@inproceedings{leng-xiong-2025-towards,
title = "Towards Understanding Multi-Task Learning (Generalization) of {LLM}s via Detecting and Exploring Task-Specific Neurons",
author = "Leng, Yongqi and
Xiong, Deyi",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.200/",
pages = "2969--2987",
abstract = "While large language models (LLMs) have demonstrated superior multi-task capabilities, understanding the learning mechanisms behind this is still a challenging problem. In this paper, we attempt to understand such mechanisms from the perspective of neurons. Specifically, we detect task-sensitive neurons in LLMs via gradient attribution on task-specific data. Through extensive deactivation and fine-tuning experiments, we demonstrate that the detected neurons are highly correlated with the given task, which we term as task-specific neurons. With these identified task-specific neurons, we delve into two common problems in multi-task learning and continuous learning: Generalization and Catastrophic Forgetting. We find that the overlap of task-specific neurons is strongly associated with generalization and specialization across tasks. Interestingly, at certain layers of LLMs, there is a high similarity in the parameters of different task-specific neurons, and such similarity is highly correlated with the generalization performance. Inspired by these findings, we propose a neuron-level continuous fine-tuning method that only fine-tunes the current task-specific neurons during continuous learning, and extensive experiments demonstrate the effectiveness of the proposed method. Our study provides insights into the interpretability of LLMs in multi-task learning."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="leng-xiong-2025-towards">
<titleInfo>
<title>Towards Understanding Multi-Task Learning (Generalization) of LLMs via Detecting and Exploring Task-Specific Neurons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yongqi</namePart>
<namePart type="family">Leng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While large language models (LLMs) have demonstrated superior multi-task capabilities, understanding the learning mechanisms behind this is still a challenging problem. In this paper, we attempt to understand such mechanisms from the perspective of neurons. Specifically, we detect task-sensitive neurons in LLMs via gradient attribution on task-specific data. Through extensive deactivation and fine-tuning experiments, we demonstrate that the detected neurons are highly correlated with the given task, which we term as task-specific neurons. With these identified task-specific neurons, we delve into two common problems in multi-task learning and continuous learning: Generalization and Catastrophic Forgetting. We find that the overlap of task-specific neurons is strongly associated with generalization and specialization across tasks. Interestingly, at certain layers of LLMs, there is a high similarity in the parameters of different task-specific neurons, and such similarity is highly correlated with the generalization performance. Inspired by these findings, we propose a neuron-level continuous fine-tuning method that only fine-tunes the current task-specific neurons during continuous learning, and extensive experiments demonstrate the effectiveness of the proposed method. Our study provides insights into the interpretability of LLMs in multi-task learning.</abstract>
<identifier type="citekey">leng-xiong-2025-towards</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.200/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>2969</start>
<end>2987</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Understanding Multi-Task Learning (Generalization) of LLMs via Detecting and Exploring Task-Specific Neurons
%A Leng, Yongqi
%A Xiong, Deyi
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F leng-xiong-2025-towards
%X While large language models (LLMs) have demonstrated superior multi-task capabilities, understanding the learning mechanisms behind this is still a challenging problem. In this paper, we attempt to understand such mechanisms from the perspective of neurons. Specifically, we detect task-sensitive neurons in LLMs via gradient attribution on task-specific data. Through extensive deactivation and fine-tuning experiments, we demonstrate that the detected neurons are highly correlated with the given task, which we term as task-specific neurons. With these identified task-specific neurons, we delve into two common problems in multi-task learning and continuous learning: Generalization and Catastrophic Forgetting. We find that the overlap of task-specific neurons is strongly associated with generalization and specialization across tasks. Interestingly, at certain layers of LLMs, there is a high similarity in the parameters of different task-specific neurons, and such similarity is highly correlated with the generalization performance. Inspired by these findings, we propose a neuron-level continuous fine-tuning method that only fine-tunes the current task-specific neurons during continuous learning, and extensive experiments demonstrate the effectiveness of the proposed method. Our study provides insights into the interpretability of LLMs in multi-task learning.
%U https://aclanthology.org/2025.coling-main.200/
%P 2969-2987
Markdown (Informal)
[Towards Understanding Multi-Task Learning (Generalization) of LLMs via Detecting and Exploring Task-Specific Neurons](https://aclanthology.org/2025.coling-main.200/) (Leng & Xiong, COLING 2025)
ACL