable
the representation of text across various languages.
For low-resource languages (LRL), previous re-
search has incorporated language-specific corpora
for fine-tuning (Fu et al., 2023). During the pro-
cess, MLLMs are accommodated for a specific
downstream task in a particular language, while
retaining the original vocabulary. This approach
presents limitations, as words from LRL often rep-
resent inadequacies in the subword vocabularies.
Specifically, due to the corpus imbalance in the pre-
training stage, LRL words may not be segmented
into subwords by the vocabulary. More problem-
atically, while the vocabulary may have enough
subwords to construct LRL words, the embeddings

for these subwords often overlap with those used
in high-resource languages (Conneau et al., 2020;
Bosboom et al., 2020). This hinders the formation
of effective LRL word embeddings, potentially de-
grading task performance for these languages.

Therefore, incorporating words from low-
resource languages into the vocabulary of MLLMs
can enhance the representation quality of these lan-
guages within the model. Hong et al. (2021) has
contended that vocabulary adaptation should occur
concurrently with fine-tuning for downstream tasks.
Some research (Tai et al., 2020; Nag et al., 2023)
has demonstrated that a vocabulary tailored to a
specific downstream domain outperforms one that
is derived from the pre-training phase.

Figure 1: Illustration of different words in MLMs.
The left sub-figure illustrates a word encountered by
MLLMs during pre-training, while the right sub-figure
depicts a word that MLLMs may not have seen. The
word “OnyankopOn” means “God” or “deity” in Akan.

Existing vocabulary augmentation methods
(Hong et al., 2021; Nag et al., 2023) often rely
on vocabulary frequency to identify and add vul-
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nerable1 words to the dictionary. While these meth-
ods are effective to a certain extent, they rely on
the assumption that a word’s vulnerability is deter-
mined by its frequency distribution after tokeniza-
tion. However, this assumption is not accurate
enough because evaluating a word’s vulnerability
should consider its performance not only at the
tokenizer level but also at the model level. For
instance, as shown in the left of Figure 1, the to-
kenizer segments “apple” into “app” and “##le”.
The word previously encountered by this model
can still be accurately interpreted by MLLMs, even
after segmentation by the tokenizer. Conversely,
in the right of Figure 1, the tokenizer segments
“OnyankopOn” into “O”, “##nya”, “##nko”, “##p”,
“##O”, and “##n”, resulting in the model’s failure
to comprehend the word. The tokenizer segments
words into multiple subwords. However, the ag-
gregation of these subwords may lead to an incom-
plete representation of the semantic meaning of the
original word. We consider such word to be vul-
nerable. The discrepancy between the frequency of
this downstream vocabulary and its actual represen-
tation in models arises from differences between
the pre-training corpus and the downstream corpus.
If the downstream vocabulary were fully learned
during the pre-training stage, it would not easily
become vulnerable. However, we cannot ascer-
tain whether a vocabulary is fully learned based
solely on word frequency. Therefore, employing
the representation distributions2 of the MLLMs
for vocabulary screening can effectively determine
whether the vocabulary has been fully learned. This
approach facilitates the identification of words that
genuinely need to be added to the vocabulary.

To fill this gap, this paper introduces a novel
methodology aimed at enhancing the vocabularies
of MLLMs, with a particular focus on improving
their performance across a spectrum of text classi-
fication tasks. We introduce a novel consistency as-
sessment method utilizing semantic space metrics

1The “vulnerable” word refers to words that are prone to
misrepresentation or fragmentation within the model due to
inadequate or imbalanced representation in the vocabulary.
These words are typically low-frequency words or subwords
that the model may not effectively learn during training, lead-
ing to poorer performance on downstream tasks.

2The representation distribution refers to the token repre-
sentation layer in MLLMs, using high-dimensional distribu-
tions to represent the semantics of tokens. This distribution
captures the semantic relationships and linguistic nuances
among tokens, reflecting their proximity to each other based
on their meanings and contextual usage. The term emphasizes
the model’s ability to map tokens onto a semantic space.

from the perspective of evaluating the disparities
between model representation distributions and fre-
quency distributions. Our approach calculates the
proportion of category-specific information within
a word by assessing its semantic distance from
category-defining words. We then derive the word’s
semantic-distribution-based entropy from these in-
formation ratios within the semantic space. Addi-
tionally, we determine the word’s frequency-based
entropy in downstream tasks through frequency
analysis. We calculate the information disparity
between semantic-distribution-based entropy and
frequency-based entropy to measure the consis-
tency of these two distributions. After sorting by
consistency assessment, we select the words with
the lowest consistency score to add to the dictio-
nary for fine-tuning. By refining the process of
vocabulary augmentation, we extend the applicabil-
ity and effectiveness of MLLMs in capturing the
nuances of diverse linguistic contexts. The main
contributions of this paper are:

(1) We propose a novel consistency assessment
method from the perspective of evaluating the dis-
parities between the model representation distribu-
tions and the frequency distributions.

(2) Our results suggest a modest improvement
in performance, which supports our approach as
one potential method to enrich vocabularies inade-
quately represented in current MLLMs.

(3) Our method enhances the performance of
low-resource languages in multilingual tasks.

2 Related Work

Continued pre-training, with or without vocabulary
augmentation, of existing language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau and Lample, 2019) enhances domain-specific
and language-specific performance across diverse
tasks. Beltagy et al. (2019) innovatively trained
a language model SciBERT from scratch using a
substantial domain-specific corpus. This approach
demonstrated that a vocabulary derived from such
a corpus significantly enhanced performance. Fol-
lowing this advancement, Lee et al. (2020) and Gu-
rurangan et al. (2020) conducted additional train-
ing on a pre-trained language model using a large
domain-specific corpus, further refining the model
prior to fine-tuning. However, these methods are
resource-intensive, requiring substantial computa-
tional power. Therefore, existing work primarily
focuses on the vocabulary augmentation methods,
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as well as the tokenizer optimization methods and
embedding initialization methods.

Tokenizer Optimization. For methods that do
not involve vocabulary augmentation, one approach
is tokenizer optimization, as explored by Sachi-
dananda et al. (2021); Moon and Okazaki (2020)
and Hofmann et al. (2021), bypassed the prelim-
inary step of vocabulary augmentation. For ex-
ample, Purkayastha et al. (2023) found that using
the UROMAN tool for enabling UTF-8 to Latin
transliteration enhanced the adaptability of mPLMs
to a diverse set of low-resource languages. Hof-
mann et al. (2022) suggested a straightforward al-
gorithm that tweaked the tokenization process to
retain the morphological integrity of words.

Embedding Initialization. Other methods fo-
cus on embedding initialization, including those
by Ruzzetti et al. (2022) and Yu et al. (2022),
which concentrate on addressing the challenges
posed by rare or out-of-vocabulary (OOV) words.
Liu et al. (2021) introduced an embedding gen-
erator module within the pretraining and fine-
tuning pipeline to mitigate vocabulary discrepan-
cies. Perez et al. (2023) addressed the limita-
tions of subword-based models by aligning the
word embedding layer of a vocabulary-rigid trans-
former model to a vocabulary-free one. Downey
et al. (2023) explored fine-tuning embedding struc-
tures to adapt multilingual vocabularies to new lan-
guages, and Dobler and de Melo (2023) introduced
a novel embedding initialization method called FO-
CUS. Liu et al. (2024); Minixhofer et al. (2022) op-
timized and initialized word embeddings, enabling
models to efficiently adapt to new languages. How-
ever, these methods do not fundamentally resolve
domain-specific and language-specific challenges
in token representation within dictionaries.

Vocabulary Augmentation. Yamaguchi et al.
(2024) proposed cross-lingual vocabulary adap-
tation methods, which adjust and expand vocab-
ularies to adapt models to target languages. Po-
erner et al. (2020); Sato et al. (2020) and Tai et al.
(2020) enriched pre-trained models by incorporat-
ing domain-specific vocabulary, thereby tailoring
the models more closely to specific domains. Fo-
cusing on multilingual tasks, Chung et al. (2020)
investigated the creation of multilingual vocabu-
laries from language clusters, contributing to the
field’s understanding of linguistic diversity. Most
notably, Nag et al. (2023) developed an entropy-

based language model that enhanced vocabulary.
However, these approaches’ reliance on word

frequency for word selection might not have fully
accounted for potential representational distortions
of selected words within the models, suggesting an
important area for further inquiry and refinement.

3 Entropy-Consistency Word Selection

3.1 Task Definition

In this study, we aim to enrich the multilingual
model’s vocabulary by selecting and incorporat-
ing suitable words from low-resource languages.
Let V represent the original vocabulary of a given
multilingual model M , with T denoting the asso-
ciated tokenizer, and |V | indicating the size of the
original vocabulary, i.e., the total count of words
it comprises. For a particular downstream task,
we designate the total count of categories as C,
with a specific category represented by c within the
set [C] = {1, . . . , C}. For the label of the down-
stream task, we obtain its specific category-defining
words set L = {l1, l2, ..., lC}. The term “category-
defining words” refers to specific words that are
representative of the categories or classes within
the dataset. For example, in a sentiment analysis
task, category-defining words for the classes might
include “positive” for positive sentiments and “neg-
ative” for negative sentiments. These words are
chosen based on their strong association with the re-
spective class they represent and their ability to en-
capsulate the essence of the class within the context
of the task at hand. The set of words derived from
the corpus statistics of downstream tasks, which
are not included in the original vocabulary V , is
denoted as Vd.

3.2 Overview

As shown in Figure 2, our method includes three
steps: semantic-distribution-based entropy cal-
culation (SEC), frequency-based entropy cal-
culation (FEC), consistency calculation and
word selection (CCWS). Our method quantifies
category-specific information in a word by evalu-
ating its semantic proximity to category-defining
terms, thereby calculating the word’s semantic-
distribution-based entropy. We also assess the
word’s frequency-based entropy in downstream
tasks via frequency analysis. By comparing the
entropy from semantic distributions and frequency
distributions, we assess the alignment between
these two distributions. Words with the lowest
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Figure 2: Overview of ECWS. The Hindi word is tokenized into multiple subwords by vocabulary (V ). The
subwords generated after tokenization are encoded by the MLLM along with the “[CLS]” and “[SEP]” tokens. The
representation of a word, ew, is derived from the representations of its corresponding subwords. This representation
is then used to calculate the semantic distribution-based entropy in relation to the category-defining words of the
downstream task. Simultaneously, the frequency distribution-based entropy of the word is computed. These two
entropy values are combined to determine a consistency score, which is used to decide whether to add the word to
the dictionary, thereby forming a new dictionary Vnew.

consistency scores are then chosen for inclusion
and fine-tuning in the vocabulary. The pseudocode
of ECWS is shown in Appendix A.

Semantic-distribution-based entropy quanti-
fies the semantic proximity of words to category-
defining terms, reflecting their relevance across
different linguistic contexts. Frequency-based
entropy assesses words’ distribution across cat-
egories based on their frequency of occurrence,
indicating their empirical utility in the language
model. Consistency assessment carefully evalu-
ates the alignment between semantic-distribution-
based and frequency-based entropy measures.

3.3 Semantic-distribution-based Entropy
Calculation

For word w from the vocabulary Vd, we employ
the tokenizer T of the model M for tokenization.
This process involves breaking down w into sub-
words that the model can interpret. The semantic
distribution of w is assessed by its closeness to
category-defining words lc, indicating its relevance
to specific categories in the dataset.

Using tokenizer T , w is fragmented into sub-
word sequence Sw = [s1, s2, ..., sT ], where T is
the length of subword sequence Sw. We splice the
subword sequence Sw with start and end placehold-
ers as input for the multilingual model:

S
′
w = [CLS]s1, s2, ..., sT [SEP ]. (1)

We then utilize the multilingual model M for

encoding the S
′
w and use the first vector from the

token vector matrix corresponding to the “[CLS]”
token as word w’s primary semantic representa-
tion in the multilingual model M . We denote the
semantic representation of the word w as ew.

For category-defining words pertinent to the
downstream task, we apply the same segmenta-
tion method. For each category-defining word lc,
the corresponding subword sequence is denoted as
Slc , which serves as the input S

′
lc

for the MLLMs.
Similarly, the first vector of S

′
lc

’s word vector ma-
trix serves as word lc’s semantic representation in
the multilingual model M . The category-defining
word matrix corresponding to the categories of
downstream tasks is El = {el1, el2, ..., elC} ∈
RC×m. For the c-th category-defining word lc, its
vector is denoted as elc (elc ∈ El). We further calcu-
late the distance between word w and the category-
defining word lc:

qc =
1

cos(elc, ew)
=
||elc|| × ||ew||

elc · ew
, (2)

where cos(·) is the cosine similarity of the two
vectors, and the distance between the two vectors
in the representational distribution is the reciprocal
of the cosine similarity. Then the distance among
word w and category-defining words set L is Q =
{q1, q2, ...qC}. We further normalize the distance
among word w and category-defining words set L.
The normalized distance between word w and the
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c-th category-defining word lc is:

q
′
c =

qc∑C
i=1 qi

. (3)

Then the normalized distance among word
w and category-defining words set L is Q

′
=

{q′
1, q

′
2, ...q

′
C}. Based on the calculated spatial dis-

tance, we obtain the semantic-distribution-based
entropy as:

Hsd(w) = −
C∑
i=1

q
′
c · log(q

′
c). (4)

The calculation of Hsd(w) involves aggregat-
ing these distances to reflect the overall semantic
spread of w. A high Hsd(w) value indicates that
the word w is more evenly and broadly distributed
among different categories within the representa-
tional distribution, suggesting that the fragmenta-
tion of w could pose a significant challenge.

3.4 Frequency-based Entropy Calculation
In this subsection, we introduce the method for
calculating frequency-based entropy Hf (w) for a
given word w. This measure assesses the word’s
distribution across different categories within the
dataset based on its frequency of occurrence. In
the corpus pertaining to the downstream task, the
frequency of the term w within each category c is
represented as n(w, c). Based on these counts, we
define the following multinomial distributions:

p(c|w) = n(w, c)∑
c′ n(w, c

′)
. (5)

Based on the above frequency distribution, we
obtain the frequency-based entropy as:

Hf (w) = −
C∑
i=1

p(c|w) · log(p(c|w)). (6)

A low Hf (w) value suggests that w could poten-
tially be a highly effective feature for downstream
tasks, considering word frequency.

3.5 Consistency Calculation and Word
Selection

Through the comparison of entropy derived from
semantic and frequency distributions, we evaluate
the consistency between the model’s representa-
tional distributions and its frequency distributions.
The goal is to identify words lacking balance in

semantic and frequency aspects. A small Hf (w)
and large Hsd(w) indicate that word w is a dis-
criminative feature in downstream tasks but lacks
specificity due to its even distribution across seman-
tic categories. A word with a high Hf (w) value is
considered non-discriminative for the downstream
task and can be excluded from the new dictionary.
We use the negative of the relative attenuation of
semantic-distribution-based entropy and frequency-
based entropy as the representation of consistency:

r(w) = −
Hsd(w)−Hf (w)

Hsd(w)
, (7)

where r(w) represents the consistency score.
The greater the relative attenuation of semantic-
distribution-based entropy and frequency-based en-
tropy, the more obvious the difference between this
word in semantic space and frequency statistics,
indicating a lower overall consistency.

Words with lower consistency scores are deemed
more suitable for inclusion in the vocabulary, as
they exhibit an imbalanced distribution both se-
mantically and across categories. The word se-
lection process involves ranking words by their
consistency scores and incorporating those with
the lowest scores into the model’s vocabulary for
fine-tuning. We filter out the words with frequency
less than k in Vd, and then select Z words with
the lowest consistency score to add to the original
dictionary V to form a new dictionary Vnew. We ex-
plore the influence of parameter Z on performance
in Appendix B.

4 Datasets

We conduct experiments on three single langauge
text classification tasks (IITP Product Review, Hate
Speech and Headline Prediction) and a Hindi-
English code-mixed task (GLUECos Sentiment).
Furthermore, we undertake a multilingual text
classification task AfriSenti-SemEval. AfriSenti-
SemEval is a multilingual sentiment classification
challenge in 12 African languages (Hausa, Yoruba,
Igbo, Nigerian Pidgin, Amharic, Algerian Ara-
bic, Moroccan Arabic, Swahili, Kinyarwanda, Twi,
Mozambican Portuguese, and Xitsonga). Details
of all datasets are presented in Table 1. We also
list the category-defining words set in each dataset.
The detailed fragmentation of datasets is shown in
the Appendix C.
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Tasks Language Train Validation Test Category-defining Words
IITP Product Review Hindi 4182 523 523 positive, negative, neutral

Hate Speech Bengali 981 126 295

geopoitical hate,
gender abusive hate,

religious hate, political hate,
personal hate, political normal

Headline Prediction Gujarati 5269 659 659 technology, business,
entertainment

GLUECos Sentiment Hindi-English Code-mix 10079 1260 1260 positive, negative, neutral
AfriSenti-SemEval Multilingual 63685 13653 30311 positive, negative, neutral

Table 1: Dataset distribution and category-defining words set for each task.

5 Experiments

5.1 Experimental Setups

For our experiment, we select mBERT-base (De-
vlin et al., 2019) as the main MLLM. Meanwhile,
to validate the effectiveness of our method, we ad-
ditionally adopt XLM-RoBERTa-base (Conneau
et al., 2020) as the framework. The detailed re-
sults of the experiment using XLM-RoBERTa-base
are presented in Appendix D. The models’ weights
are initialized using a truncated normal distribution
with a standard deviation of 0.02 and biases are set
to 0. Experiments maintain a constant learning rate
of 2e-5 and a maximum sequence length of 128
tokens. The training process encompasses a total
of 15 epochs, utilizing a batch size of 16, and the
procedure is conducted on an NVIDIA A100 GPU.

To expedite model convergence during training,
we initialize embeddings for newly added LRL
words. For the four single-language tasks, we em-
ploy the initialization method described by Nag
et al. (2023), wherein the embeddings of new LRL
words are initialized using existing LRL subwords
in the MLLM dictionary and their corresponding
English translation subwords. For the AfriSenti-
SemEval task, due to the lack of English translation
subwords corresponding to the LRL subwords, we
only use existing LRL subwords in the MLLM
dictionary to initialize the word’s embedding.

5.2 Metrics

We evaluate our model on five downstream tasks
using accuracy and macro F1 metrics, followed by
Nag et al. (2023). We present the average of these
metrics over 5 runs, each with a different random
seed, to ensure robustness in our findings.

5.3 Comparison Methods

We choose four methods as our baselines. Firstly,
we compare the method Fine-tune, which directly
utilizes LLMs for training. In addition, we pri-

marily compare the method without dictionary
augmentation, including the tokenizer optimiza-
tion method (FLOTA (Hofmann et al., 2022))
and the embeddings initialization method (FOCUS
(Dobler and de Melo, 2023)). Finally, we com-
pare the method focused on dictionary augmen-
tation method (EVALM (Nag et al., 2023)). A
detailed description of the comparison method can
be obtained from Appendix E.

Method Macro F1 Accuracy
Hate Speech (Bengali)

Fine-tune 63.58(±0.74) 63.12(±1.21)
FLOTA 66.54(±2.49) 65.98(±2.21)
EVALM 67.20(±0.62) 67.00(±0.75)
FOCUS 63.48(±1.00) 65.52(±0.81)
ECWS 68.16(±0.90) 68.10(±0.87)

IITP Product Review (Hindi)
Fine-tune 71.58(±0.50) 74.52(±0.55)
FLOTA 71.72(±0.82) 74.88(±0.67)
EVALM 71.88(±0.55) 74.60(±0.36)
FOCUS 65.54(±0.78) 69.94(±0.65)
ECWS 72.28(±0.44) 75.38(±0.39)

GLUECoS (Hindi-English Code-mix)
Fine-tune 58.32(±0.34) 59.96(±0.32)
FLOTA 58.34(±0.43) 59.92(±0.36)
EVALM 59.34(±0.48) 60.72(±0.72)
FOCUS 55.28(±0.63) 56.20(±0.65)
ECWS 60.02(±0.45) 61.20(±0.51)

Headline Prediction (Gujarati)
Fine-tune 88.34(±0.55) 89.98(±0.45)
FLOTA 84.72(±0.67) 86.40(±0.68)
EVALM 88.64(±0.32) 90.42(±0.26)
FOCUS 82.80(±0.56) 84.84(±0.41)
ECWS 89.04(±0.27) 90.74(±0.26)

AfriSenti-SemEval (Multilingual)
Fine-tune 59.82(±0.56) 59.92(±0.55)
FLOTA 60.78(±0.21) 60.78(±0.23)
EVALM 61.48(±0.40) 61.58(±0.39)
FOCUS 62.14(±0.35) 62.14(±0.35)
ECWS 61.88(±0.50) 62.00(±0.50)

Average
Fine-tune 68.33(±0.54) 69.50(±0.62)
FLOTA 68.42(±0.93) 69.59(±0.83)
EVALM 69.71(±0.48) 70.86(±0.50)
FOCUS 65.87(±0.66) 67.67(±0.57)
ECWS 70.28(±0.51) 71.48(±0.51)

Table 2: Main results. Experimental results are five runs’
averages, with standard errors shown in brackets.
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5.4 Main Results

As demonstrated in Table 2, we conduct a compar-
ative analysis of the ECWS against four baseline
methods and our findings indicate that ECWS out-
performed all baselines, achieving the SOTA.

Specifically, in the Hate Speech (Bengali) task,
ECWS attains macro F1 score and accuracy of
68.16 and 68.10, respectively, outshining other
models, and notably improving accuracy by 1.10
over the second-ranked EVALM. In the IITP Prod-
uct Review (Hindi) task, ECWS reaffirms its supe-
riority with macro F1 score and accuracy of 72.28
and 75.38. For the GLUECoS (Hindi-English
Code-mix) task, ECWS leads with scores of 60.02
for macro F1 and 61.20 for accuracy, marking im-
provements of 0.68 and 0.48 points over EVALM,
respectively. Although gains are modest in the
Headline Prediction (Gujarati) task, ECWS still
achieves top scores with macro F1 and accuracy of
89.04 and 90.74. It is noteworthy that FOCUS per-
forms the worst in the first four tasks. We speculate
that this may be because FOCUS requires a sub-
stantial external corpus to train a static word vector.
For fairness in our comparisons, we meticulously
train static word vectors solely using the training
sets of the downstream tasks, without utilizing any
external corpus. The scale of the training corpus for
static word vectors significantly affects FOCUS’s
performance in the first four tasks, leading to its
poor performance.

Lastly, in the AfriSenti-SemEval (Multilingual)
task, which involved a substantial training dataset,
FOCUS achieves the best performance, with a
macro F1 score of 62.14 and an accuracy score
of 62.14. This aligns with our earlier speculation
that FOCUS’s performance is heavily influenced
by the volume of training data. ECWS ranks sec-
ond, with a score of 61.88 for macro F1 and a score
of 62.00 for accuracy. Aggregating performances
across all five tasks, ECWS surpasses other meth-
ods in average macro F1 score and accuracy, en-
hancing by 0.57 and 0.62 points respectively when
compared to the second-best method, EVALM. We
further compare the performance of different meth-
ods on various languages in the AfriSenti-SemEval
(Multilingual) task. The experimental results are
presented in Appendix F.

In terms of standard errors, our method is slightly
higher than the second-ranked EVALM, the overall
performance remains the best. Specifically, in the
Headline Prediction (Gujarati) task, our method

Method Macro F1 Accuracy
Hate Speech (Bengali)

ECWS 68.16 68.10
w/o SEC 67.12 66.88
w/o FEC 67.60 67.54

IITP Product Review (Hindi)
ECWS 72.28 75.38

w/o SEC 71.10 74.42
w/o FEC 71.08 74.10
GLUECoS (Hindi-English Code-mix)
ECWS 60.02 61.20

w/o SEC 59.04 60.36
w/o FEC 59.20 60.74

Headline prediction (Gujarati)
ECWS 89.04 90.74

w/o SEC 88.42 90.10
w/o FEC 88.74 90.48

AfriSenti-SemEval (Multilingual)
ECWS 61.88 62.00

w/o SEC 61.70 61.78
w/o FEC 61.66 61.82

Average
ECWS 70.28 71.48

w/o SEC 69.48 70.71
w/o FEC 69.66 70.94

Table 3: Results of ablation experiments. “SEC”
and “FEC” denote semantic-distribution-based and
frequency-based entropy calculations, respectively.

achieved the lowest standard errors, with±0.27 for
macro F1 and ±0.26 for accuracy, highlighting the
model’s stability.

Overall, our method not only effectively im-
proves performance but also maintains low stan-
dard errors, demonstrating its reliability and stabil-
ity across different tasks.

5.5 Ablation Experiment

We conduct ablation experiments for our method,
and the experimental results are shown in Table
3. In ablation experiments, we use only the FEC
or the SEC to select the vocabulary. For the Hate
Speech (Bengali) task and the IITP Product Review
(Hindi), we see a decrease in both Macro F1 and
accuracy when either SEC or FEC is removed, in-
dicating that both components contribute positively
to the model’s performance. Within the GLUECoS
(Hindi-English Code-mix) task and the Headline
prediction (Gujarati) task, removing SEC or FEC
leads to a decrease in performance across both met-
rics, with a more notable decrease when SEC is
removed. The AfriSenti-SemEval (Multilingual)
task sees a decrease in performance when either
component is removed, with the removal of SEC
again showing a more substantial impact than the
removal of FEC. Lastly, the average performance
across all tasks shows that both components con-
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tribute to the effectiveness of the model, with SEC
appearing to be slightly more important overall.

Method Macro F1 Accuracy
Hate Speech (Bengali)

EVALM 67.20(±0.62) 67.00(±0.75)
+ FLOTA 67.24(±1.09) 66.80(±1.12)
+ FOCUS 66.66(±0.36) 67.00(±0.61)

ECWS 68.16(±0.90) 68.10(±0.87)
+ FLOTA 66.96(±1.23) 67.42(±1.12)
+ FOCUS 66.70(±0.38) 66.46(±0.51)

IITP Product Review (Hindi)
EVALM 71.88(±0.55) 74.60(±0.36)
+ FLOTA 72.42(±0.58) 75.08(±0.31)
+ FOCUS 69.98(±0.38) 73.20(±0.51)

ECWS 72.28(±0.44) 75.38(±0.39)
+ FLOTA 72.54(±0.75) 75.82(±0.74)
+ FOCUS 71.18(±0.81) 74.28(±0.44)

GLUECoS (Hindi-English Code-mix)
EVALM 59.34(±0.48) 60.72(±0.72)
+ FLOTA 59.94(±0.51) 60.26(±0.60)
+ FOCUS 58.52(±0.67) 59.94(±0.63)

ECWS 60.02(±0.45) 61.20(±0.51)
+ FLOTA 59.30(±0.41) 60.58(±0.74)
+ FOCUS 58.56(±0.62) 59.52(±0.69)

Headline Prediction (Gujarati)
EVALM 88.64(±0.32) 90.42(±0.26)
+ FLOTA 88.54(±0.37) 89.48(±0.24)
+ FOCUS 88.54(±0.26) 90.16(±0.17)

ECWS 89.04(±0.27) 90.74(±0.26)
+ FLOTA 89.04(±0.41) 90.78(±0.33)
+ FOCUS 88.12(±0.20) 89.88(±0.20)

AfriSenti-SemEval (Multilingual)
EVALM 61.48(±0.40) 61.58(±0.39)
+ FLOTA 62.34(±0.28) 62.40(±0.30)
+ FOCUS 63.58(±0.15) 63.58(±0.15)

ECWS 61.88(±0.50) 62.00(±0.50)
+ FLOTA 62.30(±0.23) 62.44(±0.21)
+ FOCUS 64.50(±0.15) 64.50(±0.16)

Average
EVALM 69.71(±0.48) 70.86(±0.50)
+ FLOTA 70.10(±0.57) 70.80(±0.53)
+ FOCUS 69.46(±0.36) 70.78(±0.41)

ECWS 70.28(±0.51) 71.48(±0.51)
+ FLOTA 70.03(±0.61) 71.41(±0.54)
+ FOCUS 69.81(±0.43) 70.93(±0.40)

Table 4: Results of Combined Methods. The “+” sign
indicates the combination of two methods.

5.6 Result of Combined Methods
We further delve into the integration of vocabulary
augmentation techniques with tokenizer optimiza-
tion and embedding initialization. We examine if
combining these strategies could yield a more sig-
nificant impact. As depicted in Table 4, we utilize
EVALM and ECWS as baselines and integrated
them with FLOTA and FOCUS respectively.

Specifically, in the Hate Speech (Bengali) task,
only EVALM + FLOTA shows a slight improve-
ment in macro F1 score, increasing by 0.04. In the
IITP Product Review (Hindi) task, both EVALM
and ECWS experience enhancements when in-

tegrated with FLOTA. In the GLUECoS (Hindi-
English Code-mix) task, the EVALM + FLOTA
combination shows an improvement of 0.60 in
macro F1, though it is accompanied by a decline
in accuracy by 0.46. For the Headline Prediction
(Gujarati) task, only the ECWS + FLOTA exhibits
a minor increase in accuracy, by 0.04. It is note-
worthy that, consistent with the main results, the
integration of FOCUS with EVALM and ECWS
does not enhance performance in the first four tasks.
This corroborates our hypothesis that the smaller
training corpus in these tasks adversely affects the
model’s static word vectors when combined with
FOCUS, leading to poor performance.

Lastly, in the AfriSenti-SemEval (Multilingual)
task, where the training datasets are larger, both
EVALM and ECWS achieve their best performance
following the integration with FOCUS. Specifically,
for EVALM, the combination with FLOTA results
in improvements of 0.86 and 0.82 in macro F1
and accuracy, respectively. The integration with
FOCUS boosts the macro F1 and accuracy by 1.24
and 1.18, respectively. For ECWS, the integration
with FLOTA improves the macro F1 and accuracy
by 0.42 and 0.44, respectively. Furthermore, the
addition of FOCUS dramatically increases these
metrics by 2.62 and 2.50, respectively.

In summary, while the baseline methods gener-
ally exhibit superior performance across the five
different tasks, the results of the AfriSenti-SemEval
(Multilingual) task highlight that combining vocab-
ulary enhancement strategies with methods that
do not augment the vocabulary has advantages in
certain scenarios.

6 Conclusion

In this study, we focus on the vocabulary augmen-
tation of MLLMs by incorporating relevant words
from low-resource languages using the proposed
ECWS method, which combines semantic and fre-
quency metrics. Across all tasks, ECWS achieves
an average macro F1 score of 70.28 and an accu-
racy of 71.48, marking it as an effective method
for vocabulary augmentation in low-resource lan-
guage settings. The results of ECWS illustrate the
usefulness of semantic and frequency metrics in
vocabulary selection, contributing to advancements
in the field. This research supports the efficacy
of the ECWS approach and suggests its potential
to improve the capabilities of multilingual models,
especially for low-resource languages.
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A Pseudocode of Our Proposed Method

The pseudocode of the implementation process of
our proposed method ECWS is shown in Algorithm
1.

Algorithm 1 LRL vocabulary selection in ECWS

1: Input:
2: Pretrained vocabulary V
3: C-class LRL downstream task’s corpus D
4: MLLM’s tokenizer T
5: Word frequency threshold k
6: Number of new words to add to the dictio-

nary Z
7: Category-defining word matrix El =
{el1, el2, ..., elC}

8: Output: ECWS vocabulary Vnew.
9: Vd ← all words from D but not included in V

10: γ ← Corresponding consistency threshold
when adding Z words

11: Initialize hyperparameters k.
12: for each LRL word w ∈ Vd do
13: n(w) ← Frequency of the word w in cor-

pus D
14: if n(w) > k then
15: for each category-defining word lc ∈

El do
16: compute distance qc =

||elc||×||ew||
elc·ew

17: normalize distance q
′
c =

qc∑C
i=1 qi

18: end for
19: compute Hsd(w) = −

∑C
i=1 q

′
c ·

log(q
′
c)

20: compute Hf (w) = −
∑C

i=1 p(c|w) ·
log(p(c|w))

21: compute r(w) = −Hsd(w)−Hf (w)
Hsd(w)

22: if r(w) < γ then
23: Vnew = V ∪ {w}
24: end if
25: end if
26: end for
27: return Vnew

B Impact of the Scale of the Dictionary

In our investigation, we also explore the impact of
the scale of the dictionary. As illustrated in Figure
3 and Figure 4, we plot the correlation between
macro F1 scores and accuracy scores against the
extent of vocabulary augmentation across five tasks,
ensuring vocabulary augmentation is comparable in
size. Yellow, blue, red, and green lines respectively

represent the performance of FLOTA, Fine-tune,
EVALM, and our method, with the corresponding
colored bands showing standard deviation spreads.

For the Fine-tune, FLOTA and FOCUS, as they
do not change the dictionary, the model perfor-
mance remains unaffected on scale of the dictio-
nary. For EVALM and our method, we anticipate
that with the increase in the dictionary, perfor-
mance exhibits a monotonically increasing trend.
However, this trend is not universally applicable to
EVALM.

Specifically, as shown in Figure 3, we observe
that EVALM does not exhibit a positive correla-
tion between the macro F1 scores and dictionary
expansion, particularly in the IITP Product Review
task, GLUECoS task, and AfriSenti-SemEval task,
suggesting that the words EVALM identifies for
inclusion in the dictionary are not always directly
relevant to the downstream tasks, which can partly
explain its variable performance. In contrast, our
method demonstrates the anticipated consistent ef-
fect across all tasks. Specifically, across all tasks,
the performance of our method consistently shows
a linear increase, exhibiting a positive correlation.
It surpasses other methods upon reaching a certain
threshold, achieving SOTA performance. This in-
dicates that the words identified and added to the
dictionary through our method are always directly
relevant to the downstream tasks.

Similarly, in Figure 4, EVALM’s accuracy met-
ric does not show a positive correlation with the
dictionary expansion, further confirming its per-
formance instability. In contrast, our method con-
sistently demonstrates a positive correlation with
dictionary expansion throughout the process and
surpasses the performance of other methods upon
exceeding a specific threshold, once again achiev-
ing SOTA status. This outcome emphasizes the ef-
fectiveness of our approach in precisely identifying
words directly relevant to downstream tasks and sig-
nificantly enhancing model performance through
the dictionary augmentation strategy, thereby con-
sistently improving the Accuracy metric across
multiple tasks.

C Fragmentation of Each Dataset

The datasets chosen for this study are diverse in
nature. The fragmentation of each dataset is shown
in the Table 5. The values in the table represent
the Word/Subword Ratio, which serves as an indi-
cator of vocabulary fragmentation. To elaborate,
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(a) (b) (c)

(d) (e)

Figure 3: Macro F1 vs. increasing low-resource language words added to MLLM dictionary. Figures (a) to (e)
correspond to the tasks Hate Speech (Bengali), IITP Product Review (Hindi), Headline Prediction (Gujarati),
GLUECos Sentiment (Hindi-English Code-mix) and AfriSenti-SemEval (Multilingual) respectively.

(a) (b) (c)

(d) (e)

Figure 4: Accuracy vs. increasing low-resource language words added to MLLM dictionary. Figures (a) to (e)
correspond to the tasks Hate Speech (Bengali), IITP Product Review (Hindi), Headline Prediction (Gujarati),
GLUECos Sentiment (Hindi-English Code-mix) and AfriSenti-SemEval (Multilingual) respectively.
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Tasks Train Validation Test
IITP Product Review 0.50 0.49 0.50

Hate Speech 0.36 0.37 0.37
Headline Prediction 0.29 0.29 0.29

GLUECos Sentiment 0.59 0.60 0.60
AfriSenti-SemEval 0.48 0.46 0.53

Table 5: The fragmentation statistics of each dataset.

Method Macro F1 Accuracy
Hate Speech (Bengali)

Fine-tune 70.34 69.52
EVALM 70.90 69.90
ECWS 71.24 70.48

IITP Product Review (Hindi)
Fine-tune 77.28 79.32
EVALM 77.48 79.72
ECWS 78.20 80.46

Table 6: Results of the XLM-RoBERTa-base model.

these ratios are calculated by dividing the count
of unique words by the count of total subwords in
each dataset. A lower ratio implies higher fragmen-
tation, meaning that the default vocabulary does
not adequately represent the text, resulting in a
higher number of subwords per word. In our ex-
periments, we aim to highlight how fragmentation
affects the model’s performance. Fragmentation is
particularly severe in datasets with a high incidence
of out-of-vocabulary words when using the default
vocabulary set. For example, in the Hate Speech
dataset in Bengali, the lower ratio signifies that a
significant portion of words are split into smaller
subwords, indicating a substantial vocabulary mis-
match.

D Performance of Different Multilingual
Language Models

We extend our experiments to include the XLM-
RoBERTa-base (Conneau et al., 2020) model to fur-
ther validate the generalizability of our approach.
We conduct experiments on two datasets: the Hate
Speech (Bengali) dataset and the IITP Product Re-
view (Hindi) dataset. The experimental setup for
the XLM-RoBERTa followed the same protocol
as our initial experiments with mBERT. As shown
in Table 6, the improved performance metrics on
both the Hate Speech (Bengali) and IITP Product
Review (Hindi) datasets underscore the versatility
of our approach. These findings suggest that our

method is not only effective for mBERT but also
enhances other MLLMs like XLM-RoBERTa.

E Comparison Methods

We choose four methods as our baselines. Firstly,
we compare the method Fine-tune, which directly
utilizes LLMs for training. In addition, we pri-
marily compare the method without dictionary
augmentation, including the tokenizer optimiza-
tion method (FLOTA (Hofmann et al., 2022))
and the embeddings initialization method (FOCUS
(Dobler and de Melo, 2023)). Finally, we compare
the method focused on dictionary augmentation
method (EVALM (Nag et al., 2023)).

Fine-tune: Compared to other baselines, Fine-
tune adopts a more refined and direct approach.
Rather than expanding the model’s linguistic com-
prehension by incorporating additional vocabulary
into the dictionary, it fine-tunes parameters using
the small LRL task corpus based on the existing
vocabulary foundation to adapt to specific down-
stream tasks.

FLOTA (Hofmann et al., 2022): FLOTA in-
troduces an advanced tokenization strategy that
enhances the performance of pre-trained language
models by focusing on longer subwords during
segmentation, preserving the original morpholog-
ical structure of the text and minimizing informa-
tion loss. This approach also improves robustness
against whitespace noise, reducing errors in words
splits, particularly around spaces.

EVALM (Nag et al., 2023): EVALM utilizes
a task-aware measurement method to identify and
address susceptibility in low-resource language vo-
cabularies caused by poor subword segmentations.
It employs entropy calculations to detect words at
risk, where a lower entropy indicates suitability for
LRL tasks, while higher entropy suggests poten-
tial for excessive fragmentation. EVALM assesses
the average entropy of subwords and their increase
relative to the LRL vocabulary, using this data to
guide the initial embedding settings and subsequent
fine-tuning with a targeted LRL corpus.

FOCUS (Dobler and de Melo, 2023): FOCUS
is a novel embedding initialization method that ef-
fectively initializes embeddings for new tokenizers
using the source model’s embedding matrix. It
represents new words as combinations of overlap-
ping words from the source and target vocabularies,
selected for their semantic similarity in a static em-
bedding space.
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Language Fine-tune FLOTA EVALM ECWS
Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

Amharic 22.26 24.46 16.16 (-6.09) 16.60 (-7.86) 29.81 (+7.55) 34.11 (+9.64) 35.43 (+13.17) 40.05 (+15.59)
Algerian Arabic 54.68 59.56 56.11 (+1.43) 60.81 (+1.25) 55.37 (+0.69) 61.00 (+1.44) 56.30 (+1.62) 61.52 (+1.96)

Hausa 65.94 67.36 68.22 (+2.28) 68.93 (+1.57) 67.09 (+1.14) 68.15 (+0.79) 67.06 (+1.11) 68.21 (+0.84)
Igbo 67.79 67.87 70.01 (+2.22) 70.10 (+2.23) 69.46 (+1.68) 69.51 (+1.64) 68.50 (+0.71) 68.48 (+0.61)

Kinyarwanda 56.38 56.30 53.93 (-2.45) 53.94 (-2.36) 56.96 (+0.58) 57.00 (+0.70) 57.92 (+1.54) 57.66 (+1.36)
Moroccan Arabic 47.25 47.54 55.74 (+8.49) 56.45 (+8.91) 48.55 (+1.30) 48.67 (+1.12) 50.65 (+3.41) 51.20 (+3.65)
Nigerian Pidgin 45.72 66.42 47.24 (+1.53) 66.16 (-0.26) 46.48 (+0.77) 66.68 (+0.26) 46.84 (+1.13) 66.61 (+0.19)

Portuguese 53.01 61.10 51.87 (-1.15) 59.98 (-1.13) 53.46 (+0.44) 62.24 (+1.14) 53.00 (-0.01) 61.59 (+0.49)
Swahili 39.80 54.30 40.52 (+0.72) 53.93 (-0.37) 39.30 (-0.51) 54.22 (-0.08) 41.48 (+1.68) 55.03 (+0.72)

Xitsonga 45.74 48.90 45.36 (-0.38) 47.56 (-1.34) 46.65 (+0.91) 48.82 (-0.08) 48.72 (+2.98) 51.73 (+2.83)
Twi 54.86 62.68 55.86 (+1.01) 62.80 (+0.13) 54.24 (-0.61) 61.88 (-0.80) 54.91 (+0.05) 62.26 (-0.42)

Yoruba 60.93 63.43 62.49 (+1.56) 64.64 (+1.21) 62.71 (+1.78) 64.81 (+1.38) 62.69 (+1.76) 65.20 (+1.78)

Table 7: Results of Different Languages in Multilingual Tasks. Bold line for best performance and dash line for
performance degradation.

F Improvements of Different Languages
in Multilingual Tasks

We further explore the performance improvement
of each method for different languages in multilin-
gual tasks. The experimental results are shown in
Table 7.

It can be seen that FLOTA’s improvement in
AfriSenti-SemEval mainly comes from improving
the performance of the Moroccan Arabic language.
However, in the process of direct fine-tuning, Mo-
roccan Arabic is not among the languages with the
worst performance. FLOTA sacrifices the perfor-
mance of four languages in exchange for the per-
formance of the Moroccan Arabic language, specif-
ically reducing the performance of Amharic and
Kinyarwanda.

The results demonstrate that ECWS outperforms
the three comparison methods across various lan-
guages on the multilingual task, showing a con-
sistent improvement in both macro F1 scores and
accuracy scores. ECWS has enhanced performance
in Amharic and Swahili, languages that previously
showed the poorest results, and addressed the issue
of underperformance in resource-limited languages
for multilingual tasks, a challenge not fully met by
the alternative methods FLOTA and EVALM.

Overall, ECWS’s performance is especially no-
table in its ability to enhance the performance of
models on low-resource languages, as indicated
by the positive differences in performance metrics
compared to the Fine-tune method, which serves
as a baseline. This highlights ECWS’s effective-
ness in addressing the challenges of low-resource
languages in multilingual models through its novel
approach to vocabulary augmentation.

Strategy Macro F1 Accuracy
Hate Speech (Bengali)

LCS 68.16 68.10
HCS 66.40 66.26
RS 67.70 67.40
IITP Product Review (Hindi)

LCS 72.28 75.38
HCS 71.78 74.50
RS 71.98 74.88

Table 8: Results of different word selection strategies.

G Impact of the Word Selection
Strategies

The experimental results in Table 8 present dif-
ferent word selection strategies—Lowest Consis-
tency Selection (LCS), Highest Consistency Se-
lection (HCS), and Random Selection (RS)—on
two datasets: the Hate Speech Dataset (Bengali)
and the IITP Product Review Dataset (Hindi). In
the two tasks, the LCS strategy yields the highest
performance. This indicates that selecting words
with the lowest consistency scores is the most ef-
fective approach for improving model performance
in this context. The HCS strategy results in lower
performance compared to the lowest consistency
scores. This suggests that words with higher con-
sistency scores are less beneficial for the model.
The random selection strategy performs better than
the highest consistency scores but is still less ef-
fective than the lowest consistency scores. Across
both datasets, the strategy of selecting words with
the lowest consistency scores consistently outper-
forms the other strategies in both macro F1 and
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accuracy metrics. This indicates that our proposed
method of selecting words based on the lowest
consistency scores is effective in enhancing model
performance.
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