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Abstract

Small language models (SLMs) are more ef-
ficient, cost-effective, and customizable than
large language models (LLMs), though they
often underperform in specific areas like rea-
soning. Past methods for enhancing SLMs’
reasoning, such as supervised fine-tuning and
distillation, often depend on costly external sig-
nals, resulting in SLMs being overly confident
with limited supervision signals, thus limiting
their abilities. Therefore, this study enables
SLMs to learn to reason from self-iterative
feedback. By combining odds ratio preference
optimization (ORPO), we fine-tune and align
SLMs using positive and negative signals gener-
ated by themselves. Additionally, we introduce
process supervision for rewards in preference
alignment by sampling-based inference simula-
tion and process reward models. Compared to
Supervised Fine-Tuning (SFT), our method im-
proves the performance of Gemma-2B by 12.43
(Acc) on GSM8K and 3.95 (Pass@1) on MBPP.
Furthermore, the proposed method also demon-
strated superior out-of-domain generalization
capabilities on MMLU_Math and HumanEval.

1 Introduction

Reasoning is a popular area of research in natu-
ral language processing. Recent studies (Wei et al.,
2022; Kojima et al., 2022; Wang et al., 2023b) show
that closed-source LLMs with Chain-of-Thought
(CoT) demonstrated excellent performance in vari-
ous reasoning tasks, even without additional fine-
tuning on specialized supervised datasets (Cobbe
et al., 2021). However, due to the limited pa-
rameters, open-source SLMs (≤7B) haven’t fully
demonstrated this capability before despite being
more cost-effective than their larger counterparts
(Magister et al., 2023; Ho et al., 2023). Therefore,
enhancing the incremental reasoning abilities of
SLMs has recently become a significant research
focus.

*Corresponding author

Previous works (Cobbe et al., 2021; Hendrycks
et al., 2021b; Magister et al., 2023; Ho et al.,
2023; Hsieh et al., 2023; Chen et al., 2024a) have
shown that fine-tuning SLMs on meticulously de-
signed large-scale supervised datasets effectively
narrows the reasoning performance gap between
open-source SLMs and closed-source LLMs. How-
ever, constructing such datasets requires extensive
supervision from humans or advanced LLMs. Ad-
ditionally, due to limited parameters and datasets,
SLMs tend to become overly confident with lim-
ited supervision signals, which means that SLMs
are prone to lacking generalization (Yuan et al.,
2023) or being misled by incorrect reasoning paths
(Wang et al., 2023a; Bentham et al., 2024), particu-
larly when reasoning by CoT, as shown in Figure 1
(above).

Self-taught methods like STaR (Zelikman et al.,
2022) and RFT (Yuan et al., 2023) make it possi-
ble to enhance language models’ reasoning abil-
ities without external annotation signals, where
the model learns from self-generated reasoning
paths that lead to correct final answers. By incor-
porating the Direct Preference Optimization (DPO)
(Rafailov et al., 2023), self-refine methods also aim
to enhance LLMs’ reasoning abilities by preference
alignment on self-generated positive and negative
samples, where each sample is labeled as positive
or negative either by advanced LLMs (like GPT-4)
(Lee et al., 2024) or automatically based on whether
the final answer is correct (Pang et al., 2024). How-
ever, these methods depend only on result-based
binary rewards, which means they overlook a sig-
nificant amount of detailed step-by-step feedback,
as shown in Figure 1 (below). Please refer to Ap-
pendix D for more details of related works.

To combine the advantages of self-iterative learn-
ing and fine-grained process feedback, we pro-
pose fine-tuning SLMs on self-generated positive
and negative samples through self-iterative process
feedback (SIPF). A process reward model (PRM)
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Weng earns $12 an hour for babysitting. 
Yesterday, she just did 50 minutes of 
babysitting. How much did she earn?

The babysitting last for 50 minutes 
which is equal to 50/60 = 0.8 hours.
Since she got paid for a 0.8 hour, then 
0.8 x $12 = $<<0.8*12=9.6>>9.6

She earns 12 x 1/2 = $<<12*1/2=6>>6 
for babysitting an hour.
So, she earned 12 x 50/60 minutes = 
$<<12*50/60=10>>10
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Figure 1: The conceptual diagram of the proposed self-iterative process feedback method against several previous
methods (below). Compared to prior approaches, SIPF emphasizes on the correctness of reasoning steps. This
means that SIPF can distinguish between correct reasoning with incorrect results and incorrect reasoning with
correct results (above).

(Lightman et al., 2024) produces the process feed-
back signals without human annotations.

The proposed self-iterative method involves
these steps: First, using fine-tuned SLMs for sam-
pling reasoning paths (CoT); Second, applying
sampling-based inference simulation to label the
correctness of steps in some examples, which
are then used for training the verifier (or PRM);
Next, scoring all sampled reasoning paths with
the verifier and constructing preference datasets;
Finally, performing odds ratio preference optimiza-
tion (ORPO) (Hong et al., 2024) to align SLMs on
preference datasets.

Unlike recent process feedback-based reason-
ing optimization methods (Jiao et al., 2024; Wang
et al., 2024), our approach focuses on gradually
improving the SLMs’ reasoning abilities through
self-iteration. Overall, the main contributions of
this work can be summarized as follows:

1) We propose a self-iterative process feedback
optimization method to gradually improve rea-
soning in open-source SLMs without addi-
tional human-annotated signals. It also does
not need process supervision signals from hu-

mans when combined with sampling-based
inference simulation.

2) We propose improving self-refine methods by
incorporating fine-grained process feedback,
with process feedback rewards assigned by
a PRM. Comprehensive and rigorous analy-
sis results indicate that incorporating process
feedback leads to more robust improvements
in self-refine methods.

3) We conduct experiments on various types and
scales of SLMs, including TinyLlama-v1.1,
Phi-1.5, and Gemma-2B, to validate the uni-
versality of the proposed method. Exten-
sive experiments show that our method out-
performs supervised fine-tuning, self-taught,
and self-refine methods on multi-step reason-
ing tasks like GSM8K and MBPP. It also
achieves superior out-of-domain generaliza-
tion on MMLU_Math and HumanEval. Addi-
tional experimental analyses also strongly sup-
port the reliability of the proposed approach.
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       :  Natalia sold 48 * 
1/2 = <<48*1/2=24>>24 
clips in May.

       : She sold 48 + 24 = 
<<48+24=72>>72 in 
April and May.

       : The answer is 72

Natalia sold clips to 48 of 
her friends in April, and 
then she sold half as many 
clips in May. How many 
clips did Natalia sell 
altogether in April and 
May ? 
Please reason step by 
step. Natalia sold 48 * 1/2 
= <<48*1/2=24>>24 clips 
in May.
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Figure 2: Overall framework of the proposed learning to reason from self-iterative process feedback. A single
iteration of the online learning process includes sampling, collecting, inference simulation, fine-tuning verifier,
scoring to construct the preference dataset, and RL alignment by ORPO.

2 Self-Iterative Process Feedback

Instead of observing the correctness of the final
answer, the proposed method enhances the reason-
ing ability of the SLMs M with parameters θ by
observing the correctness of each reasoning step.

We introduce a simulator S and a verifier V , both
well-trained LLMs on the specific task to achieve
this goal. Specifically, a continuous value from 0
and to 1 represents the correctness of intermediate
reasoning steps.

The simulator S uses the SLM’s intermediate
steps as input to perform multiple reasoning sim-
ulations, determining the correctness of each step
based on the final results of multiple simulations.
The verifier V rates the correctness scores of each
step generated by the SLM and generator. Figure
2 shows the detailed architecture of the proposed
SIPF method.

2.1 Reasoning Paths Sampling
The fine-tuned M with parameters θ can sample a
set of different reasoning paths, i.e. {τ0, τ1, ..., τn},
by high temperature T for a given question q. The
process can be formally described as follows:

R = {τi|τi ∼ M(qi, T, θ)}Ni=1 (1)

where R represents possible reasoning paths gener-
ated by M given the question qi and temperature
T . The initial model M0 is obtained by fine-tuning
the original model on the original dataset D0, and
the k-th iteration model Mk is obtained by aligning

it on the k-th iteration dataset Dk via ORPO. Addi-
tionally, R = {τ0, τ1, ..., τn} will be deduplicated
and diversified based on reasoning paths (for math)
or edit-distance (for code).

2.2 Process Reward Estimation

Compared to outcome-based rewards, which solely
rely on the correctness of the final answer a of rea-
soning. Process supervision rewards assess the cor-
rectness of each intermediate step sj in the reason-
ing path τ = (s0, s1, ..., sm, a), where j ∈ [0,m]
and a is the final result.

Inspired by Monte Carlo Tree Search (MCTS),
sampling-based inference simulation provides a
feasible approach for determining the correctness
of steps of the reasoning path without cumbersome
human annotations (Lightman et al., 2024). The
basic idea is that an intermediate step will likely be
correct if it frequently reaches the correct result.

As shown in Figure 2, the simulator performs
multiple samplings from the reasoning step si,j
in τi, obtaining K sampled paths: {τ̂ ti,j}Kt=1 =

{(si,0, ..., si,j , ŝti,j+1, ŝ
t
i,j+2, ...ŝ

t
i,m, âti)}Kt=1. The

correctness ci,j of step si,j can be defined as fol-
lows:

ci,j =

{
1, if

∑
I(âti = a∗i ) > δ

0, otherwise
(2)

where δ is threshold that denotes whether a step
is considered correct only if the number of sim-
ulated correct results exceeds a specific count, I
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represents the 0/1 indicator function and a∗i is the
gold answer.

2.3 Process Reward Model

The verifier can be used to assign fine-grained step-
level scores to reasoning paths. Given a dataset
annotated through inference simulation:

Dsimulate ={qi, τi, ci}N̂i=1

={qi, (si,j , ci,j)Mi
j=1}

N̂
i=1 (3)

where Mi represents the total number of steps in
τi and N̂ represents the number of samples less
than N . The corresponding loss function can be
formalized as follows:

LPRM =−
N∑
i=0

Mi∑
j=0

ci,j log ĉi,j

+ (1− ci,j) log(1− ĉi,j) (4)

where ĉij is the probability assigned by the veri-
fier that step si,j is correct, which is ranges from
[0, 1]. Therefore, the reward r of an reasoning path
τ = (s0, s1, ..., sm, a) of the i-th question qi can
be estimated by the fine-tuned verifier as follows:

r(τ) =

∑m
j=0 ĉi,m

m
(5)

where m is the total number of reasoning steps.
Since the performance of verification is related to
language modeling capabilities, the verifier is usu-
ally an open-source model with strong reasoning
performance.

2.4 RL Alignment via ORPO

Based on the PRM, we can assign different reward
r to various reasoning paths τ , thereby constructing
the preference dataset as follows:

Dpref = {qi, τiw, τil
∣∣∣r(τiw)− r(τi

l) ≥ η} (6)

where τw is the chosen path while τ l is the re-
ject one and η is the confidence margin. Benefit-
ing from the efficiency of ORPO, supervised fine-
tuning and preference alignment can be incorporate
into a single process. It allows the model to learn
more diverse reasoning from the chosen reasoning
paths and avoid erroneous patterns through pref-
erence alignment. The learning objectives corre-
sponding to this process are denoted as:

Algorithm 1 Iterative Training Procedure

1: Initialize: pretrained SLM M ; fine-tuned veri-
fier V ; dataset D0 = {qi, τi, ai}Ni=1;

2: M0 = SFT(M,D0)
3: for k = 1 to N do
4: Dsample = Sample(Mk−1, Dk−1)
5: Dk = Dk−1 ∪Dsample
6: Dpref = Score(V,Dk)
7: Mk = ORPO(M,Dpref)
8: end for

LORPO = −E(q,τw,τ l)

[
LSFT (q, τ

w)

+ β

(
log σ

(
odds(τw | q)
odds(τ l | q)

))]
(7)

odds(τ |q ) =
P (τ |q )

1− P (τ |q )
(8)

where LSFT (q, τ
w) is is the negative log-

likelihood loss on τw, σ is log sigmoid function,
β is weight parameters, and odds(τ |q ) represents
the ratio between the probability of obtaining rea-
soning path τ given question q and the probability
of not generating it.

2.5 Self-Iterative Process Feedback

Through self-iteration, SLMs and datasets can be
updated iteratively, overcoming the limitations of
finite datasets and reducing bias with continuous
online feedback. This process involves a series
of iterative models M0,M1, ...,Mk and their cor-
responding datasets D0, D1, ..., Dk. Algorithm 1
shows the details of self-iterative process feedback.

3 Experiments

3.1 Datasets

The experiments involve two challenging types of
multi-step reasoning tasks: mathematical reason-
ing (GSM8K (Cobbe et al., 2021), MMLU_Math
(Hendrycks et al., 2021a)) and code generation
(MBPP (Austin et al., 2021), HumanEval (Chen
et al., 2021)).

GSM8K involves solving math word problems in
grade school. MBPP tasks involve basic program-
ming knowledge, requiring multi-step reasoning
and passing unit tests. Both datasets offer publicly
available training and testing sets.
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Model TinyLlama-v1.1 Gemma-2B

Method\Task GSM8K MMLU_Math (OOD) GSM8K MMLU_Math (OOD)

CoT (8-shot) 1.14 5.08 14.40 13.28
SFT 13.75 6.21 31.54 24.01

RFT 14.40 6.21 34.80 24.58
pRFT 14.56 7.34 34.57 28.25
SRF 7.43 2.26 27.98 23.73

pSRF 9.63 3.95 28.35 23.73
RPO 14.25 6.21 37.91 27.12
STaR 14.63 5.65 34.72 24.58

SIPF-Iter1 16.22 7.34 38.15 25.98
SIPF-Iter2 17.44 7.91 42.00 29.10
SIPF-Iter3 18.57 9.60 43.97 28.25

Table 1: Comparison of different methods on the mathematical reasoning tasks GSM8K (in-domain) and
MMLU_Math (out-of-domain).

To assess the models’ out-of-domain generaliza-
tion, we will train them on GSM8K and MBPP,
and then evaluate them on MMLU_Math and Hu-
manEval respectively. MMLU_Math comprises
college, high school, and elementary school math-
ematical problems from MMLU. Please refer to
Appendix A.1 for more details of datasets.

3.2 Experiment Setup

The experiments consider three types and scales
of pre-trained SLMs, including TinyLlama-v1.1
(Zhang et al., 2024b), Phi-1.5 (Li et al., 2023), and
Gemma-2B (Team et al., 2024). All models in the
experiments are fine-tuned by QLoRA (Dettmers
et al., 2023) and employ Unsloth1 for inference
acceleration.

The deepseek-math-7b-instruct and deepseek-
math-7b-rl (Shao et al., 2024) are employed as
the simulator and reward model for mathematical
reasoning, respectively, and deepseek-coder-6.7b-
instruct (Guo et al., 2024) as both the simulator and
reward model for code generation.

In each iteration, we collect sufficient positive
and negative samples through temperature sam-
pling and ensure sample diversity by deduplicating
based on reasoning paths (for math) or edit-distance
(for code). Inference simulation is performed by
sampling eight times for all tasks, with tempera-
tures set to 1 for math tasks and 0.7 for code tasks.
Please refer to Appendix A.2 for more setup details.

1https://github.com/unslothai/unsloth

3.3 Baseline

In addition to CoT and supervised fine-tuning, we
consider the following existing methods as strong
baselines:
Self-Taught Methods: STaR (Zelikman et al.,
2022) and RFT (Yuan et al., 2023) are Self-Taught
methods based on outcome feedback, where the
models only learn from the reasoning paths that
lead to correct results. RFT boosts diversity in self-
generated reasoning with high-temperature sam-
pling, while STaR uses greedy decoding and itera-
tively improves performance.
Self-Refine Methods: Similar to the approach
used by Yuan et al. (2024); Lee et al. (2024), we
consider using SFT and DPO to align the model
with self-sampled positive and negative examples.
However, labels of examples are not assigned by
LLMs but are instead automatically assigned based
on the correctness of the final results. In subse-
quent experiments, this baseline will be referred
to as SRF. Additionally, RPO (Pang et al., 2024)
optimizes reasoning by aligning self-generated pos-
itive and negative outcome feedback. We compare
RPO’s performance after one iteration in the exper-
iments.

For a strict comparison, we use PRMs described
in Section 2.3 to introduce process feedback for
RFT and SRF. The improved methods are referred
to as pRFT and pSRF, respectively. Please refer to
Appendix A.3 for more baselines details.

3.4 Evaluation

We evaluate the model’s accuracy for mathematical
reasoning tasks, while for code generation, Pass@1

https://github.com/unslothai/unsloth


3032

Model Phi-1.5 Gemma-2B

Method\Task MBPP HumanEval (OOD) MBPP HumanEval (OOD)

CoT (0-shot) 34.87 33.54 28.29 20.12
SFT 35.20 32.32 29.75 17.68

RFT 34.60 26.22 27.49 14.02
pRFT 36.60 28.05 28.56 15.24
SRF 22.38 17.07 16.47 12.80

pSRF 25.92 19.51 19.17 11.59
RPO 28.52 33.54 31.53 20.73
STaR 38.44 29.88 28.56 15.85

SIPF-Iter1 36.87 34.76 31.83 20.12
SIPF-Iter2 38.21 29.88 32.16 21.95
SIPF-Iter3 37.14 31.10 33.70 20.73

Table 2: Comparison of different methods on the code generation tasks MBPP (in-domain) and HumanEval (out-of-
domain).

is used as the evaluation metric. By default, all
results are generated using greedy decoding by the
model. For more details on the evaluation, please
refer to Appendix A.1.

4 Results and Analysis

4.1 Comparison of In-Domain Performance
Tables 1 and 2 indicate that SIPF demonstrates su-
perior in-domain performance on multi-step reason-
ing tasks: mathematics (GSM8K) and code genera-
tion (MBPP). Specifically, SIPF shows significant
improvements over SFT and CoT. This improve-
ment is observed across different models.

With just one iteration, SIPF’s in-domain perfor-
mance surpasses self-taught and self-refine meth-
ods and their process feedback-based versions
(pRFT and pSRF). Additionally, with the help of
self-iteration, SIPF achieves continuous improve-
ments in most cases, as shown in Tables 1 and 2.

4.2 Comparison of Out-of-Domain
Performance

As mentioned in Section 1, most methods based
on external signals are constrained by limited re-
sources and fail to exhibit good out-of-domain per-
formance. As indicated in Table 2, SFT shows
degraded performance in the code generation task
HumanEval (out-of-domain) compared to CoT.

In contrast, in most cases, SIPF demonstrates
strong out-of-domain performance, surpassing ex-
isting methods like STaR, RFT, and SRF. SIPF also
further improve its performance on MMLU_Math
through self-iteration, as shown in Table 1. How-
ever, for the code generation task HumanEval, the

improvements from self-iteration are limited, as
shown in Table 2.

4.3 Analysis of Performance Degradation in
DPO-based Self-Refine Methods

Tables 1 and 2 indicate that SRF shows degraded
performance compared to SFT in all cases, regard-
less of whether it is based on outcome or process
feedback. As shown in Figure 3, we analyze the
chosen and rejected probability across different
models and feedback types to further explore the
underlying reasons.

Figure 3 shows that DPO reduces the probability
of generating τw during training, which directly
causes performance degradation in SFT models af-
ter aligning feedback signals. These results are con-
sistent with findings from previous works (Hong
et al., 2024; Pang et al., 2024). In fact, the loss
form of DPO causes the model to focus excessively
on what is a poor response (as shown in Figure 3)
while overlooking what makes a good response. It
has also been confirmed in recent work (Feng et al.,
2024). In contrast, ORPO-based SIPF improves the
probability of generating τw due to the supervised
fine-tuning on τw.

4.4 Analysis of Aligning Positive and Negative
Examples

Self-Taught methods focus solely on iterative su-
pervised fine-tuning on self-generated positive ex-
amples, while SIPF further incorporates aligning
on positive and negative examples via ORPO.

Figure 3 shows that SFT increases the genera-
tion probability of τw while it does not effectively
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Figure 3: Comparison of the training processes of SFT-based self-taught, DPO-based SRF, and ORPO-based SIPF
on GSM8K using Gemma-2B. The DPO-based SRF consistently reduced the probability of generating τw. SIPF is
more effective than self-taught methods at reducing the probability of generating τ l. Additionally, different types of
feedback (outcome or process) have different effects on training.
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Figure 4: Comparison of accuracy and data count for
various self-iteration methods across different iterations
on GSM8K.

reduce the probability of τl, which is consistent
with the observations of previous works. In com-
parison, SIPF further lowers the likelihood of gen-
erating rejected examples, indicating that it more
effectively reduces erroneous reasoning in SLMs
and improves reasoning performance. Additionally,
different types of feedback affect SFT and ORPO
differently. The rejected probability curves of SFT
and ORPO differ more significantly from process
feedback to outcome feedback. Under outcome
feedback, both SFT and OPRO reduce the proba-
bility of generating rejected samples, leading to a
similar performance in handling rejected samples.
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Figure 5: Automatic evaluation of the reliability of ra-
tionales generated by different methods (process-based
or outcome-based) using GPT-4.

4.5 Comparison of Different Self-Iterative
Learning Methods

We compare the accuracy and data count changes
during continuous iteration for four self-iterative
methods based on process or outcome feedback.
Specifically, RFT can also be implemented as a self-
iterative optimization method, similar to (Singh
et al., 2024). SIOF represents iterative learning
using only outcome feedback, with other settings
consistent with SIPF.

Figure 4 shows that all methods achieve higher
accuracy than the SFT baseline through self-
iteration learning. SIPF with process feedback
signals consistently outperforms other methods in
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Method\Type ORM PRM

TinyLlama-v1.1 59.64 67.00
Llama-2-7B 70.09 78.38
deepseek-math-instruct-7B 75.60 85.24
deepseek-math-rl-7B 77.38 87.58

Table 3: Accuracy analysis of different reward models
trained with process and result feedback on manually
annotated GSM8K evaluation dataset.

every iteration.

It is worth noting that the differing impacts of
process feedback and outcome feedback on rea-
soning performance become evident through mul-
tiple iterations. RFT and SIOF, based on outcome
feedback, show degraded performance after reach-
ing their capacity limits. In contrast, process feed-
back methods (SIPF and RFT) continue to improve,
likely due to higher-quality examples. This is also
reflected in the observed data count changes across
iterations, where more training examples do not
always lead to better reasoning performance.

Additionally, aligning positive and negative sam-
ples benefits reasoning performance in iterative
learning. Figure 5 shows that SIPF and pRFT out-
perform SIOF and RFT, respectively.

4.6 Effect of Process Feedback on Reasoning

To explore whether process feedback can effec-
tively reduce reasoning errors and improve the rea-
soning process, we follow Zheng et al. (2023) and
use GPT-4 to automatically evaluate the rationales
generated under different methods.

The GPT-4 is required to analyze the reliability
of the reasoning process from six different perspec-
tives: Computational, Completeness, Reasonable,
Concise, Consistent, and Overall Performance.

Specifically, we prompt GPT-4 to compare and
evaluate the rationales generated by SIPF and SIOF
(as described in Section 4.5) to determine which
method produces more reliable paths. To elim-
inate the influence of the final answer, we re-
moved examples where the result is incorrect under
both methods. The results in Figure 5 show that
process-based SIPF outperforms outcome-based
SIOF methods across multiple dimensions of ratio-
nales evaluation. For more details on the evaluation,
please refer to Appendix B.

Method\Model Gemma-2B TinyLlama-v1.1

SIPF 38.15 16.22

w ITR 43.97 18.57
w/o PF 37.83 15.24
w/o OR 34.64 14.63
w/o PFOR 34.57 14.40

Table 4: Ablation study on GSM8K (Accuarcy). ITR
denotes self-iterative learning (3 rounds), PF represents
process feedback, OR refers to the relative ratio loss in
the ORPO objective, and PFOR represents both process
feedback and relative ratio loss.

4.7 Analysis of Performance across Different
Reward Models

As described in Section 2.3, the fine-tuned reward
models can be used to assign reward scores to each
step in the rationales, thus constructing a refer-
ence dataset. Therefore, the accuracy of the reward
model is crucial for enhancing SIPF’s performance.
However, recent works have shown a lack of analy-
sis concerning the reward models.

To evaluate the performance of the reward model,
we manually labeled a dataset specifically for as-
sessing step correctness. Following Lightman et al.
(2024), we train PRMs with step-annotated ratio-
nales and ORMs with result-annotated rationales.
The fine-tuned reward models then assign correct-
ness scores to each step in the evaluation dataset
to assess accuracy. Please refer to Appendix C for
more details on manual annotations.

Table 3 shows that, compared to ORM, PRM
can more accurately evaluate the correctness of rea-
soning steps, consistent with previous work (Light-
man et al., 2024). Additionally, the performance
of the reward model is closely related to its lan-
guage modeling capabilities (Cobbe et al., 2021).
The stronger the model’s reasoning ability, the bet-
ter it performs in evaluations. Specifically, mod-
els like deepseek-math-rl-7B and deepseek-math-
instruct-7B, which are aligned using large-scale,
high-quality mathematical datasets, significantly
outperform TinyLlama-v1.1 and Llama-2-7B (Tou-
vron et al., 2023), especially in the case of PRM.

5 Ablation Analysis

We conduct an ablation analysis on different com-
ponents of the proposed method to validate their
effectiveness. Table 4 presents the ablation experi-
ment results of Gemma-2B and TinyLlama-v1.1 on
the GSM8K task, with SIPF using only one itera-
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Figure 6: Comparison of performance with different
weights of relative ratio loss across various iterations on
GSM8K using Gemma-2B.

tion as the reference. It shows that performance de-
grades across different models when various com-
ponents are removed, highlighting the necessity of
each part. We also explore the performance differ-
ences with varying weight of relative ratio loss, as
shown in Figure 6. The results indicate that an OR
weight of around 0.1 is suitable for SIPF.

6 Conclusion

This work introduces a self-iterative process feed-
back method aimed at improving the reasoning
abilities of SLMs, where process feedback is gener-
ated through reasoning simulation and verification,
without relying on manual annotation. Extensive
experimental results across multiple multi-step rea-
soning tasks demonstrate the effectiveness and gen-
eralizability of the proposed method.

Limitations

The proposed method has only been experimented
on pre-trained models with sizes ≤ 2B, and its feasi-
bility has not been validated on larger open-source
models (≥ 7B). Current experimental results only
demonstrate the method’s effectiveness on com-
mon multi-step reasoning tasks (e.g., mathematics
and code) and do not confirm its applicability to
a broader range of reasoning tasks. Additionally,
the resource overhead of the self-iterative approach
itself is significant and cannot be overlooked.
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Hyperparameters Setting

learning_rate 5e-5, 8e-5, 1e-4
optimizer AdamW
warmup_ratio 0.1
max_grad_norm 0.3
OR_weight 0.01, 0.1, 1
bf16 True
lora_alpha 128
lora_dropout 0.05
lora_r 256

Table 5: Unified parameter settings for self-iteration
alignment across different tasks.

the experiments. Notably, because different combi-
nations of test cases can be included in the prompts,
the actual number of training samples used for fine-
tuning is 2,244. For testing, to prevent label leak-
age, we selected 2 out of 3 test cases as prompts for
each problem, resulting in 6 different input formats
per question. Under these conditions, we evaluated
the performance on MBPP using Pass@k metrics.
HumanEval. HumanEval (Chen et al., 2021)
contains 164 entry-level programming problems
to assess understanding, arithmetic, and rea-
soning. We use this dataset to evaluate the
model’s out-of-domain generalization capabili-
ties on code generation. Additionally, to main-
tain consistency with the format of MBPP, we
transform the input format of Humaneval prob-
lems. Specifically, the input for a problem is
changed from Function_Name+Prompt+Test_Case
to Prompt+Test_Case+Function_Name.

A.2 Experiment Setup
Training. For efficiency considerations, we use
Unsloth in our experiments and apply QLoRA for
parameter-efficient fine-tuning. All methods are
based on algorithms and models implemented in
the transformer (Wolf et al., 2020) and trl2 libraries.
Table 5 shows the hyperparameter settings used for
different tasks and models. When training Gemma-
2B, we set the batch size to 20, while the batch
size is 48 for TinyLlama-v1.1 and Phi-1.5. Due to
the complexity of the self-iteration learning, we se-
lect the best performance under a predefined set of
learning rates and relative ratio loss weights from
Table 5 and leave the search for optimal parameters
for future work. We set the batch size to 40 for
training the reward model and used a low learning
rate 5e-5.

2https://github.com/huggingface/trl

Iteration\Model Gemma-2B Phi-1.5

Iter-0 2.24 2.24
Iter-1 13.12 18.35
Iter-2 20.06 30.43
Iter-3 31.27 39.87

Table 6: Training data size (k) obtained through sam-
pling and filtering by reward values at different iteration
rounds on MBPP.

Iteration\Model Gemma-2B TinyLlama-v1.1

Iter-0 7.47 7.47
Iter-1 37.78 36.96
Iter-2 55.24 50.49
Iter-3 87.41 68.94

Table 7: Training data size (k) obtained through sam-
pling and filtering by reward values at different iteration
rounds on GSM8K.

Sampling. In each iteration, temperature sampling
(T = 1) wil be used to collect enough positive
and negative samples (reasoning paths), labeling
them based on the correctness of the final answer
for math problems or test passes for program prob-
lems. Specifically, we specify the required num-
ber of positive and negative samples per question.
Based on subsequent rounds, the number will be
set to half or a quarter of the number of positive
and negative samples from previous rounds. Since
not all math problems yield the required number of
samples through sampling, we set a time threshold
for sampling to improve efficiency. For code gener-
ation problems, samples are labeled post-sampling,
so no time threshold is set. Tables 6 and 7 show the
count of sampled datasets obtained after filtering
at different iteration rounds.

A.3 Baseline

CoT. On GSM8K and MMLU_Math, we used the
same few-shot prompt as in the previous work (Wei
et al., 2022), while the zero-shot prompt is used for
MBPP and HumanEval.
SFT. The models are fine-tuned on the existing
training sets of GSM8K and MBPP.
STaR. STaR (Zelikman et al., 2022) is a Self-
Taught method that enhances reasoning by itera-
tively learning from self-generated rationales, with
each rationale generated through greedy decoding.
Due to the inclusion of low-quality samples, we
did not adopt the rationalization from prior work
(Zelikman et al., 2022). With a low learning rate

https://github.com/huggingface/trl
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Figure 7: The performance of STaR at different iteration rounds on GSM8K (Acc) and MBPP (Pass@1). Iteration-0
represents supervised fine-tuning on the original dataset.

of 5e-5, the performance of models converges after
4 iterations as shown in Figure 7, and we selected
the best performance from different iterations.
RFT. Rejection Sampling Fine-Tuning (RFT)
(Yuan et al., 2023) enhances the training dataset
by self-sampling from a supervised model, with
each sample filtered for uniqueness in its reasoning
path. Unlike STaR, RFT does not use self-iterative
optimization. Our experiments set the sampling
temperature to 1 and increased reasoning diversity
through path deduplication for all tasks.
SRF. Compared to Self-Taught, Self-Refine (Yuan
et al., 2024; Lee et al., 2024) focuses on correct-
ing errors through negative feedback. We apply
DPO to align the supervised model using the first
round of sampling dataset from SIPF. Due to re-
source constraints, we only classify samples based
on whether the final answer is correct (for math) or
if it passes test cases (for code).
RPO. Iterative Reasoning Optimization (RPO)
(Pang et al., 2024) improves reasoning perfor-
mance through iteration by combining negative
log-likelihood loss on positive examples with a
DPO learning objective on both positive and nega-
tive examples. However, this method is still based
on outcome feedback. In the experiments, we ap-
plied RPO to the first round of sampling datasets
from SIPF.
pRFT and pSRF. Original RFT and STR optimize
solely based on outcome feedback. Therefore, we
use a process reward model to further filter the
feedback results, meaning only samples with high
reward values are used for model optimization.

B Automatic Evaluation of Rationales

Due to the advanced capabilities, powerful LLMs
like GPT-4 can align closely with human prefer-

Question

Kalinda is working on a 360 piece puzzle with 
her mom. Kalinda can normally add 4 pieces 
per minute. Her mom can typically place half 
as many pieces per minute as Kalinda.  How 
many hours will it take them to complete this 
puzzle?

Kalinda can place 4 pieces per minute and 
her mom can place 1/2 that amount so she 
places 4/2=<<4/2=2>>2 pieces per minute. 
Together they can place 4+2=<<4+2=6>>6 
pieces per minute. A puzzle this size is 360 
pieces so it will take them 360/6=<<360/
6=60>>60 minutes. 60 minutes is 1 hour 
and they have 1 hour of free time so it will 
take them 1 hour. The answer is 1

Kalinda can add 4 pieces per minute and her 
mom can add 1/2 that or 2 pieces per minute. 
Together they can add 4+2=<<4+2=6>>6 
pieces per minute. To complete the puzzle 
they will need to add 360/6=<<360/6=60>>60 
pieces. It will take 60/4=<<60/4=15>>15 
minutes to complete the puzzle. It will take 
15*60=<<15*60=900>>900 seconds or 1 
hour. The answer is 1

Answer_A 
(SIPF)

Answer_B 
(SIOF)

Judge (GPT-4)

Both Answer A and Answer B correctly 
calculate the number of pieces Kalinda and her 
mom can place per minute. However, Answer 
B makes a computational error when 
converting the total minutes to complete the 
puzzle. It incorrectly divides 60 by 4 to get 15 
minutes, then multiplies 15 by 60 to get 900 
seconds, which it incorrectly states is 
equivalent to 1 hour. Answer A correctly 
calculates the total time to complete the puzzle 
as 60 minutes or 1 hour.

Figure 8: The case study of automatic evaluation of
rationales. With prompting, GPT-4 identifies the rea-
soning error in Answer_B, even though both Answer_A
and Answer_B have the same correct results.

ences, allowing them to serve as judges in various
evaluation tasks (Zheng et al., 2023). To evaluate
the rationales generated by different methods, we
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Please act as an impartial judge and evaluate the quality of the answer to the question displayed below. You will be given a question, a 
standard answer, answer A, and answer B. Your job is to evaluate which answer is better according to standard answer. Identify and correct 
any mistakes. Avoid any position biases and ensure that the order in which the answers were presented does not influence your decision. Do 
not favor certain names of the answers. Be as objective as possible. Your evaluation should consider following standards:

Standards:
Computational Correctness: The computations involved in the answer are correct.
Completeness: The answer is complete without missing any necessary steps.
Reasonable: The answer is reasonable, which means each conclusion should be inferred by collecting evidence, instead of making up 
unknown facts.
Concise: The answer should not tell something irrelevant to the question. 
Consistent: There must not be a contradiction in the answer itself.
Overall Performance: the final performance, considering all the above aspects

After providing your explanation, for each aspect of the above standards, select one winner (A or B), or judge it as a tie. Note that each aspect 
should be evaluated independently, following the format:

Explanation: [Your Explanation]
Computational Correctness: A/B/Tie
Completeness: A/B/Tie
Reasonable: A/B/Tie
Concise: A/B/Tie
Consistent: A/B/Tie
Overall Performance: A/B/Tie

Question
{{question}}

Standard Answer:
{{ref_answer}}

Answer A:
{{answer_a}}

Answer B:
{{answer_b}}

Figure 9: In the GPT-4-based automatic evaluation of rationales, the prompt templates provide definitions for six
different evaluation dimensions and ask GPT-4 to determine which answer, A or B, is better or equivalent, after
providing the relevant explanations.

used GPT-4 as the judge. Specifically, GPT-4 was
given a question from GSM8K along with two dif-
ferent answers, and with appropriate prompting, it
determined which response was better. Building
on the definitions of reasoning errors and validity
from previous work (Jiao et al., 2024; Wang et al.,
2023a), we compared the rationales across six dif-
ferent dimensions: Computational, Completeness,
Reasonable, Concise, Consistent, and Overall Per-
formance. The definitions of each dimension and
the prompt templates used are shown in Figure 9.
Additionally, we provide a case study of judgments
from GPT-4 in Figure 8.

C Manual Annotation of Rationales

To explore the alignment between the reward model
and human standards, we collected 1,000 rationales
from GSM8K (all generated by model sampling)
and distributed them to different human evaluators,
asking them to annotate the correctness of each
step in the rationales. Specifically, we provided

four criteria for judging the correctness of reason-
ing steps, as shown in the annotation guidelines in
Figure 10. After removing some invalid labeled
samples, we retained 791 samples for evaluating
the reward model.

D Related Work

Chain-of-thought Reasoning. Previous work
(Wei et al., 2022) has shown that by inserting a
few Chain-of-Thought examples into the input con-
text or by simply adding Let’s think step by step
(Kojima et al., 2022) after the question, pre-trained
LLMs can be guided to perform multi-step rea-
soning, thereby enhancing reasoning performance.
Recently, guiding models to perform multi-step rea-
soning has also been deliberately introduced into
open-source language models through supervised
fine-tuning (Cobbe et al., 2021; Chung et al., 2024)
or knowledge distillation (Magister et al., 2023; Ho
et al., 2023; Hsieh et al., 2023; Shen et al., 2023;
Chen et al., 2024a; Shen et al., 2025).
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Please annotate the correctness of each step for sampled rationales in math problems. Descriptions of some 
fields in the samples are as follows:

{ 
"idx"：Problem ID
"question"：Problem statement
"gold answer"：Standard rationale
"sample_answer"：Sampled rationale
"gold_ans"：Standard final answer
"sample_ans"：Sampled final answer
"sample_answer_step_correctness"：Correctness of each step in the sampled rationale
[

"step_idx"：Step number in the sampled rationale
"human_ans"：Correctness of the step as judged by human evaluators (0/1)

]
}

The criteria for judging the correctness of reasoning steps are as follows:
1. Operational Correctness: The current step should involve correct basic calculations.
2. Factual Accuracy: The current step should not contradict the problem description. Any fabrication, 
distortion, or deviation from the facts is incorrect.
3. Logical Consistency: The current step should maintain logical coherence with previous reasoning steps or 
the problem itself. Any contradictions in the reasoning are incorrect.
4. Reasoning Completeness: If the current step is missing any key steps necessary for complete reasoning, the 
reasoning is considered incomplete.

If a reasoning step meets the above criteria, it is considered correct; otherwise, it is incorrect. Please mark the 
correctness of the current step with 0 (incorrect) or 1 (correct) in the human_ans field.

Figure 10: The guideline for annotating reasoning steps in sampled rationales from GSM8K. The guidelines provide
four criteria for evaluating the correctness of indirect steps, including: Operational Correctness, Factual Accuracy,
Logical Consistency, and Reasoning Completeness.

However, such methods often rely on expensive
labeled data from humans or LLMs, which limits
the scalability of the approach to some extent. The
limited data availability constrains the further en-
hancement of the model’s capabilities (Chen et al.,
2024b), reducing its generalization (Yuan et al.,
2023) and potentially leading to hallucination is-
sues (Rawte et al., 2023).
Self-Training Reasoning. To overcome the lim-
itations of manual annotation, STaR (Zelikman
et al., 2022) was the first to propose leveraging
the inherent language modeling capabilities of pre-
trained language models to improve reasoning.
Specifically, STaR fine-tunes the model on self-
generated rationales that yield correct results, and
this process is iteratively repeated several times.
Unlike STaR, RFT (Yuan et al., 2023) believes that
high-temperature sampling from pre-trained mod-
els can significantly enhance the diversity of gener-
ated rationales, and diverse reasoning approaches
are crucial for improving the model’s reasoning

performance. However, RFT does not empha-
size improving reasoning through iterative training.
Building on the previous works, ReSTEM (Singh
et al., 2024) further describes self-training as an
expectation-maximization reinforcement learning
(RL) process. These Self-Taught methods only
learn from correct solutions and do not consider
the impact of incorrect solutions.

Benefiting from preference alignment techniques
(e.g., DPO (Rafailov et al., 2023)), recent works
(Yuan et al., 2024; Chen et al., 2024b) have at-
tempted to use self-generated positive and negative
samples to improve the instruction-following capa-
bilities of LLMs, where LLMs themselves typically
assign each sample a label. For reasoning tasks, V-
STaR (Hosseini et al., 2024) proposes using DPO to
train a outcome-supervised verifier (or ORMs) on
self-sampled positive and negative examples and
combining this verifier to enhance the reasoning
performance of self-iterative models. Additionally,
RPO (Pang et al., 2024) enhances reasoning per-
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formance through iterative learning by combining
negative log-likelihood loss on positive examples
with a DPO learning objective that applies to both
positive and negative examples. However, these
works still rely on outcome feedback.
Learn Reasoning from Process Feedback. Due
to the inherent complexity of reasoning and the po-
tential lack of fidelity in language models, the cor-
rectness of the result often does not align with the
reasoning process (Zhang et al., 2024a; Bentham
et al., 2024). This means that a reasoning process
that yields a correct answer may contain erroneous
steps, while a reasoning process that leads to an in-
correct answer can also include correct steps. This
uncertainty limits further improvements in the rea-
soning performance of language models.

Based on these considerations, Lightman et al.
(2024) introduced the Process Supervision Reward
Model (PRM), which is trained on reasoning paths
with manually annotated step correctness and used
for evaluating sampled paths. To avoid the tedious
and costly manual annotation process, recent works
(Jiao et al., 2024; Wang et al., 2024) have used path
simulation in Monte Carlo Tree Search to assign la-
bels for the correctness of each step. Alternatively,
fine-grained feedback for the reasoning process
is introduced through the self-reflective capabili-
ties of advanced LLMs (Lee et al., 2024), such as
GPT-4. Our work is based on assigning correct-
ness to each step through inference simulations
and improving reasoning performance through a
self-iterative optimization process.
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