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Abstract

Temporal knowledge graph (TKG) reasoning
has become a hot topic due to its great value in
many practical tasks. The key to TKG reason-
ing is modeling the structural information and
evolutional patterns of the TKGs. While great
efforts have been devoted to TKG reasoning,
the structural and evolutional characteristics
of real-world networks have not been consid-
ered. In the aspect of structure, real-world net-
works usually exhibit clear community struc-
ture and scale-free (long-tailed distribution)
properties. In the aspect of evolution, the im-
pact of an event decays with the time elaps-
ing. In this paper, we propose a novel TKG
reasoning model called Hawkes process-based
Evolutional Representation Learning Network
(HERLN), which learns structural information
and evolutional patterns of a TKG simultane-
ously, considering the characteristics of real-
world networks: community structure, scale-
free and temporal decaying. First, we find com-
munities in the input TKG to make the encod-
ing get more similar intra-community embed-
dings. Second, we design a Hawkes process-
based relational graph convolutional network
to cope with the event impact-decaying phe-
nomenon. Third, we design a conditional de-
coding method to alleviate biases towards fre-
quent entities caused by long-tailed distribu-
tion. Experimental results show that HERLN
achieves significant improvements over the
state-of-the-art models.

1 Introduction

Temporal Knowledge Graph (TKG) is a dynamic
multi-relational graph used to record evolutionary
events and knowledge in the real world. TKGs
indicate facts as quadruples (subject, relation, ob-
ject, time) and are actually sequences of tempo-
ral subgraphs divided by the time (timestamp) di-
mension. Reasoning over TKGs aims to infer the
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missing quadruple facts, which has two settings:
interpolation and extrapolation. Given a TKG with
timestamps from t0 to tK , interpolation aims at
inferring missing facts that occur at time t, where
t0 < t < tK . Oppositely, extrapolation attempts to
predict facts that occur at time t with t > tK . In
this paper, we focus on the extrapolation setting,
which has gained much attention in recent years
due to its great practical value in event prediction,
question answering, and other areas (Wang et al.,
2019b; Lan and Jiang, 2020). There are mainly
two extrapolation tasks: entity prediction and rela-
tion prediction. We aim to propose a unified model
that can accomplish both the entity and relation
prediction tasks.

The key to TKG reasoning is modeling the struc-
tural information and evolutional patterns of the
TKGs. The prior extrapolation TKG reasoning
models such as CyGNet (Zhu et al., 2021) and
CENET (Yi et al., 2023), learn the evolutional pat-
terns by generating the historical event vocabulary
to predict repetitive events. Later models such as
RE-GCN (Li et al., 2021), HisMatch (Li et al.,
2022) and HGLS (Zhang et al., 2023b), employ
a relational graph convolutional network (RGCN)
(Schlichtkrull et al., 2018) to capture the structural
information from historical snapshots and use a
recurrent neural network (RNN) to model the evo-
lutional patterns. Some recent works such as TITer
(Sun et al., 2021) and DREAM (Zheng et al., 2023)
introduce reinforcement learning on the TKG rea-
soning task.

Nevertheless, while TKGs are reflections of the
real world, the structural and evolutional character-
istics of real-world networks have not been consid-
ered in previous models. In the aspect of structure,
real-world networks (e.g., social-networks) usually
exhibit clear community structure and scale-free
(long-tailed distribution) properties (Barabási and
Albert, 1999). In the aspect of evolution, the impact
of an event decays with the time elapsing (Hawkes,
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1971). Taking these characteristics into consider-
ation not only can improve the reasoning perfor-
mance, but also better facilitate the down-stream
tasks.

In this paper, we propose a novel TKG reason-
ing model called Hawkes process-based Evolu-
tional Representation Learning Network (HERLN),
which learns structural information and evolutional
patterns of a TKG simultaneously, considering the
characteristics from real-world networks: commu-
nity structure, scale-free and temporal decaying.
Specifically, our model consists of three modules:
an embedding initializing module, an evolution en-
coding module and a conditional decoding module.

In the embedding initializing module, to exploit
the community structure properties of TKGs, we
first find communities in the input TKG, and apply
a graph convolution network to get embeddings of
events within each community. The embeddings
are then used as inputs in the evolution encoding
module, which make the evolution encoding mod-
ule output more similar intra-community embed-
dings. In the evolution encoding module, to cope
with the event impact-decaying phenomenon, we
design a Hawkes process-based relational graph
convolutional network (HRGCN). The graph con-
volutional network contracts the structural informa-
tion of the TKG, while the Hawkes process assigns
different weights to the timestamps such that the
impacts of events decay over time. In the condi-
tional decoding module, to alleviate biases towards
frequent entities caused by long-tailed distribution,
we construct a conditional decoder which consists
of a hyper network and a query-specific decoder.
The hyper network adjusts the parameters accord-
ing to the query events and the decoder generates
conditional intensity scores for the candidate enti-
ties based on the adjusted parameters.

The main contributions of this work are summa-
rized as follows:

• We recognize that the TKGs possess the struc-
tural and evolutional characteristics inherited
from real-world networks: community struc-
ture, scale-free and temporal decaying, but
they have not been considered or well ex-
ploited in previous studies.

• We propose a Hawkes process-based evo-
lutional representation learning network
(HERLN), which consists of three modules:
(1) An embedding initialize module, which

extracts semantic information of community
structure; (2) An evolution encoding mod-
ule, which addresses the temporal decaying of
event impact; (3) A conditional decode mod-
ule, which alleviates the biases towards fre-
quent entities caused by long-tailed distribu-
tion.

• Our proposed model HERLN can predict enti-
ties and relations at the same time. Experimen-
tal results on four benchmark TKG datasets
show that HERLN achieves significant im-
provements over the state-of-the-art models.

2 Related work

2.1 Embedding-based methods
Embedding-based methods encode the whole or
part of the TKGs to obtain the embeddings of enti-
ties and relations, and use the embeddings to evalu-
ate the possibility of missing facts.

RE-NET (Jin et al., 2020) proposes an auto-
regressive architecture which uses a graph neural
network (GNN) to capture local entity embeddings
and a RNN to model interactions between entities
over time. RE-GCN (Li et al., 2021) constructs a
static graph to get the static attributes and presents a
framework that can execute both entity and relation
reasoning.

EvoKG (Park et al., 2022) uses an auto-
regressive architecture and captures the ever-
changing structural and temporal dynamics via re-
current event modeling. HiSMatch (Li et al., 2022)
generates background graphs, entity-related graphs
and relation-related graphs to jointly model the
evolutional patterns. HGLS (Zhang et al., 2023b)
models local snapshots or global graphs by using
different GNNs and decodes them to get the pre-
dicting scores. CENET (Yi et al., 2023) combines
historical and non-historical information and iden-
tifies highly related entities via contrastive learning.
TARGAT (Xie et al., 2023) captures the interac-
tions of multi-facts at different timestamps. DLGR
(Xiao et al., 2024) learns the local and global per-
spective representations in a contrastive manner.
DSTKG (Li et al., 2024) introduces two latent vari-
ables to capture the dynamic and static characteris-
tics of entities in TKGs.
L2TKG (Zhang et al., 2023a) finds the miss-

ing relationships on the known KGs first and then
reasons on the completed graph and the original
graph jointly. RETIA (Liu et al., 2023) constructs
a hyper-graph to connect different relations in a
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high-dimensional space. These models use RNNs
to represent the temporal information. Thus they
are based on an assumption that the temporal se-
quences are equidistant, which is inconsistent with
many real-life event sequences (Sun et al., 2022).

2.2 Path-based methods
Path-based methods find several related paths of
query facts and select the most relevant one as
the answer. TITer (Sun et al., 2021) adopts rein-
forcement learning to sample actions from query-
related trajectories based on a time-shaped reward
function. xERTE (Han et al., 2021a) samples and
prunes the query-related subgraph according to
query-dependent attention scores. TANGO (Han
et al., 2021b) explores the neural ordinary differ-
ential equation to build a continuous-time model.
TLogic (Liu et al., 2022) automatically mines re-
current temporal logic rules by extracting tempo-
ral random walks. DREAM (Zheng et al., 2023)
use generative adversarial networks to design an
adaptive reward function. However, the path-based
methods focus on the local structure graph of the
query, ignore the potential connection of events,
and do not perform well on long-term reasoning.

In addition, it is worth noting that methods such
as xERTE (Han et al., 2021a) and HISMatch(Li
et al., 2022) consider the impact of temporal infor-
mation on prediction results. They encode times-
tamps and concat timestamps with entity embed-
dings. However, different from our work, they
actually learns that entities with different time in-
tervals have different impacts on results, rather than
considering the gradual decay of event impacts.

2.3 Hawkes process-based methods
The Hawkes process (Hawkes, 1971) is a stochastic
process that models sequential discrete events oc-
curring in continuous time. There are several works
that combine the Hawkes process and neural net-
works for TKG reasoning. Know-Evolve (Trivedi
et al., 2017) introduces a temporal point process
to model facts evolved in the continuous time do-
main. GHNN (Han et al., 2020) proposes a graph
Hawkes process to capture the potential temporal
dependence across different timestamps. However,
Know-Evolve and GHNN do not use the graph
structural information. GHT (Sun et al., 2022) uses
a temporal Transformer to capture long-term and
short-term information jointly. However, none of
the previous work has considered problem of tem-
poral decaying of events’ impacts. Our proposed

module uses the Hawkes process to assign different
weights to the timestamps during message passing,
thus the information of the event impact-decaying
is encoded and utilized.

3 Problem Formulation

A temporal knowledge graph (TKG) G =
{E , R, T , F} is a directed multi-relational graph,
where E , R, T and F denote the sets of entities,
relations, timestamps and facts, respectively. A
node in G represents an entity i ∈ E , and an edge
eij represents the interaction between node i and
node j with relation r ∈ R at timestamp t ∈ T . A
fact in G is a quadruple q = (s, r, o, t) that repre-
sents a real-world event consisting of the relation r
between a subject entity s and an object entity o at
timestamp t.

Given a TKG G[t1:tk] = {E , R, T , F | T =
[t1, tk]}, the extrapolation reasoning task is to pre-
dict object oq in a query like (sq, rq, ?, tq) where
tq > tk, or predict relation rq in a query like
(sq, ?, oq, tq) where tq > tk.

4 Method

The proposed Hawkes process-based evolutional
representation learning network (HERLN) model
is shown in Fig. 1, it consists of three modules,
an embedding initializing module, an evolution en-
coding module and a conditional decoding module.
The embedding initializing module detects commu-
nities in the input TKG and embeds the interaction
frequencies between entities within each commu-
nity into the initialized entity embeddings. With the
initialized entity embeddings as input, the evolution
encoding module updates the entity embeddings
by learning the structural information from histori-
cal graph. The conditional decoding module uses
representations of query quadruple to adjust the
parameters and generate scores for candidates.

4.1 Embedding Initializing Module

To initialize the embeddings of entities, we first
identify the communities, and then extract seman-
tic information in the communities to get the ini-
tialized entity embedding matrix HC .

4.1.1 Community Detection
The interactions between entities in real world ex-
hibit distinct community structures. Exploiting of
the community structural properties contributes to
the improvement of reasoning performance. For
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Figure 1: Overall framework of the proposed HERLN model. HERLN is consists of three modules: an embedding
initializing module, an evolution encoding module and a conditional decoding module. First, the embedding
initializing module extracts the community structural information in input TKGs to get the initialized embeddings.
Then the evolution encoding module updates the embeddings with the candidate-related historical structure to learn
the evolutional patterns of events. Finally, the conditional decoding module reasons according to the embeddings
and gets scores of the candidate entities, then select the entity with the highest score as the results. The input TKG
contains 6 nodes (marked as A to F), three different types of edges (indicated in red, blue and green respectively)
and three timestamps (from t1 to t3). Additionally, the model receives an incomplete quadruple as query. The query
given in the figure is (A, r3, ?, t3).

example, an entity that cooperates with a country
like America is more likely to be a government or
an organization rather than the citizens of a country.
This information could be used to reduce the scores
of entities that are not consistent with the facts.

We use a community detection algorithm on the
entire TKG, which divides the entities set into dif-
ferent communities according to interaction fre-
quencies, and obtains a graph that only contains
inner-community links. The algorithm assigns each
entity i to its community ci, and there are a total of
K communities in the TKG.

In TKGs, there are no inherent community la-
bels. Therefore, we require an unsupervised and
reliable method to detect possible communities in
the TKGs. And since a TKG is a multi-relational
graph, we extend the Louvain algorithm (Blondel
et al., 2008) to handle with the multi-relational
links. Specifically, we calculate modularity Qr for
different relation r by Eq. 1, which is an indicator
that measures the quality of community detection.

Qr =
∑
c

[

∑
in

2m
− (

∑
tot

2m
)2] =

∑
c

[ec − a2c ]

(1)
where

∑
in is the sum of weights of inner-

community edges with relation r;
∑

tot is the sum
of weights of all the edges with relation r and m is
the total weight of edges on the whole graph.

During the optimization process, when a com-
munity is merged into another community, the al-
gorithm will calculate the modularity of the new
entire graph, compare it with the modularity before
merging to get ∆Q as described in Eq. 2.
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∑
r
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=
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∑
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− (

∑
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)2 − (
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2m

)2]
)

=
1

2m
(ki,in −

∑
tot ki
m

)

(2)
where ki,in is the sum of the edges’ weights be-
tween node i and the new community in; ki is the
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sum of the edges’ weights between node i and all
the nodes in the graph. The algorithm ends when
∆Q no longer changes.

4.1.2 Embedding Initialization
In order to import the information contained in
the communities into the embeddings, we use a
GCN to generate embeddings on the community
subgraphs, which is formalized as:

hi = σ
( ∑

j∈Ni

1

|Ni|
Whinitj δ(ci, cj) +W0h

init
i

)
(3)

where hiniti and hinitj are randomly initialized em-
beddings of nodes i, j; W is the parameter of mes-
sage passing between nodes; W0 is the parameter
of self updating of a node; δ(ci, cj) is an indicator
which is set to 1 if i and j belong to a same com-
munity and 0 otherwise; σ() is an activate function;
Ni is the set of neighbors of node i.

4.2 Evolution Encoding

After getting the initialized embedding matrix, the
next move is to encode the candidate-related his-
torical structure to learn the evolutional patterns
of events. In real-world events, the entity’s status
changes over time. Another common real-world
phenomenon is that the impact of a event decays
over time, The entity embeddings should be able
to cope with the variations. This module achieves
these points by updating the entity embeddings
with historical information.

4.2.1 The Hawkes Process on TKGs
The Hawkes process is a stochastic process that
models a sequential discrete events that occur
chronologically, which is typically modeled by a
conditional intensity function. The intensity func-
tion λ(t) represents the probability that events hap-
pen at t, it is defined as follows:

λ(s,r,o)(t) =
∑

(s′,r′,o,t′)∈Fo

γs′,r′(t
′)κ(t− t′)

+ µs,r,o(t)

(4)

where µs,r,o(t) is the base intensity at time t; Fo

is the set of historical events related to node o; γ()̇
represents the amount of excitement induced by the
corresponding events on results and κ() is a kernel
function to model the effect of historical events on
the current event.

To integrate the Hawkes Process into the TKG,
we treat the Hawkes Process as an encoder-decoder
network. For encoding, we use a function En() to
get representations hs, hr and ho derived from their
historical neighbors’ information, as shown in Eq.
5. For decoding, we transfer the representations
into a certain intensity value with an appropriate
decoding function De(), as shown in Eq. 6.

hs, hr, ho = En(G) (5)

λ(s,r,o)(t) = De(hs, hr, ho) (6)

We present detailed implementations of En()
and De() in the following sections.

4.2.2 Encoding with Hawkes process-based
RGCN

To get the historical representation of entities de-
scribed in Eq.5, we design a Hawkes process-based
relation graph convolutional network (HRGCN) as
En() to pass message and update entity embed-
dings on the TKG.

As shown in Fig. 2, the improvement of HRGCN
over traditional RGCN is that HRGCN can effec-
tively learn the structural information from neigh-
bors and assign weights of the messages which rep-
resents the temporal decaying of these messages,
i.e.

hto = σ

(
W1ho+

∑
s,r,t′∈Ft

o

1

|F t
o|
Wr(hs+hr)κ̃(t−t′)

)
(7)

where hs, ho and hr are input embeddings of nodes
s, o and edge r got from HC and R, respectively;
F t
o represents historical neighbors of node o, which

contains all quadruples = (s, r, o, t′) where t′ < t;
Wr is the parameter of message passing between s
and o; W1 is the parameter of self updating of node
o; κ̃(t − t′) = κ(t−t′)∑

s,r,o,t′′∈Ft
o
κ(t−t′′) is the temporal

decaying function, where κ(t− t′) = exp(−δ(t−
t′)).

This module outputs the updated embedding ma-
trix Ht

T that contains historical information.

4.2.3 Gating Integration
The learned embeddings by HRGCN get the histor-
ical information of entities, while some useful orig-
inal information directly from the input TKG may
be overwritten. We use a control gate to balance
the contribution of the two kinds of information.

Specifically, we employ a fully connected layer
to generate a graph embedding hg according to the
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Figure 2: The update process of HRGCN. (a) is a historical structure of node A, (b) shows the update process of a
traditional RGCN, which does not use timestamp information and (c) shows the update process of HRGCN, which
takes the time interval as decaying weight to represent the event declines over time.

embeddings Ht
T from HRGCN. Then we use an-

other fully connected layer to calculate the weight
of Ht

T according to graph embedding hg. The final
embedding matrix is a weighted sum of Ht

T and the
initialized embedding matrix HC .

hg = σ(WgraphH
t
T + bgraph) (8)

γ = σ(Wgatehg + bgate) (9)

Ht = γ ∗Ht
T + (1− γ)Hc (10)

where hg is the generated graph embedding,
Wgraph,Wgate, bgraph and bgate are learnable pa-
rameters.

The output of the encoding module is the bal-
anced evolutional embedding matrix Ht that en-
codes the evolutional information on graph G[t1,t].

4.3 Conditional Decoding
The last step of our model is to do reasoning accord-
ing to the embedding matrix and get the conditional
intensity scores of the candidate entities, then se-
lect the entity with the highest score as the result,
as described in Eq.6.

4.3.1 Previous RGCN Decoding
Existing works (Li et al., 2021, 2022) use Con-
vTransE as the decoding function De() for tra-
ditional RGCN to calculate the certain intensity
values λo of entity o by Eq. 11.

λori
o = ConvTransE(concat(h

tq
sq , hrq);h

tq
oq)

(11)
Note that the parameters of ConvTransE are

fixed over different queries, which leads the model
to tend to reason using the few evolutional patterns

of the most common events, causing bias against
other evolutional patterns of the non-common
events. We adjust ConvTransE to avoid the bias
caused by long-tailed distribution in the following.

4.3.2 Avoiding Long-tailed Distribution Bias
We use feature linear modulation (FiLM) to con-
struct a hyper-network, which adjusts parameters
of decoder according to different queries, so that
it can choose the appropriate query-specific evolu-
tional pattern for reasoning.

Specifically, given a query quadruple =
(sq, rq, oq, tq), the hyper-network generates a shift-
ing factor α(sq ,rq ,tq) and a scaling factor β(sq ,rq ,tq)

according to the vector of the query quadruple to
scale and shift the decoding parameters.

α(sq ,rq ,tq) = σ((h
tq
sq ||hrq)Wα + bα) (12)

β(sq ,rq ,tq) = σ((h
tq
sq ||hrq)Wβ + bβ) (13)

θq = (α(sq ,rq ,tq) + 1)⊙ θ + β(sq ,rq ,tq) (14)

where h
tq
s and hrq are embeddings of subject sq at

time tq and relation rq respectively; Wα,Wβ, bα
and bβ are learnable parameters; θ is the original
parameters from decoder and θq is query-specific
parameters; ⊙ is Harmard product.

4.3.3 Adjusted Decoding
The adjusted decoder extracts the multi-
dimensional features of the query quadruple
through one-dimensional convolution and gets the
conditional intensity scores of candidate entities
via the inner product with the embedding matrix.

λo = ConvTransE([h
tq
sq , hrq ];h

tq
oq ; θ

q) (15)
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λo is the conditional intensity of candidate entity
o; [·] means the concat function; θq is the adjusted
parameters got from the feature transform unit. The
decoder chooses the entity which has the highest
score as the missing part of the query quadruple.

4.4 Learning Objective
The task to predict the missing entity of a given
quadruple could be seen as a multi-classification
task and each entity in the candidate set belongs
to one class. The optimization objective of entity
prediction task is to maximum the scores of the
ground truth entities, which can be convert to a
cross-entropy loss Le:

Le = −
∑
tq∈T

∑
Ftq

K∑
k=1

yk log p(ok|sq, rq, tq) (16)

where T is the timestamp set; Ftq is the quadruple
set with timestamp tq; K is the number of enti-
ties; yk = 1 if entity ok equals to ground truth oq,
otherwise 0; p(ok|sq, rq, tq) is the probability of
ok, normalized by the scores of all the candidate
entities in the candidate sets.

5 Experiments

5.1 Experimental Setup
5.1.1 Datasets
We use four benchmark datasets which are gener-
ally used in TKG reasoning task to evaluate the ef-
fectiveness of HERLN, ICEWS14 (Li et al., 2021),
ICEWS18 (Li et al., 2021), WIKI (Jin et al., 2020)
and YAGO (Jin et al., 2020). ICEWS is a database
got from more than 100 data sources over more
than 250 countries and regions. ICEWS14 and
ICEWS18 datasets contain events occurred in 2014
and 2018 respectively. WIKI and YAGO are sub-
sets of the Wikipedia history and YAGO3 respec-
tively. We list the statistics of these datasets in
Appendix A.

5.1.2 Baselines
We compare HERLN with 10 TKG reasoning mod-
els, which can be categorized into three classes.
(1) Embedding-based models, RE-NET (Jin et al.,
2020), REGCN (Li et al., 2021), EvoKG (Park
et al., 2022), CENET (Yi et al., 2023), HGAT (Shao
et al., 2023) and TiPNN (Dong et al., 2024); (2)
Path-based models, TG-Tucker (Han et al., 2021b)
and TLogic (Liu et al., 2022); (3) Hawkes process-
based models, GHNN (Han et al., 2020) and GHT
(Sun et al., 2022).

5.1.3 Evaluation Metrics
We report MRR, which is the mean of the recip-
rocal values of the actual missing entities’ ranks
averaged by all the queries, and Hits@1/3/10, i.e.,
the proportion of correct test cases that are ranked
within top 1/3/10.

5.1.4 Implementation Details
We implement our model in Pytorch (Paszke et al.,
2019) and DGL Library (Wang et al., 2019a). The
experiments are conducted on a Nvidia GeForce
Titan GPU. To be consistent with the baselines, we
set the embedding dimension of entities de and re-
lations dr to 200. The number of HRGCN layers
is set to 2 and the dropout rate for each layer is
set to 0.2. We set all weights of edges to 1 in the
embedding initializing module. We use the same
hyperparameter settings of ConvTransE given by Li
et al. (2021), the decode unit has 50 convolutional
kernels with a size of 2×3 for each kernel. Adam
(Kingma and Ba, 2015) is adopted for parameter
learning with the learning rate of 0.001 on all the
datasets. We report the average experimental re-
sults on three random seeds. Our code is available
at https://github.com/WisdomMLlab/HERLN.

5.2 Experimental Results
5.2.1 Entity Prediction
Table 1 shows the entity prediction results on the
benchmark datasets. The best results are marked
in bold and the second best ones are underlined. It
can be seen that our proposed HERLN performs
the best nearly on all the settings, an only exception
is that it achieves the second best Hits@3 score on
ICEWS14. GHNN and GHT combines Hawkes
point process with neural networks. But they do
not consider the temporal decaying of event im-
pact, which limits their performance. RE-GCN
uses RNN on static graphs and loses temporal in-
formation during long-term evolution. CENET
measures the probability of different entities by
constructing the historical vocabulary. It does not
exploit the graph structural information. TiPNN
focuses on query-aware temporal path to capture
the feature and doesn’t take the potential relations
between entities into account.

Our model can capture the historical structure
and the event evolutional patterns at the same time,
considering the community structure, long-tailed
distribution, and temporal decaying characteristics,
thus it makes significant improvements over the
baselines on all the datasets.
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Method
ICEWS18 ICEWS14 WIKI YAGO

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
GHNN 27.93 18.77 31.55 45.80 37.54 26.65 41.83 52.66 59.69 57.25 60.93 63.99 63.17 58.41 65.45 72.18
GHT 27.40 18.08 30.76 45.76 37.40 27.77 41.66 56.19 60.02 59.43 61.52 63.16 68.26 60.78 70.37 79.93
RE-NET 28.81 19.05 32.44 47.51 38.28 28.68 41.34 54.52 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29
RE-GCN 30.55 20.00 34.73 51.46 41.50 30.86 46.60 62.47 51.53 - 58.29 69.53 63.07 - 71.17 82.07
TG-Tucker 28.68 19.35 32.17 47.04 26.25 17.30 29.07 44.18 50.43 48.52 51.47 53.58 57.83 53.05 60.78 65.85
TLogic 29.82 20.54 33.95 48.53 43.04 33.56 48.27 61.23 - - - - - - - -
EvoKG 27.20 17.61 31.14 45.82 35.78 26.82 39.75 52.90 67.68 55.02 79.48 84.03 68.87 54.47 81.22 89.81
CENET 27.75 18.92 32.08 46.19 38.24 28.82 42.14 56.82 62.67 59.18 65.31 67.90 65.15 56.96 68.13 70.35
HGAT 28.50 19.60 32.70 46.60 38.90 29.70 42.40 56.40 56.10 52.90 58.10 61.80 63.60 59.80 66.00 71.50
TiPNN 30.32 21.55 35.06 50.08 41.20 32.75 46.23 59.60 73.99 71.57 76.82 80.67 80.30 78.85 82.10 89.04
OurModel 31.33 21.93 35.59 52.01 43.94 34.62 49.48 63.44 79.10 74.92 82.47 85.31 84.47 80.31 87.56 91.06

Table 1: Entity prediction results. The best results are marked in bold and the second best ones are underlined.

And among these four datasets, our method ex-
hibits significant improvements compared to the
baseline on the WIKI and YAGO dataset, while
the enhancement on the ICEWS dataset is not as
pronounced. This discrepancy is due to the fact
that the WIKI and YAGO data both have a tempo-
ral span of one year, whereas ICEWS has a span
of 24 hours. This aligns with real-world phenom-
ena because the impact of events diminishes more
noticeably over a longer time span, and the de-
cay of short-term events is limited. Consequently,
HERLN demonstrates substantial improvement in
TKGs with longer time spans and distinct commu-
nity structures.

5.2.2 Relation Prediction
The results of the relation prediction task in terms
of the MRR metric are shown in Table 2. In the
relation prediction task experiment, we do not in-
clude TG and RE-NET as baseline because they
conduct only entity prediction. It can be seen from
Table 2 that our proposed HERLN outperforms all
the baselines and receives a boost of up to 10% in
the MRR metric. The reasons of the performances
of both our model and the baselines are similar to
those for the entity prediction task.

Method ICEWS18 ICEWS14s WIKI YAGO
ConvE 37.73 38.80 78.23 91.33
ConvTransE 38.00 38.40 86.64 90.98
R-GCRN 37.14 38.04 88.88 90.18
RE-GCN 40.53 41.06 97.92 97.74
EvoKG 41.11 42.47 90.63 90.26
CENET 38.24 40.50 87.51 91.44
OurModel 51.47 50.55 98.50 98.54

Table 2: Relation prediction results by MRR metric.

5.2.3 Ablation Study
We conduct ablation experiments on the ICEWS14
dataset. (1) OurModel without (w.o) ConvTransE:
we replace the ConvTransE in the decoder unit

with a simple MLP layer. (2) OurModel without
(w.o) FiLM: Instead of FiLM, we directly use Con-
vTransE. (3) OurModel without (w.o) HRGCN: we
replace HRGCN with a RGCN to aggregate snap-
shots. (4) OurModel without (w.o) Community:
we omit the embedding initialize module.

As shown in Table 3, replacing any component
of our model degrades the performance, which
demonstrates that each component of the model has
a positive gain on the result. The variant (1) has an
almost 6% drop in MRR, suggesting that an appro-
priate decoder can learn event evolution patterns
effectively. The variant (2) shows 2% decreasing in
Hits@1, indicating that the hypernetwork helps the
model distinguish different event evolution patterns.
The variant (3) has 7.89%, 6.89%, 9.31%, 11.90%
drops in MRR, Hits@1, Hits@3, respectively, em-
phasizing the importance of incorporating the tem-
poral information of events through HRGCN. The
variant (4) has 3% decreasing in MRR, confirming
the helpfulness of extracting community structures.

Method MRR Hits@1 Hits@3 Hits@10
w.o ConvTransE 37.98 29.59 41.72 54.19

w.o FiLM 41.48 31.39 46.47 60.14
w.o HRGCN 36.05 27.73 40.17 51.54

w.o Community 41.05 31.86 45.96 58.25
OurModel 43.94 34.62 49.48 63.44

Table 3: Effect of main components

6 Conclusions

In this paper, we propose a Hawkes-based evolu-
tional representation learning network (HERLN)
to tackle the TKG reasoning tasks. We exploit the
structural and evolutional characteristics of TKGs
inherited from real-world networks to learn struc-
tural information and evolutional patterns. We ini-
tialize the embeddings with a community detection
algorithm and a graph convolution network to make
use of community structure. We design a Hawkes
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process-based relational graph convolutional net-
work to tackle the temporal decaying phenomenon.
We construct a conditional decoder to alleviate the
biases caused by scale-free property (long-tailed
distribution). Experimental results show the superi-
ority of our proposed model.

7 Limitations

Note that there are many entities appear only in
the test set (named unseen entities), which will
continue to appear as the size of TKG increases.
Our model could not get sufficient information to
assign proper embbedings for these entities. For
further work, we plan to find a method to deal with
the unseen entities.
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Appendix

A Statistics of the Datasets

The statistics of the datasets used in our exper-
iment are summarized in Table 4. We divide
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ICEWS14, ICEWS18, WIKI and YAGO into train-
ing, validation and test sets with a proportion of
80%, 10% and 10% in the chronological order, i.e.,
ttrain < tvalid < ttest.

B Case Study

In Table 5, we present three cases obtained from
the ICEWS14s test set, each of which validates the
effectiveness of one contribution within HERLN.
In all three cases, HERLN achieves the highest
score and successfully completes the predictions.
In the first case, two related events share the same
subject entity and relation, with a different object
entity. HERLN leverages the community structure
of Criminal (Venezuela) and Citizen (Venezuela)
to complete the reasoning. In the second case, mul-
tiple events occurre between three entities, but the
influence of earlier events on the reasoning out-
come 10 months later is evidently smaller than that
of more recent events. The Hawkes process helps
our model to distinguish the useful information and
make the correct choice. In the last case, Demand
settling of dispute is a rare relation type, occurring
less than 10 times in the dataset. The model is
prone to be influenced by more common evolution
patterns during reasoning. HERLN still success-
fully learns this evolution pattern by constructing a
hyper network, completing the reasoning.

C Time Cost Analysis

To evaluate the efficiency of our model, we com-
pare HERLN with several TKG reasoning methods
including RE-NET, RE-GCN and EvoKG. We se-
lect these baseline methods for the time analysis
because these methods are similar to ours, being
embedding-based methods. Comparing the time
efficiency on these methods can better illustrate the
efficiency improvement of our approach. CENET
is an exception as it does not provide official code.
Although we conduct the experiments, the com-
putational time is significantly longer than other
methods (exceeding 1 day on ICEWS14s). There-
fore, we exclude CENET from the results. As Fig.
3 shows, our model runs faster than RE-NET and
has a similar time consumption with RE-GCN. On
the one hand, RE-NET uses multiple RNN struc-
tures to fit multi-level conditional probability dis-
tributions of events while ours relies on a Hawkes
process for message passing and aggregation on
one single graph. On the other hand, we use query-
specific version of ConvTransE as the decoder. The

structure of ConvTransE allows it to predict mul-
tiple events at the same time, this high parallelism
saves much time.

Figure 3: Time cost analysis on ICEWS14s and YAGO.
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Dataset E R F T Ftrain Fvalid Ftest Time interval
ICEWS18 23033 256 468558 304 373019 45996 49546 24 hours
ICEWS14 7128 230 90730 365 74846 8515 7372 24 hours
WIKI 12554 24 669934 231 539287 67539 63111 1 year
YAGO 10623 10 201089 187 161541 19524 20027 1 year

Table 4: Statistics of the datasets

Query Answer History

Criminal (Venezuela), fight with small
arms and light weapons, ?, 2014/11/20

Citizen (Venezuela)

- Criminal (Venezuela), Use unconventional
violence, Citizen (Venezuela), 2014/3/17
- Criminal (Venezuela), Use unconventional
violence, Businessperson (Germany), 2014/6/19

Jason C. Hu, Yield, ?, 2014/11/29 Lin Chia-lung
- Jason C. Hu, Praise or endorse, Lin
Chia-lung, 2014/11/25
- Jason C. Hu, consult, Ma Ying Jeou,2014/1/16

John Kerry, Demand settling
of dispute, ?, 2014/11/12

Iran - John Kerry , Make statement,Iran,2014/11/9

Table 5: Case Study
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