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Abstract
While large language models (LLMs) have
demonstrated superior multi-task capabilities,
understanding the learning mechanisms behind
this is still a challenging problem. In this
paper, we attempt to understand such mecha-
nisms from the perspective of neurons. Specifi-
cally, we detect task-sensitive neurons in LLMs
via gradient attribution on task-specific data.
Through extensive deactivation and fine-tuning
experiments, we demonstrate that the detected
neurons are highly correlated with the given
task, which we term as task-specific neurons.
With these identified task-specific neurons, we
delve into two common problems in multi-task
learning and continuous learning: Generaliza-
tion and Catastrophic Forgetting. We find that
the overlap of task-specific neurons is strongly
associated with generalization and specializa-
tion across tasks. Interestingly, at certain lay-
ers of LLMs, there is a high similarity in the
parameters of different task-specific neurons,
and such similarity is highly correlated with
the generalization performance. Inspired by
these findings, we propose a neuron-level con-
tinuous fine-tuning method that only fine-tunes
the current task-specific neurons during con-
tinuous learning, and extensive experiments
demonstrate the effectiveness of the proposed
method. Our study provides insights into the
interpretability of LLMs in multi-task learning.

1 Introduction

The advent and development of LLMs have marked
a significant milestone in natural language process-
ing (Brown et al., 2020; Touvron et al., 2023; Ope-
nAI, 2023). LLMs perform instruction tuning on a
wide range of tasks (Wei et al., 2022), exhibiting
superior capabilities across multiple tasks and even
being able to generalize to unseen tasks (Sanh et al.,
2022). Despite their effectiveness, the multi-task
learning mechanisms of LLMs remain as an open
question.

* Corresponding author.

Previous studies have demonstrated the exis-
tence of language-related neurons in multilingual
large language models (MLLMs), and these neu-
rons have been analyzed to explore the multilin-
gual learning mechanisms of MLLMs (Tang et al.,
2024; Chen et al., 2024b). In contrast, research
into the multi-task learning mechanisms of LLMs
remains limited. We argue that multilingual learn-
ing is essentially a type of multi-task learning as
well. Inspired by these studies and thinking analo-
gously, we attempt to ask three questions: (1) Do
task-related neurons exist in LLMs, from a broad
perspective? (2) If they exist, can they facilitate
the understanding of the multi-task learning mech-
anisms in LLMs? And (3) can we improve LLMs
by exploring such neurons?

In order to answer these questions, we perform
neuronal analysis for LLMs. First, we identify neu-
rons that are highly correlated with a given task by
the gradient attribution method (Simonyan et al.,
2014). Subsequently, we conduct fine-tuning and
deactivation experiments on these neurons, to ana-
lyze their impact on the performance of the given
task. Results of extensive experiments show that
task-related neurons are indeed present in LLMs
and they are highly correlated with specific tasks.
We hence term them as task-specific neurons.

With identified task-specific neurons, we delve
into two problems in multi-task learning and con-
tinuous learning: Generalization and Catastrophic
Forgetting. A well-developed deep learning system
should have less forgetfulness about learned tasks,
as well as a good ability to generalize to unseen
tasks (Rish, 2021). Therefore, we believe that ana-
lyzing these two problems in depth will contribute
to enhance our further understanding of multi-task
learning mechanisms in LLMs.

For this, we control the proportion of fine-tuned
task-specific neurons to investigate generalization
across tasks. We find that the overlap of task-
specific neurons among different tasks is strongly
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correlated with generalization across these tasks,
with higher overlap leading to higher generaliza-
tion. However, in some cases, this overlap does
not lead deterministically to generalization, since
generalization is complex in nature, rather than a
one-factor outcome. In addition to this, we find that
at certain layers of LLMs, there is a high similarity
between other task-specific neuron parameters and
the task-specific neuron parameters of the task to
be generalized, which suggests that LLMs learn to
share knowledge between tasks, and that this simi-
larity is highly correlated with the generalization
results.

In the analysis of generalization, we not only ob-
serve the generalization across tasks, but also find
that multi-task learning affects the performance of
single-task specialization, which is caused by pa-
rameter interference between tasks. However, the
cause of catastrophic forgetting is also parameter
interference. Based on this, we propose a Neuron-
level Continuous Fine-Tuning method (NCFT).
Experimental results on two continuous learning
benchmarks show that NCFT is capable of effec-
tively mitigating catastrophic forgetting.

In summary, the main contributions of our study
are as follows:

• We discover task-specific neurons in LLMs
empirically through extensive experiments.

• We provide significant insights into general-
ization across tasks with our task-specific neu-
ron analysis.

• We propose a neuron-level continuous learn-
ing fine-tuning method for mitigating catas-
trophic forgetting, and experiments demon-
strate its effectiveness.

2 Related Work

Neuronal Interpretability With the develop-
ment of LLMs, neuronal interpretability has gained
much attention in recent years (Luo and Specia,
2024; Shen et al., 2023). Existing researches in-
clude knowledge storage (Dai et al., 2022), knowl-
edge conflicts mitigation (Shi et al., 2024), task
solving (Wang et al., 2022), sentiment analysis
(Radford et al., 2017), privacy preservation (Chen
et al., 2024a; Wu et al., 2023a, 2024), and model
editing (Gu et al., 2023). In MLLMs, studies find
the existence of language-related neurons and uti-
lize neuronal analysis to reveal the multilingual
mechanisms of MLLMs (Tang et al., 2024; Chen

et al., 2024b; Zhao et al., 2024), which greatly
contributes to the understanding of MLLMs. In
contrast, limited studies are conducted on the neu-
ronal analysis in multi-task learning in LLMs. We
hence extend this line of research from multilingual
learning to multi-task learning.

Cross-task Generalization Wei et al. (2022) find
that LLMs have excellent zero-shot performance
after multi-task fine-tuning, which motivates fur-
ther investigation into cross-task generalization in
depth (Hupkes et al., 2022; Grosse et al., 2023).
Existing studies have shown that model size (Wei
et al., 2022), number of tasks (Sanh et al., 2022),
and data quality (Zhou et al., 2023) all affect the
performance of generalization, which illustrates
that generalization is affected by a variety of fac-
tors. There are also some studies that aim to im-
proving the generalization ability of LLMs, such as
step-by-step instruction tuning (Wu et al., 2023b)
and hierarchical curriculum learning training strat-
egy (Huang et al., 2024). In addition to this, Yang
et al. (2024) conduct an empirical study to investi-
gate generalization between tasks at a fine-grained
level. Compared to the above studies, we focus
more on the provenance of the generalization phe-
nomenon after instruction tuning, and we analyze
task-specific neurons to interpret generalization.

Catastrophic Forgetting Consistent with previ-
ous works (Ke and Liu, 2022; Wang et al., 2024),
we categorize continuous learning methods into
three classes. (1) Rehearsal-based methods mit-
igate forgetting by replaying data from previous
tasks (Su et al., 2020). (2) Regularization-based
methods add explicit regularization terms so that
knowledge of previous tasks is retained during con-
tinuous training (Aljundi et al., 2018). (3) Param-
eter isolation-based methods assign task-specific
parameters to new tasks, thereby reducing inter-
ference between tasks (Razdaibiedina et al., 2023;
Wang et al., 2023b). Our proposed NCFT method
follows the philosophy of parameter isolation con-
tinuous learning, but unlike prior works, we do not
need to introduce additional parameters and also
consider the correlation between tasks.

3 Methodology

Figure 1 illustrates our proposed methodology.
First, we compute task relevance scores for all neu-
rons using the gradient attribution method. Based
on these scores, we assign neurons to specific tasks
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Figure 1: Illustration of our research methodology. The entire framework consists of three components: Identification
(task-specific neurons), Understanding (multi-task learning mechanisms of LLMs from the neuron level) and
Exploration (neuron-level continuous fine-tuning method). The first component provides tools for mechanism
understanding which in turn provides insights for the third component Exploration.

to identify task-specific neurons. Next, we ana-
lyze these identified neurons both quantitatively
and qualitatively to gain insights into the multi-
task learning mechanisms of LLMs. Finally, cap-
italizing on our analysis of task-specific neurons,
we propose a neuron-level continuous fine-tuning
method designed to mitigate catastrophic forgetting
in LLMs.

3.1 Identifying Task-Specific Neurons in
LLMs

To identify neurons highly relevant to a specific
task, it is essential to determine the relevance of
each neuron to task-specific data. Drawing inspi-
ration from importance-based neuron fine-tuning
studies (Xu et al., 2024) and neuronal interpretabil-
ity research (Tang et al., 2024), we employ the gra-
dient attribution method to quantify each neuron’s
relevance score for a given task.

First, we need to clarify what we define as a neu-
ron. Currently, the dominant architecture for LLMs
is the auto-regressive transformer, in which the ba-
sic modules are multi-head self-attention (MHA)
and feed-forward network (FFN). Here, we focus
only on FFN, which have been demonstrated to
store a large amount of parametric knowledge (Dai
et al., 2022).

The FFN module at layer i can be formulated as:

hi = f(h̃
i
W i

1) ·W i
2 (1)

where h̃
i ∈ Rd denotes the output of the MHA

module in layer i, which is also the input of the
current FFN module. hi ∈ Rd denotes the output
of the current FFN module. W i

1 ∈ Rd×4d and
W i

2 ∈ R4d×d are the parameters, and f is the
activation function.

A neuron is defined as a column in W i
1 or W i

2.
Subsequently, we define the relevance score Ri

j of
the j-th neuron in the i-th layer to a certain task:

Ri
j = |∆L(ωi

j)| (2)

where ωi
j is the output of the j-th neuron in the i-th

layer, and ∆L(ωi
j) is the change in loss between

setting ωi
j to 0 and keeping its original value. It

can be converted to the following form by Taylor
Expansion (see Appendix A.1 for detailed proof):

Ri
j =

∣∣∆L(ωi
j)
∣∣ = ∣∣∣∣∣ ∂L∂ωi

j

ωi
j

∣∣∣∣∣ (3)

Subsequently, we take the neurons with the top
k% relevance scores for the current task as task-
specific neurons, where k is a predefined hyper-
parameter.
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3.2 Understanding Multi-Task Learning in
LLMs by Analyzing Task-Specific
Neurons

Once the presence of task-specific neurons is es-
tablished, we proceed to analyze these neurons to
understand the multi-task learning mechanisms of
LLMs. First, we fine-tune varying proportions of
task-specific neurons to study the impact on cross-
task generalization and single-task specialization,
exploring multi-task learning from a quantitative
perspective. Additionally, we analyze the similarity
between task-specific neuron parameters across dif-
ferent tasks, which encapsulate task-specific knowl-
edge. In doing so, we aim to understand the prove-
nance of generalization, thus revealing the multi-
task learning mechanisms from a qualitative per-
spective.

In quantitative analysis, we set up different neu-
ron proportions to investigate the trends in spe-
cialization and generalization. During fine-tuning,
only the neurons specific to the current training
task are trained. We use the results on the test set
of the training task (in-domain, ID) to denote spe-
cialization performance, while the results on the
test sets of other tasks (out-of-domain, OOD) to
denote generalization performance.

In qualitative analysis, we compute the task-
specific neuron parameters cosine similarity within
a model between the task used to train that model
and test task, and we study how this similarity
varies across different layers of the model, aim-
ing to investigate knowledge transfer between the
test task and training task. In addition to this, we
also compute the correlation coefficient between
this parameter similarity and the performance on
the corresponding test set, aiming to further demon-
strate the association between parameter similarity
and generalization.

3.3 Exploring Task-Specific Neurons to
Mitigate Catastrophic Forgetting of LLMs

Through the analysis of neurons, we find that while
multi-task learning can effectively handle multi-
ple tasks, it does not necessarily achieve optimal
performance on a single task (see Section 5.1).
This is due to parameter interference between tasks.
Similarly, catastrophic forgetting is also caused by
parameter interference between tasks (Zhu et al.,
2024; Wang et al., 2024, 2023b). Inspired by
this correlation, we propose that isolating task-
specific neuron parameters during continuous train-

ing might mitigate catastrophic forgetting. In order
to substantiate this, we introduce a neuron-level
continuous fine-tuning method aimed at mitigating
catastrophic forgetting in continuous learning.

Given a sequence of tasks D1, · · · , DN , the
tasks arrive sequentially in the order of the task
sequence during the training stage. For the current
task Dn, we update only the neuron-specific param-
eters of the current task, while keeping the other
parameters frozen. During the test stage, the infer-
ence is executed as usual. We refer to this approach
as Neuron-level Continuous Fine-Tuning (NCFT).
This method isolates parameters for different tasks
during training but maintains the original inference
process. To better utilize the task-specific parame-
ters of the already trained tasks, we propose using
task similarity to weight different task-specific neu-
rons during inference. We refer to this approach as
Weighted Neuron-level Continuous Fine-Tuning
(W-NCFT), more details of which are provided in
Appendix A.2.

4 Experiments: Identifying Task-Specific
Neurons

In this section, we conducted two groups of exper-
iments to examine the existence of task-specific
neurons as defined in Section 3.1.

4.1 Experimental Setup
In the first group of experiments, we deactivated
task-specific neurons to conduct deactivation exper-
iments. Specifically, the deactivation was achieved
by setting the activation value of these neurons to
zero or by directly setting the corresponding param-
eter to zero. In the second group of experiments,
we fine-tuned the task-specific neurons to carry out
fine-tuning experiments. Particularly, only task-
specific neurons were updated with parameters and
other neurons were frozen during training. For both
groups of experiments, we set the hyper-parameter
k = 10.

We tested two open-source models that perform
well on multi-tasks, including Llama-2-7b (Tou-
vron et al., 2023) and Bloom-7b1 (Scao et al.,
2022). We tested two main types of tasks: clas-
sification and generation, details of the dataset and
evaluation metrics can be found in Appendix A.3.

4.2 Results
Table 1 shows the results of the deactivation ex-
periments. Despite deactivating only 10% task-
specific neurons, it has a large negative impact on
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Method \ Task-CLS AmazonFood SST-2 QQP Paws MNLI GPTNLI Avg.

Original 91.8 92.4 83.2 91.6 84.8 82.4 87.7
Deactivate-Random 90.6 91.2 79.8 87.6 80.5 79.3 84.8
Deactivate-Task 83.6 84.6 72.8 70.2 73.3 71.4 76.0
Method \ Task-GEN Sciqa Tweetqa E2E CommonGen CNN/DailyMail XSum Avg.

Original 54.3 45.6 52.6 49.8 34.7 36.8 45.6
Deactivate-Random 50.8 41.3 48.7 47.3 31.3 34.4 42.3
Deactivate-Task 33.6 29.3 39.6 37.8 25.5 26.3 32.0

Table 1: Performance of Llama-2-7b after task-specific neurons deactivation or without deactivation in each
task. “Original” is the performance after fine-tuning with multi-task data without any neurons being deactivated.
“Deactivate-Task” indicates deactivation of task-specific neurons. “Deactivate-Random” indicates that the same
number of neurons are randomly selected for deactivation. Task-CLS: Classification Task. Task-GEN: Generation
Task.

Method \ Task-CLS AmazonFood SST-2 QQP Paws MNLI GPTNLI Avg.

Zero-shot 85.2 78.3 42.1 46.5 35.3 32.4 53.3
Train-Random 85.5 80.3 45.6 47.8 34.7 34.8 54.8
Train-Task 88.5 87.8 79.2 84.8 82.5 76.3 83.2
Method \ Task-GEN Sciqa Tweetqa E2E CommonGen CNN/DailyMail XSum Avg.

Zero-shot 21.3 6.9 36.5 26.8 14.7 12.3 19.8
Train-Random 22.8 11.8 37.4 29.6 17.7 15.8 22.5
Train-Task 45.3 37.1 42.7 36.8 29.8 30.3 37.0

Table 2: Performance of Llama-2-7b after fine-tuning task-specific neurons and under the zero-shot setting. “Train-
Task” indicates training task-specific neurons. “Train-Random” indicates that the same number of neurons are
randomly selected for training. Task-CLS: Classification Task. Task-GEN: Generation Task.

task-specific processing capacity. In contrast, de-
activating the same number of randomly selected
neurons resulted in a small impact.

To bolster the dependability of task-specific neu-
rons, we conducted additional fine-tuning exper-
iments. As shown in Table 2, the fine-tuning ap-
proach to task-specific neurons yields remarkable
improvements compared to the approach of fine-
tuning randomly selected neurons (29.9 vs 1.5 in
classification tasks while 17.2 vs 2.7 in genera-
tion tasks). These improvements remain consistent
across both task categories (classificatiton and gen-
eration). The only task where the improvement is
not significant is AmazonFood, since it has a good
enough zero-shot result. Appendix A.4 presents re-
sults for Bloom-7b1, which demonstrate the same
trend. Additionally, we show the impact of inac-
tivating or fine-tuning a particular class of task-
specific neurons on other tasks in Appendix A.4.

In summary, we find that the effects of fine-
tuning and perturbing task-specific neurons are
more significant than those of randomly selected
neurons. Consequently, we can empirically assert
the presence of task-specific neurons within LLMs.

5 Experiments: Analyzing Task-Specific
Neurons to Interpret Generalization

We analyzed task-specific neurons to understand
the multi-task learning mechanisms of LLMs.
Based on the analytical approach of Section 3.2, we
conducted two sets of experiments, qualitative and
quantitative, on various training-test combinations
listed in Table 3.

5.1 Proportion of Task-Specific Neurons

We controlled the proportion of fine-tuned task-
specific neurons to conduct experiments on the
various training-test combinations. Figure 2 shows
results for all training-test combinations. In each
subfigure, we focus only on the trend of each color
line. Comparisons between different color lines are
meaningless because they represent different tasks.

Specialization. As the proportion of trained task-
specific neurons increases, the specialization per-
formance (see Section 3.2 for definition) for both
classification and generation tasks first ascends and
then declines, reaching its peak at 70% for the clas-
sification task (blue line in Figure 2 (a)) and at
50% for the generation task (purple line in Figure
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Group Training Tasks ID Test Tasks OOD Test Tasks

(a) Amazon, QQP, MNLI Amazon, QQP, MNLI
SST-2, Paws, GPTNLI

Tweetqa, CommonGen, Xsum

(b) Sciqa, E2E, CNN Sciqa, E2E, CNN
SST-2, Paws, GPTNLI

Tweetqa, CommonGen, Xsum

Table 3: Experimental groups for exploring generalization and specialization. Results from the in-domain (ID) test
set indicate generalization performance while results from the out-of-domain (OOD) test set indicate specialization
performance. Four test set colors, corresponding to the legend in Figure 2. Amazon, QQP, MNLI corresponds to
ID-CLS in the legend. Sciqa, E2E, CNN corresponds to ID-GEN in the legend. SST-2, Paws, GPTNLI corresponds
to OOD-CLS in the legend. Tweetqa, CommonGen, Xsum corresponds to OOD-GEN in the legend.
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Figure 2: Results on classification and generation tasks after fine-tuning different proportions of task-specific
neurons. The red line indicates the average of the results on the in-domain (ID) test set and out-of-domain (OOD)
test set with the same type of training task. For example, in subfigure (a), the red line shows the average of the blue
and orange lines while the average of the purple and green lines in subfigure (b). The correspondence of the other
colored lines to the test set is shown in the caption of Table 3.

2 (b)). This is contrary to our intuition that under
normal circumstances, better results should be ob-
tained as more task-specific neurons are trained.
We analyzed the reason behind this, which could
stem from the parameter interference between dif-
ferent tasks induced by simultaneous training of
three tasks. This interference further results in the
specialization performance of a single task not ex-
hibiting a continuous improvement as more param-
eters are trained. To corroborate this, we conducted
ablation experiments. Specifically, we trained a
model for each task, meaning that the fine-tuning
of task-specific neurons was conducted individu-
ally. Results are shown in Appendix A.5, wherein
we observe a continuous enhancement in perfor-
mance as the proportion of neurons increases, thus
validating our analysis.

Generalization. As the proportion of trained
task-specific neurons increases, we find a contin-
uous increasing trend for the performance of gen-
eralization from the trained classification tasks to
other classification tasks (orange line in Figure 2

(a)). Similarly, the performance of generalization
from the trained generation tasks to other classifi-
cation tasks (orange line in Figure 2 (b)) and from
the trained generation tasks to other generation
tasks (green line in Figure 2 (b)) shows the same
trend. The overlap rate of task-specific neurons
between the training and test tasks can be found
in Appendix A.6, where it becomes evident that
as the proportion of trained task-specific neurons
increases, the overlap rate also experiences a sig-
nificant surge. Consequently, one plausible expla-
nation is that the overlap of task-specific neurons
contributes to transfer learning between tasks, ul-
timately resulting in consistently higher general-
ization performance. To this end, we conducted
ablation experiments in Appendix A.7 to exclude
the effect of the variable of the number of trained
parameters, and the results support this conclusion.
However, no generalization is produced from the
trained classification tasks to other generation tasks
(green line in Figure 2 (a)), and the test results are
similar to the zero-shot results in Table 2. The
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Figure 3: The similarity of the task-specific neuron parameters between the test task and training tasks in different
layers.

reason for no generalization observed from classi-
fication to generation might be that classification
tasks are usually easier than generation tasks as
they only need to predict a single label. In contrast,
generation tasks need to generate consecutive texts
that satisfy the task requirements, which is rela-
tively harder. This observation is consistent with
that observed by Yang et al. (2024).

In summary, our findings reveal that when train-
ing all parameters of the model under the multi-
task learning setup, inevitable interference among
tasks occurs, thereby diminishing the efficacy of
individual tasks to some degree. Furthermore, our
experiments illustrate the efficacy of controlling the
appropriate proportion of fine-tuned task-specific
neurons as a promising strategy. Additionally, we
observe a significant correlation between the over-
lap of task-specific neurons and generalization per-
formance across tasks. However, this overlap does
not always guarantee deterministic generalization,
as numerous factors also play pivotal roles. These
comprehensive analyses serve to enrich our com-
prehension on generalization.

5.2 Parameters of Task-Specific Neurons

We evaluated the similarity of specific neuron pa-
rameters for the training and test tasks (see Section
3.2 for the way to calculate the similarity) aim-
ing to conduct a qualitative analysis of general-
ization provenance. We trained a separate model
(full-parameter training) for each of the six train-
ing tasks in the training-test combination in Table
3, denoted as M1, · · · ,M6. We then tested these
models on the six out-of-domain test tasks listed
in that combination, denoted as T1, · · · , T6. In a
particular layer, for model Mi and test task Tj , P i

i

and P i
j are used to denote the task-specific neu-

ron parameters of training task i and test task j in

Mi, respectively. Then, we calculated the cosine
similarity between P i

i and P i
j . For test task Tj ,

testing across the six trained models provides six
similarity measures. We computed the average of
these similarities and then investigated how this
average similarity varies across different layers of
the model, aiming to show knowledge transfer to
the test task Tj . Figure 3 illustrates the similarity
of the different layers for three different settings.

Parameter Similarity on Classification Tasks.
Figure 3 (a) shows how the parameter similarity
across three classification test tasks. We find that
at the bottom layer, the similarity remains notably
low. When reaching a certain layer depth, similarity
starts to gradually increase. Finally, the similarity
drops again to the value close to that at the bottom
layer. This observation holds for all three classi-
fication tasks. This illustrates that a model learns
the shared knowledge between tasks only after a
certain number of layers. In this aspect, knowledge
transfer occurs, thus contributing to generalization.
Chatterjee et al. (2024) provide similar findings in
cross-task in-context learning to ours, which show
that information transfer across tasks occurs only
after a certain layer depth is reached. Although
their findings are based on in-context learning, in-
context learning can be understood as a form of im-
plicit training without parameter updates (Akyürek
et al., 2023; von Oswald et al., 2023). We consider
these findings resonate with each other.

Parameter Similarity on Generation Tasks.
However, on the three generation test tasks in Fig-
ure 3 (b), we find no such trend. In Section 5.1, we
have previously found that it is difficult to gener-
alize from classification tasks to generation tasks.
Therefore, we conjecture that the absence of the
expected observation in Figure 3 (b) is due to the
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Testset SST-2 Paws GPTNLI Tweetqa CommonGen Xsum

r p-value r p-value r p-value r p-value r p-value r p-value

PCCs 0.87 0.02 0.92 0.01 0.79 0.05 0.96 0.00 0.96 0.00 0.97 0.00
SROCC 0.81 0.05 0.77 0.07 0.81 0.05 0.77 0.07 0.83 0.04 0.71 0.11

Table 4: Correlation coefficients between the similarity of specific neuron parameters and generalization performance.
PCCs denotes Pearson correlation coefficients and SROCC denotes Spearman correlation coefficients.

fact that the six training models used include three
models trained with classification tasks, which do
not have good parameter similarity within these
three models. In turn, after averaging the parame-
ter similarity, lower values appear. To substantiate
this conjecture, we tested again using three of the
six models trained with generation tasks. Results
are shown in Figure 3 (c), and the overall trend
is similar to that observed in Figure 3 (a). Only
the layer depths where the similarity rises differ,
which indicates that the location where knowledge
transfer occurs varies across tasks. At the same
time, this confirms our conjecture.

Parameter Similarity and Generalization. We
further investigated the relationship between the
similarity of task-specific neuron parameters and
generalization performance. For each test task, we
used six models. We then calculated the similar-
ity in each model between the specific neuron pa-
rameters of that test task and the specific neuron
parameters of the training task used by that model.
Finally, we calculated the correlation coefficients
between these parameter similarities and the pre-
dictions of the six models. As shown in Table 4,
we find that the similarity is highly correlated with
the generalization performance.

In summary, our findings suggest a correla-
tion between the generalization across different
tasks and the similarity of task-specific neuron pa-
rameters. When layers after a certain depth are
reached, the model can learn shared knowledge be-
tween tasks, which contributes to the generalization
across these tasks. Additionally, higher parameter
similarity corresponds to better generalization per-
formance. Our conclusions provide a guideline
for improving generalization performance across
tasks.

6 Experiments: Fine-tuning Task-specific
Neurons to Mitigate Catastrophic
Forgetting

We finally conducted experiments on the two
benchmarks of continuous learning so as to test

the effectiveness of the NCFT and W-NCFT meth-
ods described in Section 3.3.

6.1 Experimental Setup

Model and Datasets We used Llama-2-7b as the
model for experiments. We used two continuous
learning benchmarks, Standard CL Benchmark and
Large Number of Tasks Benchmark (Razdaibied-
ina et al., 2023), and tested different task orders.
Details on the datasets and task order can be found
in Appendix A.8.

Metrics We used continuous learning perfor-
mance and forgetting rate as evaluation metrics.
Let ai,j be the testing accuracy of the i-th task after
training on j-th task, and Ai denote the testing ac-
curacy after training on task i alone. The evaluation
metrics are:

• Performance on Continuous Learning (CL).
The average accuracy of all tasks after training
on the last task, is computed as:

CL =
1

N

N∑
i=1

ai,N (4)

• Forgetting (FG). Following the evaluation
metrics proposed by Scialom et al. (2022), we
utilized relative gain to calculate the forgetting
rate at different stages. The forgetting rate for
the j-th stage is calculated as:

FGj =
1

j − 1

j−1∑
i=1

ai,j
Ai

× 100% (5)

Baselines We used the following continual learn-
ing techniques as baselines:

• SeqFT: training the entire model parameters
on a sequence of tasks.

• SeqLoRA: training fixed-size LoRA parame-
ters on a sequence of tasks.
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Method Order-1 Order-2 Order-3 Avg. Order-4 Order-5 Order-6 Avg.

SeqFT 46.4 47.3 47.5 47.1 35.6 34.8 33.5 34.6
SeqLoRA 53.6 54.8 53.1 53.8 47.9 49.5 45.7 47.7
EPI 48.1 48.0 49.0 48.4 42.3 41.8 43.6 42.6
O-LoRA 76.8 75.7 75.7 76.1 73.7 69.2 72.0 71.6
NCFT (Ours) 71.3 70.9 71.6 71.3 70.5 68.3 71.2 70.0
W-NCFT (Ours) 73.7 72.3 73.8 73.3 73.4 70.1 72.6 72.0

Per-Task FT 77.2 77.2 77.2 77.2 84.5 84.5 84.5 84.5

Table 5: Results on two continual learning benchmarks. The average accuracy after training on the last task is
reported.

• EPI (Wang et al., 2023b): allocating a small
portion of private parameters and learns them
with a shared pre-trained model.

• O-LoRA (Wang et al., 2023a): learning tasks
in different (low-rank) vector subspaces that
are kept orthogonal to each other in order to
minimize interference.

• Per-Task FT: training a separate model for
each task.

6.2 Results and Analysis
As shown in Table 5, our proposed method achieves
significant improvements compared to the first
three baselines across both task benchmarks. Even
comparing O-LoRA (Wang et al., 2023a) there is a
very small difference, on the first benchmark, our
method is inferior to O-LoRA, but we outperform it
on the second benchmark. Such improvements are
consistent across various sequences of tasks, illus-
trating the effectiveness and robustness of our ap-
proach. Additionally, we find that W-NCFT outper-
forms NCFT, suggesting that weighting different
task-specific parameters based on their similarity
enhances the performance of continuous learning.
Figure 4 illustrates the forgetting rate across eight
stages on the Large Number of Tasks benchmark,
and we can find that both NCFT and W-NCFT
methods substantially mitigate catastrophic forget-
ting.

It is worth noting that although our proposed
method effectively mitigates catastrophic forget-
ting, it still has some shortcomings. As shown
in Figure 4, there remains a gap between the per-
formance of the NCFT and W-NCFT methods and
that of Per-Task FT. This indicates that catastrophic
forgetting has not been entirely resolved. Addition-
ally, W-NCFT employs task similarity to weight
the parameters, which is a static approach. A dy-
namic weighting method, applied during continu-
ous training, could potentially yield better results.
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Figure 4: Forgetting rates for eight stages on the Large
Number of Tasks benchmark.

Nevertheless, it is undeniable that this empirical
study demonstrates the effectiveness of the task-
specific parameter isolation approach in mitigating
catastrophic forgetting.

7 Conclusion

In this study, we have presented a methodology
framework for understanding multi-task learning
and cross-task generalization of LLMs from the
perspective of neurons. With this framework, we
have conducted an extensive analysis of LLMs to
identify task-specific neurons that are highly corre-
lated with specific tasks. Using these task-specific
neurons, we have investigated two common prob-
lems of LLMs in multi-task learning and continu-
ous learning: generalization and catastrophic for-
getting. Our findings indicate that the overlap of
task-specific neurons is strongly associated with
generalization. Furthermore, we find that the pa-
rameter similarity of these neurons reflects the de-
gree of knowledge sharing, contributing to gener-
alization. Additionally, we propose a neuron-level
continuous fine-tuning method to effectively miti-
gate catastrophic forgetting. The proposed method
only fine-tuning the current task-specific neurons
in continuous learning, and experimental results in
two continuous learning benchmarks demonstrate
the effectiveness of our method.
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Limitations

Our analysis is based on the identification of
neurons. In the identification experiments, we
did not conduct a detailed analysis on the hyper-
parameters, but only used empirical values. How-
ever, we believe that it is crucial to identify neurons
more accurately, as this may better utilize neurons
for these specific tasks. Additionally, our analysis
of generalization is currently conducted on only
classification and generation tasks. There is a need
to extend this analysis to a broader range of tasks.
We plan to address these more detailed studies in
our future work.
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A Appendix

A.1 Taylor Expansion
We follow Xie et al. (2021) and Zhu et al. (2024)
to provide the proof of Equation 3.

We adopt a criterion based on the Taylor Expan-
sion, where we directly approximate the change
in loss when removing a particular neuron. Let
ωi

j be the output of the j-th neuron in layer i, and
Ω represents the set of other neurons. Assuming
the independence of each neuron in the model, the
change of loss when removing the j-th neuron in
layer i can be represented as:∣∣∆L(ωi

j)
∣∣ = ∣∣L(Ω,ωi

j = 0)− L(Ω,ωi
j)
∣∣ (6)

where L(Ω,ωi
j = 0) is the loss value if the j-th

neuron in layer i is pruned and L(Ω,ωi
j) is the loss

if it is not pruned. For the function L(Ω,ωi
j), its

Taylor Expansion at ωi
j = 0 is:

L(Ω,ωi
j) = L(Ω,ωi

j = 0)+
∂L(Ω,ωi

j)

∂ωi
j

ωi
j+R1(ω

i
j)

(7)
where R1(ω

i
j) can be ignored since the deriva-

tives of the activation function of second order and
higher in the model tend to be zero. So the above
equation can be reduced to the following form:

L(Ω,ωi
j) ≈ L(Ω,ωi

j = 0) +
∂L(Ω,ωi

j)

∂ωi
j

ωi
j (8)

Therefore
∣∣∣∆L(ωi

j)
∣∣∣ can eventually be simpli-

fied to the following form:

∣∣∆L(ωi
j)
∣∣ ≈ ∣∣∣∣∣∂L(Ω,ωi

j)

∂ωi
j

ωi
j

∣∣∣∣∣ (9)

A.2 Details of W-NCFT Method
Assuming that the model has been trained on the
previous i tasks, when inference is executed on the
j-th task (j ⩽ i), we calculate the similarity be-
tween task j and the previous i tasks. The similarity
between any two tasks as follows:

sim(x, y) =
feax · feay

||feax|| ×
∣∣∣∣feay

∣∣∣∣ (10)

where featask ∈ Rd is the task vector. We ran-
domly select 1000 samples for each task, and use
the Llama-2-7b to compute the mean of the features
in the last layer for each particular task sample, and

finally take the mean of these sample features as a
representation of the task vector.

Then, we get a similarity vector
(sim1

j , · · · , simi
j), where simk

j is the similar-
ity between task j and task k (1 ⩽ k ⩽ i). Finally,
we conduct Softmax normalization:

Simj = Softmax(sim1
j , · · · , simi

j) (11)

During inference, for the parameter matrix W of
the FFN module in a particular layer of the model,
we sequentially identify the task-specific neuron
parameters (i.e., certain columns of W ) among the
tasks previously trained, ranging from task 1 to task
i, and allocate weights to this portion of parameters
based on Simj as follows:

W ′ =

i∑
k=1

Simj [k]×W task−k (12)

where W task−k is the task-specific neuron param-
eter for the k-th task, the summation notation

∑
indicates that combining the individual submatrices
by columns, and W ′ is the final weighted parame-
ter matrix.

Subsequently, inference is conducted. We re-
fer to this approach as Weighted Neuron-level
Continuous Fine-Tuning (W-NCFT).

A.3 Datasets and Metrics for Identifying
Neurons Experiments

According to task output forms, we tested two main
types of tasks: classification and generation.

• For classification tasks, we chose three tasks.
They are sentiment classification, including
AmazonFood (Keung et al., 2020), SST-2
(Socher et al., 2013); paraphrase detection,
including QQP (Wang et al., 2019), Paws
(Zhang et al., 2019); and natural language
inference, including MNLI (Williams et al.,
2018), GPTNLI1.

• For generation tasks, we chose three tasks.
They are summary generation, including
CNN/DailyMail (Hermann et al., 2015),
Xsum (Narayan et al., 2018); question gen-
eration, including Sciqa (Welbl et al., 2017),
Tweetqa (Xiong et al., 2019); and data-to-
text generation, including E2E (Dusek et al.,
2020), CommonGen (Lin et al., 2020).

1https://huggingface.co/datasets/pietrolesci/
gpt3_nli

https://huggingface.co/datasets/pietrolesci/gpt3_nli
https://huggingface.co/datasets/pietrolesci/gpt3_nli
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We used accuracy to evaluate classification tasks
and Rouge-L2 to evaluate generation tasks.

A.4 Additional Experiments for Identifying
Neurons

Table 6 shows the results of the deactivation experi-
ments on Bloom-7b1 and Table 7 shows the results
of the fine-tuning experiments on Bloom-7b1. We
can find a more significant trend for fine-tuning
and deactivation of task-specific neurons compared
to randomly selected neurons, consistent with the
observation in Llama-2-7b.

Figure 5 (a) and (b) show the performance on all
tasks after deactivating a particular class of task-
specific neurons for Llama-2-7b on six classifica-
tion and six generation tasks, respectively. In both
6× 6 matrices, the values on the main diagonal are
significantly higher than those at other locations
in the same row and column. This suggests that
(1) the impact of deactivating a particular class of
task-specific neurons on all other tasks is weaker
than the impact on this task itself, (2) the impact
of deactivating a particular class of task-specific
neurons on this task itself is stronger than the im-
pact of deactivating other classes of task-specific
neurons on this task.

Figure 5 (c) and (d) show the performance on
all tasks after fine-tuning a particular class of task-
specific neurons on six classification and six gen-
eration tasks for Llama-2-7b, respectively. In both
6×6 matrices, most of the values on the main diag-
onal are also significantly higher than those of the
other elements in the same row and column. The
few exceptions are the AmazonFood and SST-2
tasks, which are relatively simple and where zero-
shot learning works well enough so that there is
little space for improvement. There’s also E2E and
CommonGen, which are limited by the difficulty
of tasks and have limited scope for improvement.
But in each column of these matrices, the impact
of deactivating a particular class of task-specific
neurons on this task itself is stronger than the im-
pact of deactivating other classes of task-specific
neurons on this task.

These results are sufficient to show that our ex-
periments eliminate noise among task-specific neu-
rons and ensure the task-specificity of the neurons
we identify.

2https://huggingface.co/spaces/
evaluate-metric/rouge

A.5 Ablation Experiments for Single-task
Training

Figure 6 shows the results of training and testing
each task individually.

A.6 Overlap Rate

We calculate the overlap rate of task-specific neu-
rons between the training tasks and test tasks as:

overlap(x, y) =
Nx ∩Ny

Nx ∪Ny
(13)

where Ntasks denotes the set of task-specific neu-
rons.

Table 8 shows the overlap rate of task-specific
neurons between the training tasks and test tasks.
It is worth noting that for all training-test task com-
binations, we use the overall set of task-specific
neurons of three training tasks as Nx and the over-
all set of task-specific neurons of three test tasks as
Ny.

A.7 Ablation Experiments on Overlap Rates
and Fine-tuning Proportions

Specifically, we chose the fine-tuning neuron pro-
portions as 10%, 30%, and 50%. Under each pro-
portion, we set multiple overlap rates of trained
neurons and test task neurons. For example, at
a fine-tuning neuron proportion of 10%, we first
calculate the total number of neurons that need to
be trained at this time. We then divide the trained
neurons into two sets, a set of task-specific neurons
for the test task, and another set containing all re-
maining neurons. According to the preset overlap
rate and the total number of trained neurons, we are
able to calculate the number of neurons to be se-
lected from these two sets, and we randomly select
them in each of the two sets.

Tables 9, 10 and 11 show the results of the three
sets of experiments for classification - classifica-
tion, generation - generation, and generation - clas-
sification, respectively. It can be found that when
the proportion of trained neurons is fixed, the per-
formance is improving as the overlap rate increases,
which directly proves the conclusion of our paper.
In addition to this, when the overlap rate is fixed,
the performance is improving as the total number
of trained neurons increases. This can be inter-
preted as a gain from an increase in the number of
trained parameters. It is worth noting that when the
overlap rate is not fixed, the performance may not
be as good as training a small number of neurons

https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
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despite training more neurons. For example, in
the classification - classification experiment, with
30% of trained neurons and an overlap rate of 10%,
the performance is 81.4. However, with 10% of
trained neurons and an overlap rate of 70%, the
performance is 82.0. In all three sets of experi-
ments, the above conclusions hold.

A.8 Benchmarks of Continuous Learning
Table 12 and Table 13 show the datasets included
in the Standard CL Benchmark and Large Number
of Tasks Benchmark, respectively. Note that the
original Large Number of Tasks Benchmark have
15 tasks, from which we select 8 tasks to form a
simplified version for our experiments.

Table 14 shows the task order sequence for the
two continuous learning benchmarks.
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Method \ Task-CLS AmazonFood SST-2 QQP Paws MNLI GPTNLI Avg.

Original 90.6 91.2 81.8 91 80.3 79.5 85.7
Deactivate-Random 89.5 89.7 79.3 88.5 78.5 77.6 83.9
Deactivate-Task 80.3 83.5 71.2 82.3 70.6 69.5 76.2
Method \ Task-GEN Sciqa Tweetqa E2E CommonGen CNN/DailyMail XSum Avg.

Original 53.8 41.8 54.5 45.6 31.8 33.2 43.5
Deactivate-Random 50.9 40.8 52.5 41.6 29.8 30.8 41.1
Deactivate-Task 34.7 30.6 41.8 32.3 20.7 21.5 30.3

Table 6: Performance of Bloom-7b1 after task-specific neurons deactivation or without deactivation in each
task. “Original” is the performance after fine-tuning with multi-task data without any neurons being deactivated.
“Deactivate-Task” indicates deactivation of task-specific neurons. “Deactivate-Random” indicates that the same
number of neurons are randomly selected for deactivation. Task-CLS: Classification Task. Task-GEN: Generation
Task.

Method \ Task-CLS AmazonFood SST-2 QQP Paws MNLI GPTNLI Avg.

Zero-shot 83.7 79.1 46.5 44.3 33.6 34.2 53.6
Train-Random 84.1 80.5 48.0 46.1 35.2 36.1 55.0
Train-Task 87.6 88.3 77.6 82.3 79.4 72.0 81.2
Method \ Task-GEN Sciqa Tweetqa E2E CommonGen CNN/DailyMail XSum Avg.

Zero-shot 23.1 10.3 33.2 23.6 12.5 13.4 19.4
Train-Random 23.8 12.7 34.8 25.2 14.2 15.5 21.0
Train-Task 42.0 34.3 40.4 33.0 27.1 28.6 34.2

Table 7: Performance of Bloom-7b1 after fine-tuning task-specific neurons and under the zero-shot setting. “Train-
Task” indicates training task-specific neurons. “Train-Random” indicates that the same number of neurons are
randomly selected for training. Task-CLS: Classification Task. Task-GEN: Generation Task.
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Group 10% 30% 50% 70% 100%

CLS-CLS 20.8 53.9 84.5 96.2 100
CLS-GEN 12.9 41.6 71.5 83.5 100
GEN-CLS 11.8 40.2 69.3 81.8 100
GEN-GEN 21.6 52.5 82.0 94.3 100

Table 8: The overlap rate of task-specific neurons be-
tween training tasks and test tasks when controlling the
proportion of task-specific neurons.

Overlap rate \ Percentage of trained neurons 10% 30% 50%

10% 80.2 81.4 81.8
20.8% 80.7 - -
30% 81.1 82.0 82.3
50% 81.5 82.3 82.8
53.9% - 82.5 -
70% 82.0 82.7 83.0
84.5% - - 83.1
100% 82.2 83.1 83.6

Table 9: Results at different fine-tuned neuron propor-
tions (10%, 30%, 50%) controlling the overlap rate un-
der the classification - classification combination. Italics
indicate the original experimental results and overlap
rates.

Overlap rate \ Percentage of trained neurons 10% 30% 50%

10% 31.6 32.1 32.3
21.6% 32.2 - -
30% 32.5 32.9 33.5
50% 32.7 33.4 33.8
52.5% - 33.8 -
70% 32.9 34.0 34.1
82.0% - - 34.9
100% 33.1 34.4 35.1

Table 10: Results at different fine-tuned neuron pro-
portions (10%, 30%, 50%) controlling the overlap rate
under the generation - generation combination. Italics
indicate the original experimental results and overlap
rates.

Overlap rate \ Percentage of trained neurons 10% 30% 50%

10% 78.2 78.5 78.6
11.8% 78.4 - -
30% 78.8 78.7 79.3
40.2% - 78.7 -
50% 79.0 79.4 79.7
69.3% - - 80.1
70% 79.3 79.6 80.3
100% 79.5 79.9 80.8

Table 11: Results at different fine-tuned neuron pro-
portions (10%, 30%, 50%) controlling the overlap rate
under the generation - classification combination. Italics
indicate the original experimental results and overlap
rates.

Dataset Class Task Type Domain

AGNews 4 Topic classification News
Amazon 5 Sentiment anlysis Amazon reviews
DBPedia 14 Topic classification Wikipedia
Yahoo 10 Q&A Yahoo Q&A

Table 12: Details of the Standard CL Benchmark.

Dataset Class Task Type Domain

Amazon 5 Sentiment anlysis Amazon reviews
DBPedia 14 Topic classification Wikipedia
Yahoo 10 Q&A Yahoo Q&A
AGNews 4 Topic classification News
MNLI 3 NLI various
QQP 2 Paragraph detection Quora
RTE 2 NLI news, Wikipedia
SST-2 2 Sentiment analysis movie reviews

Table 13: Details of the simplified version Large Num-
ber of Tasks Benchmark.

Order Task Sequence

1 DBPedia → Amazon → Yahoo → AGNews
2 DBPedia → Amazon → AGNews → Yahoo
3 Yahoo → Amazon → AGNews → DBPedia

4
MNLI → QQP → RTE → Amazon →
SST-2 → DBPedia → AGNews → Yahoo

5
Amazon → AGNews → Yahoo → QQP →
RTE → MNLI → DBPedia → SST-2

6
AGNews → Yahoo → SST-2 → RTE →
QQP → MNLI → DBPedia → Amazon

Table 14: Task order sequence for two continuous learn-
ing benchmarks.
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Figure 5: Performance of Llama-2-7b on all tasks after deactivation or fine-tuning a particular class task-specific
neurons. The element in the i-th row and j-th column is the performance change for task j due to deactivation or
fine-tuning of the task i specific neurons.
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Figure 6: Results of training and testing each task individually for observing specialization.
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