
Proceedings of the 31st International Conference on Computational Linguistics, pages 3043–3056
January 19–24, 2025. ©2025 Association for Computational Linguistics

3043

Rethinking-based Code Summarization with Chain of Comments

Liuwen Cao1,2, Hongkui He1,2, Hailin Huang1,2, Jiexin Wang1,2, Yi Cai1,2,∗
1School of Software Engineering, South China University of Technology

2Key Laboratory of Big Data and Intelligent Robot
(South China University of Technology) Ministry of Education

*Correspondence: ycai@scut.edu.cn

Abstract

Automatic code summarization aims to gener-
ate concise natural language descriptions (sum-
mary) for source code, which can free soft-
ware developers from the heavy burden of
manual commenting and software maintenance.
Existing methods focus on learning a direct
mapping from pure code to summaries, over-
looking the significant heterogeneity gap be-
tween code and summary. Moreover, exist-
ing methods lack a human-like re-check pro-
cess to evaluate whether the generated sum-
maries match well with the code. To address
these two limitations, we introduce RBCoSum,
a novel framework that incorporates the gen-
erated Chain Of Comments (COC) as auxil-
iary intermediate information for the model to
bridge the gap between code and summaries.
Also, we propose a rethinking process where a
learned ranker trained on our constructed rank-
ing dataset scores the extent of matching be-
tween the generated summary and the code, se-
lecting the highest-scoring summary to achieve
a re-check process. We conduct extensive ex-
periments to evaluate our approach and com-
pare it with other automatic code summariza-
tion models as well as multiple code Large
Language Models (LLMs). The experimen-
tal results show that RBCoSum is effective and
outperforms baselines by a large margin. The
human evaluation also proves the summaries
generated with RBCoSum are more natural, in-
formative, useful, and truthful.

1 Introduction

With the increasing size and complexity of soft-
ware, billions of lines of source code reside in
online repositories. Code summaries provide a
clear natural language description for a piece of
the source code and allow a programmer to un-
derstand the code’s purpose without requiring the
programmer to read the code itself. Thus, these
summaries provide a particularly useful form of
documentation for software development.

Unfortunately, code summaries are often mis-
matched, missing, or outdated in software projects.
Additionally, such summaries are particularly ex-
pensive to manually author. Therefore, the auto-
matic code summarization task, which automati-
cally generates brief natural language descriptions
for code snippets, offers the ability to automate
the summarization of codes and free software de-
velopers from the tremendous workload of writing
comprehensible summaries.

Early works on automatic code summarization
typically treat code snippets as a sequence of
code tokens and model it with Seq2Seq architec-
ture(Bahdanau et al., 2015; Iyer et al., 2016; Alon
et al., 2018). These works only rely on sequen-
tial information in code, which ignores the rich
syntax (e.g., abstract syntax tree (AST)) of source
code. Therefore, many works (Hu et al., 2018a;
Zhang et al., 2019) try to address this challenge
by encoding code structures with tree-aware net-
works (Shido et al., 2019) or graph neural networks
(GNNs) (LeClair et al., 2020; Zhou et al., 2022),
and obtain better performance than the sequence-
based methods. Despite achieving notable advance-
ments, they struggle to learn sophisticated repre-
sentations due to the lack of comprehensive under-
standing of code (Feng et al., 2020). Consequently,
LLMs pre-trained on extensive code data gain a
comprehensive knowledge of code, thus opening
up a new opportunity to tackle these limitations
(Liu et al., 2023; Wang et al., 2021b; Fried et al.,
2022; Roziere et al., 2023).

However, there still exists a significant gap be-
tween code snippets and summaries that current
methods do not handle effectively. Specifically, as
highlighted by (Liu et al., 2020), the code snip-
pet and the summary are heterogeneous, which
means they have substantially different lexical to-
kens, semantic, or language structures. This inher-
ent heterogeneity presents a major challenge when
attempting to generate the summary directly from

https://www.scut.edu.cn/new/

3044

code. Additionally, existing methods lack an ex-
plicit human-like re-check process, which means
that it is unclear whether the generated summary
is functionally consistent with the code. Careful
human developers don’t stop at just writing a sum-
mary. They often re-check the written summary to
ensure that the summary accurately captures the
essence of the code. This motivates our exploration
of whether a rethinking process can improve the
automatic code summarization models.

In this paper, we propose RBCoSum
(Rethinking-Based Code Summarization with
Chain of Comments), a general framework to
address these two limitations. First, to bridge the
gap between code and summary, we introduce
a Chain Of Comments (COC) as an auxiliary
knowledge for the summarizer. The COC consists
of several brief descriptions, each describing a
small functionality of a block of the code snippet,
serving as intermediate information between
code and summaries. Figure 1 illustrates an
example of COC in the lower-left corner. Second,
we propose a rethinking process that re-checks
summaries like human developers. To achieve
this process, we leverage the code summarization
strengths of code LLMs, coupled with a strategic
selection of positive and negative samples to create
a ranking dataset. Then, we train a ranker on this
ranking dataset that outputs a score reflecting
the consistency between a code snippet and its
generated summary. The highest-scoring summary
is then selected as the predicted summary.

To evaluate the effectiveness of the RBCoSum,
we conduct extensive experiments on the public
dataset XLCoST (Zhu et al., 2022). The results
demonstrate that RBCoSum outperforms baselines
with respect to three widely-used metrics (BLEU,
ROUGE-L, METEOR) and the metric SIM we in-
troduced. We also perform an extensive ablation
study on the COC and rethinking to investigate the
contribution of different factors. Additionally, we
investigate diverse selection strategies of positive
and negative summaries for building the ranking
data. Finally, we perform a human evaluation and
the results further confirm the effectiveness of our
approach.

2 Related Work

Code Summarization: Early studies consider
code as plain text and use the Seq2Seq networks
with attention(Iyer et al., 2016; Hu et al., 2018b;

Wei et al., 2019). Since plain text ignores the struc-
tural information in code, some works explore the
AST of code and attempt the tree-based and graph-
based structures for code summarization(Wan et al.,
2018; Shi et al., 2021; Choi et al., 2021; Wang et al.,
2021a; Wu et al., 2021). More recently, with the
widely used pre-training paradigm in NLP, more
source code pre-training models show notable per-
formance on code summarization. Typically, code
LLMs can be categorized into three architectures:
encoder-only models (Feng et al., 2020; Guo et al.,
2020), decoder-only models (Nijkamp et al., 2022;
Fried et al., 2022; Li et al., 2023; Roziere et al.,
2023), and encoder-decoder models (Ahmad et al.,
2021; Wang et al., 2021b, 2023). In contrast to
prior approaches that concentrate on learning a
mapping directly from code to summaries while
neglecting the potentially substantial heterogeneity
differences between code and summary, we pro-
pose leveraging COC to reduce the gap between
code and summary in code summarization.
Reranking: Previous works have shown the ef-

fectiveness of learned rankers for sample filtering
in many domains. (Yin and Neubig, 2019) pro-
pose a simple reranker powered by reconstruction
and matching features for neural semantic parsing.
(Shen et al., 2021) introduce a model to distinguish
between correct and incorrect expressions for Math
Word Problems. (Cobbe et al., 2021) proposed
to train a verifier to rank solutions sampled from
fine-tuned language models for Math QA. (Zhang
et al., 2023) reranking uses prompting to obtain
a Reviewer model, which checks the generated
codes against the language instruction. (Shi et al.,
2022) select output programs from a generated set
of summaries by marginalizing over program im-
plementations that share the same semantics. (Inala
et al., 2022) propose a fault-aware neural ranker
that can predict the correctness of a sampled code
without executing it. It is trained to predict dif-
ferent kinds of execution information such as the
compile/runtime error type. Unlike previous works,
we focus on automatic code summarization and pro-
pose leveraging code LLMs to construct positive
and negative summaries for training the ranker.

3 RBCoSum

Figure 1 shows the overview of the RBCoSum
framework. It comprises two phases: SCOC (Sum-
marization with Chain Of Comments) and Rethink-
ing. The SCOC phase aims to mitigate the gap

3045

Figure 1: The illustration of our proposed framework RBCoSum.

between code and summaries by integrating the
Chain Of Comments (COC). The role of the re-
thinking phase is to act as a re-checker, selecting
the summary that best matches the code. In this
phase, we first sample the summarizer to generate
multiple candidate summaries. Then, a well-trained
ranker is adopted to score each candidate summary.
The candidate summary with the highest score is
selected as the model’s predicted summary.

3.1 SCOC

We first introduce how we obtain the COC for code
snippets, then discuss the integration of code snip-
pets and COC for fine-tuning the summarizer.

3.1.1 COC generation

Recent advancements in LLMs have demonstrated
promising capabilities in understanding intent
and following instructions, leading to many
investigations utilizing these models as a powerful
tool to construct and generate data (Yu et al., 2023;
Gunasekar et al., 2023). In light of this, we employ
the GPT-3.5-Turbo as a tool to generate COC. The
prompt for obtaining the COC is as follows:
Instruction:"Your goal is to act as a comment
generator to produce accurate and clear comment
text for each code block within a given code
snippet. The requirement is as follows:
1. Provide comments in list format.
2. Ensure the generated comments effectively
capture the essence of the code block.
Code Snippet:
<fill the code snippet here>

3.1.2 Summarization with COC
Based on the constructed COC, we can obtain
a new COC-incorporated code summarization
dataset Dcs, with each instance represented
as a code-COC-summary triplet (x, c, y). We
then assemble the code snippet and COC into a
promptcs for fine-tuning the summarizer. The
input for the summarizer is as follows: "Code
Snippet:\n + cs_str + \n + Chain of Comments: +
coc_str + \n + So the summary for the code snippet
is: + \n", where cs_str and coc_str represent the
raw text of code snippet and COC, respectively.
We employ the CodeT5-large (Wang et al., 2021b)
and Starcoderbase (Li et al., 2023) model as the
backbone of the summarizer and fine-tune on the
Dcs with minimized negative log-likelihood as the
loss function:

Lcs(θ) = −E(x,c,y)∈Dcs
[log p(y|x, c, promptcs; θ]

(1)

3.2 Rethinking

3.2.1 Inference
By sampling from the summarizer, we could obtain
multiple candidate summaries. To determine
which is the best summary for the code snippet,
we propose a rethinking process to learn a scoring
model (ranker) r(x, y

′
) that measures how likely

the candidate summary y
′

is the most suitable for
the code snippet x. Specifically, during inference,
the ranker r(x, y

′
) outputs the highest-score

3046

summary y
′
rank among the set of candidate

summaries S:

y′rank = argmax
y′∈S

r(x, y′), (2)

3.2.2 Ranking Data Creation
First, we collect existing code summarization
datasets D, which comprises multiple subsets
{D1, Di, ..., DI}. We also obtain multiple code
LLMs M , including {M1,Mj , ...,MJ}. Each in-
stance in a subset Di is represented as a pair (x, y),
where x is the code snippet, and y is the reference
summary. For each code LLM, we use prompts
that are in line with its prompt template in pre-
training for better performance. Appendix A shows
a prompt example for each model. Then, We sam-
ple repetitively from the code LLMs with prompt
and temperature T to obtain a summary set y

′
1:N

for the code snippet x. Considering the potential
for sampling the same summary, we do a dedu-
plication within y

′
1:N , resulting in a deduplicated

summary set S = y
′
1:K . Subsequently, we com-

pute the score of BLEU, ROUGE-L, METEOR,
and SIM1 metrics for each summary and use the
mean score value of these four metrics as the rank-
ing metric to represent the quality of summaries
and rank them from high to low. We consider the
top λ% of summaries as positive samples with the
ranking label of v=1, and the others as negative
samples with the ranking label of v=0. This way,
for each code snippet x, we create a set of train-
ing examples {(x, y′

k, vk)|y
′
k ∈ S}. Note that we

also append (x, y, v = 1) as an additional training
example. Following the above process on all in-
stances, we obtain a ranking dataset Drank with
1,390,007 instances2. For ease of comprehension,
Appendix A outlines the detailed construction pro-
cess of the ranking dataset and shows the distribu-
tion of Drank.

3.2.3 Ranker
We add a classification head on the [CLS] special
token of CodeBERT (Feng et al., 2020) to serve
as our ranker and further fine-tune the ranker
with Drank. Following CodeBERT that inputs
a concatenation of two segments with a special
separator token [SEP], we use the input of [CLS];
<summary_str >; [SEP]; <code_str>; [EOS]. One
segment <summary_str> represents the text of the

1please refer to section 4.1 for more detail of SIM metric.
2https://github.com/galbya/RBCoSum

summary, and <code_str> is the text of the code
snippet. The last layer representation of [CLS]
token is taken as input to the classification head for
predicting the score:

dcls = CodeBERT (x; y
′
), (3)

r(v|x, y′
) = dclsW1 + b1, (4)

3.2.4 Learning Objective
Given the training sample {(x, y′

k, vk)|y
′
k ∈ S}

for each input x in Drank, we formulate the loss
for input x with the cross-entropy loss between
classifier output and labels, normalized by the
number of summaries:

Lθ(x, S) = − 1

|S|
∑
y
′
k∈S

log r(vk|x, y
′
k) (5)

4 Experimental Setup

4.1 Datasets and Metrics

XLCoST (Zhu et al., 2022) is a dataset containing
fine-grained parallel data in commonly used pro-
gramming languages and summaries. We conduct
experiments on two subsets of XLCoST datasets:
XLCoST-Java and XLCoST-Python. We follow
the divided datasets in previous work (Zhu et al.,
2022) where a proportion of training, validation,
and testing sets are well-defined. The statistics
of these two datasets are listed in Appendix B.
To evaluate the quality of generated summaries,
we adopt three widely-used metrics, namely
BLEU(Papineni et al., 2002), ROUGE-L(Lin,
2004), and METEOR(Lavie and Agarwal, 2007).
Furthermore, considering these metrics mainly
check the grammar consistency of token sequences,
without providing a semantic evaluation, we also
introduce another metric-SIM score, in which
we utilize sentence-transformers (Reimers and
Gurevych, 2019) to encode both the predicted
summary and reference summary into distributed
representations and compute the cosine similarity
between them to obtain the SIM score.

4.2 Implementation Details

To fine-tune the summarizer, we truncate the con-
catenation of code and COC up to 512 tokens. We
adopt AdamW (Loshchilov and Hutter, 2018) with
a learning rate of 2e-5 and weight decay of 0.01 to
update the model parameters for 10 epochs. The

https://github.com/galbya/RBCoSum

3047

Methods
XLCoST-Java XLCoST-Python

BLEU ROUGE-L METEOR SIM AVG BLEU ROUGE-L METEOR SIM AVG
Seq2Seq 12.85 20.28 16.15 38.33 21.90 13.62 20.54 17.98 42.01 23.54

Vanilla Transformer 13.70 23.59 20.31 42.38 25.00 14.07 23.44 20.35 43.07 25.23
NeuralCodeSum 12.95 18.27 14.79 38.40 21.10 13.68 22.15 18.70 43.58 24.53

GypSum 16.28 28.17 25.60 52.95 30.75 18.17 31.02 28.61 56.52 33.58
*Incoder 6.55 2.29 2.09 9.40 5.08 1.68 23.56 20.24 49.91 23.84

*StarCoder 10.58 8.80 8.33 15.32 10.76 2.11 18.13 16.26 39.05 18.89
*Code Llama-Base 10.23 16.07 19.20 37.76 20.81 18.10 21.69 21.93 46.10 26.96

*Code Llama-Instruct 5.54 13.64 22.05 43.47 21.17 4.82 15.44 22.69 52.17 23.78
*Deepseek-Coder-Base 19.02 34.04 36.28 58.66 37.00 13.53 23.22 22.04 47.35 26.53

*Deepseek-Coder-Instruct 10.27 23.61 31.66 53.56 29.78 10.11 23.78 31.31 56.27 30.37
*GPT-3.5-Turbo 12.58 25.50 30.28 59.16 31.88 13.03 25.80 29.88 59.04 31.94

CodeT5 20.77 36.68 34.16 64.98 39.15 20.16 36.17 32.46 63.41 38.05
CodeT5+COC 21.92 38.60 34.62 65.27 40.10 20.89 36.74 33.65 65.31 39.15

CodeT5+rethinking 20.85 37.22 34.70 66.40 39.80 20.39 36.46 33.93 65.67 39.11
CodeT5+COC+rethinking 22.01 39.14 36.37 67.37 41.22†† 21.52 37.91 35.66 67.45 40.64†

Starcoderbase 20.30 35.87 32.96 63.02 38.04 19.49 35.69 31.62 63.24 37.52
Starcoderbase+COC 21.18 37.54 34.91 65.02 39.66 20.18 35.78 32.24 62.77 37.74

Starcoderbase+rethinking 20.99 37.57 35.51 66.46 40.13 19.96 36.43 33.29 65.13 38.70
Starcoderbase+COC+rethinking 21.55 38.47 36.76 67.42 41.05† 20.16 36.55 34.52 65.66 38.97

Table 1: The comparative results on two datasets. AVG denotes the average score of four metrics. † denote 0.001
< p < 0.01 and †† denote 0.0001 < p < 0.001 in statistical significance testing.

batch size is set to 8, and 16 for Starcoderbase,
and CodeT5-large, respectively. For the ranking
dataset creation, we adopt nucleus sampling (Holtz-
man et al., 2019) to sample N=30 summaries for
each code snippet from all code LLMs with a tem-
perature T of 0.5, top-p value of 0.95, and max
generated tokens of 100. We set λ=20 to obtain
positive and negative summaries. For rethinking
inference, we sample |S|=30 candidate summaries
with T=0.5 from the summarizer. We fine-tune the
ranker for 20 epochs with a learning rate of 1e-5.
To alleviate instability in the model training and
temperature sampling, we conduct all experiments
three times and report the average results.

4.3 Baselines

We perform a performance comparison across
a range from traditional methods to the re-
cent code LLMs: Seq2Seq(Bahdanau et al.,
2015), Vanilla Transformer(Vaswani et al.,
2017), NeuralCodeSum(Ahmad et al., 2020),
GypSum(Wang et al., 2022), CodeT5(Wang
et al., 2021b), Starcoderbase(Li et al., 2023),
*Incoder(Fried et al., 2022), *StarCoder(Li
et al., 2023), *Code Llama-Base(Roziere et al.,
2023), *Deepseek-Coder-Base(Guo et al., 2024),
*Deepseek-Coder-Instruct(Guo et al., 2024),
*GPT-3.5-Turbo(Ouyang et al., 2022). Notably,
for the baselines marked with a started *, due
to the limitation of computation resources, we
employ the zero-shot setting(Brown et al., 2020) to
generate summaries without training. Please refer

to Appendix C for the details on all baselines.

5 Results Discussion

5.1 Overall Comparison

The overall results are presented in Table 1.
CodeT5 performs better compared to Starcoder-
base across all evaluation metrics. This may be
attributed to the inclusion of a dual-modal genera-
tion task during CodeT5’s pre-training phase which
facilitates the connection between pre-training and
code summarization. We also observe that code
LLMs with the zero-shot setting generally under-
perform fine-tuned code LLMs like CodeT5 possi-
bly due to the lack of dataset knowledge. However,
some models exhibit remarkable zero-shot code
summarization capabilities (Deepseek-Coder-Base
vs GypSum). GPT-3.5-Turbo achieves the best per-
formance on XLCoST-Python and demonstrates a
more balanced performance across two datasets.

With the incorporation of COC, there is a com-
prehensive performance boost across all datasets
(CodeT5+COC vs CodeT5). The results prove
the effectiveness of COC. In Appendix D, we
further show that COC enhances the code LLMs
without fine-tuning in code summarization. We
also compare base code LLMs with models that
are equipped with rethinking (CodeT5+rethinking,
Starcoderbase+rethinking). We find that the re-
thinking process improves all the metrics for all
base code LLMs despite their different sizes. This
indicates that the rethinking process can accurately
select the summary that is consistent with the

3048

Methods
XLCoST-Java XLCoST-Python

BLEU ROUGE-L METEOR SIM AVG BLEU ROUGE-L METEOR SIM AVG
CodeT5 20.77 36.68 34.16 64.98 39.15 20.16 36.17 32.46 63.41 38.05

CodeT5+COC 21.92 38.60 34.62 65.27 40.10 20.89 36.74 33.65 65.31 39.15
w/ 25% COC 21.73 38.35 33.99 64.65 39.68 20.52 36.35 33.35 64.44 38.66
w/ 50% COC 21.93 38.43 34.37 64.93 39.92 20.77 36.59 33.33 64.66 38.83
w/ 75% COC 21.85 38.81 34.59 64.99 40.06 21.03 36.80 33.77 65.02 39.15

w/ 25% shuffle 22.01 38.62 34.53 65.46 40.15 20.82 36.77 33.86 65.13 39.14
w/ 50% shuffle 22.13 38.57 34.74 65.36 40.20 20.71 36.40 33.59 65.04 38.93
w/ 75% shuffle 22.22 38.74 34.60 65.36 40.23 20.61 36.54 33.51 64.98 38.91

w/ 100% shuffle 21.94 38.56 34.48 65.34 40.08 20.91 36.64 33.72 64.93 39.05
w/ 25% replace 21.41 37.82 33.86 63.73 39.21 20.42 36.04 33.09 63.70 38.31
w/ 50% replace 21.18 37.20 33.43 62.68 38.62 19.67 35.31 32.13 62.25 37.34
w/ 75% replace 20.87 36.38 32.64 61.33 37.80 19.48 34.74 31.41 61.44 36.77
w/ 100% replace 19.99 34.99 31.52 58.79 36.32 18.98 33.78 30.39 59.36 35.63

Table 2: Contribution Investigation of COC.

code’s functionality. Another interesting obser-
vation is that the performance gains on the SIM
metric are more notable. This is probably because
the SIM metric carries more weight in the ranking
metric comparing other metrics.3

We build the CodeT5+COC+rethinking and Star-
coderbase+COC+rethinking to understand the ef-
fect when both COC and rethinking are integrated,
which serve as the best version of our approach, see
the last two lines in Table 1. As expected, we can
see that the combination of COC and rethinking
further improves the performance on all metrics
for both datasets. This suggests the ability of the
summarizer to benefit not only from COC but also
from rethinking.

5.2 Contribution Investigation of COC

The specific aspects of the COC that lead to im-
proved performance remain unclear. Therefore, we
perform experiments on the COC from three as-
pects: quantity, order, and quality to understand
their impact. To investigate the impact of COC
quantity, we feed the summarizer with only a spe-
cific proportion of sentences in COC. For instance,
w/ 25% COC denotes that we only use the initial
25% of sentences from the full COC. For the order
aspect, we randomly select a certain percentage
of sentences from the COC and shuffle these sen-
tences while keeping the rest unchanged. For ex-
ample, "w/ 25% shuffle" represents the random se-
lection of 25% of sentences in COC, and the order
of these sentences is shuffled, while the remaining
sentences maintain their original order. We control
the quality of COC by changing the semantics of

3We hypothesize assigning different weights to different
metrics may be more appropriate. We call for future work.

some sentences in the full COC. In particular, we
select a certain proportion of sentences and replace
them with an equivalent number of sentences from
the test set COC pool (randomly chosen, sentences
may come from the same COC or different COCs).
In Appendix E, we further discuss the direct im-
pact of COC quality on the performance of code
summarization.

Table 2 shows several interesting results. First,
we find that as the number of retained sentences in
the COC increases, the AVG performance of the
model slightly improves (w/ 50% COC vs. w/ 25%
COC). This suggests that with more detailed de-
scriptions from the COC, the model can better un-
derstand the code’s functionality, further validating
the effectiveness of introducing COC. Moreover,
performance gains are minimal when the quantity
is up 75%. This indicates that a COC containing
75% of the information may already cover all the
important details of the code.

Additionally, an interesting finding is that in the
XLCoST-Java dataset, the performance of w/25%
random, w/50% random, and w75% random is very
similar. This indicates that the summarizer is not
sensitive to the sentence order in the COC, as long
as the overall semantics remain consistent. The
model retains its ability to extract useful informa-
tion even from the disordered COC. Another find-
ing is that the performance significantly declines
as the replacement ratio of sentences in the COC
increases. This demonstrates the importance of
introducing high-quality COC. When the replace-
ment ratio exceeds 50% in both datasets, the AVG
performance becomes worse than that of CodeT5.
This suggests that the model can understand and
learn useful information from the COC. But, at the

3049

Figure 2: (a) AVG performance as a function of the num-
ber of samples (|S|) for various temperature settings. (b)
Ceiling AVG performance against the |S| with various
temperatures. (c) Comparison of AVG performance of
ranker with varying model sizes on various ranking data
sizes.

same time, wrong COCs can mislead the model
into generating incorrect summaries.

5.3 Ablation Study of Rethinking

To investigate the impact of rethinking, we evalu-
ate it based on sampling temperature (T), number
of samples (|S|), ranking dataset size, and ranker
model size. Figure 2 (a) shows AVG performance
against |S| and T . At T=0.2, AVG performance im-
proves with more samples, but at T=0.5 and T=0.8,
performance declines as sampling size increases.
This suggests that low temperatures yield determin-
istic results with limited performance gains from
more samples, while higher temperatures introduce
diversity but also more negative samples, which
can confuse the ranker and reduce performance.

Furthermore, to explore the ceiling performance
of the ranker, we compute the maximum AVG
score within the candidate summary set and av-
erage it across the entire test set to establish a ceil-
ing performance (the performance ceiling when
the ranker could rank the best candidate summary
for all code snippets and we can access to refer-
ence summaries). Figure 2 (b) presents findings
that there are significant performance gains at high
temperatures and large sample sizes for ceiling per-
formance, with higher temperatures yielding larger
improvements. This suggests our trained ranker
model lacks robustness at high temperatures. En-
hancing its performance at high temperatures could
mitigate the performance degradation seen in Fig-

Figure 3: AVG performance against λ for StarCoder-
base+rethinking on XLCoST-Java dataset.

ure 2 (a) at high temperatures. This calls for future
improvements.

To explore the impact of ranking dataset size and
model size of ranker, we randomly sampled differ-
ent proportions (from 25% to 100% with 25% in-
crements) samples from the ranking data Drank to
train rankers with different parameter sizes ranging
from 60m to 770m. We can draw the following con-
clusions from Figure 2: 1) As the size of the rank-
ing dataset increases, the performance shows im-
provement and seems not yet saturated, indicating
that increasing the data size is an effective approach
to enhancing the ranker’s ability to recognize high-
quality summaries. 2) Larger-size rankers benefit
more from larger ranking data sizes (CodeT5-large
obtains more improvement than CodeT5-small).

5.4 The Study of Strategies for Positive and
Negative Sample Selection

We select the top 20% (λ=20) of these summaries
as positive summaries and others as negative sum-
maries. In this section, we examine the reason
behind this choice and explore the alternative se-
lection strategies. In general, there are two types
of selection strategies: 1) Reference-based selec-
tion, where only the reference summary is posi-
tive, and varying proportions of the last-λ% gener-
ated summaries are negative; 2) Rank-based se-
lection, where we select the top λ% generated
summaries as positive summaries and the others
as negative. As can be seen from Figure 3 (a),
for the Reference-based selection, the performance
generally increases with the addition of more rele-
vant summaries, but it drops sharply when reach-
ing 80%. This suggests that the top 20% of sum-

3050

maries may be very similar to the reference sum-
mary, and it is unreasonable to treat them as nega-
tive summaries. Rank-based selection (Figure 3
(b)) shows that using higher-ranked summaries
as positives boosts performance, peaking at 20%,
but drops sharply after introducing more irrelevant
summaries as positive summaries. This suggests
that introducing the top 20% summaries as negative
samples can hinder the model’s ability to identify
the quality of summaries.

5.5 Human evaluation
The ultimate goal of the automatic code summa-
rization model is to help developers understand the
functionality of the code. Therefore, in this section,
we conduct a human evaluation to assess the gen-
erated summaries. Following(Li et al., 2021), we
first establish four criteria: 1) Naturalness: gram-
maticality and fluency of the summary. 2) Informa-
tiveness: the amount of content carried over from
the input code snippets to the summary, ignoring
fluency. 3) Usefulness: how useful the summary is
for developers in understanding code. 4) Truthful-
ness: We propose this new criterion for automatic
code summarization to measure the hallucination
of code LLMs considering the prevalence of hallu-
cination in language models.

We randomly select 100 code snippets from the
test set of each dataset, forming a total of 200
code snippets. Subsequently, we employ three
models—Starcoderbase, Starcoderbase+COC, and
Starcoderbase+COC+rethinking—to generate sum-
maries for each code snippet. We then assemble a
team of non-co-authors evaluators, including two
Ph.D. students and two master students in software
engineering with 2-5 years of Python and Java pro-
gramming experience. Each evaluator is invited
to score the summaries on a scale of 0 to 4 from
four established criteria. Note that we show eval-
uators summaries generated by three models at a
time, making it easier and faster for evaluators to
compare the gap among different summaries and
score more fairly. To mitigate subjective variations
among evaluators, the final score for each model
is the average of all evaluators’ scores. Results are
shown in Figure 4.

We find that Starcoderbase+COC consistently
outperforms Starcoderbase across all criteria, with
notable improvements in Informativeness and Use-
fulness. This reveals that the introduction of COC
primarily enhances the Informativeness and Useful-
ness and the code summarization model can learn

Figure 4: Radar plot for human evaluation.

crucial details from COC to enrich the content of
summaries. Additionally, COC slightly improves
Truthfulness, likely due to its factual descriptions.
Introducing COC into code LLMs may be a promis-
ing method for mitigating the hallucination of code
LLMs for code summarization. Furthermore, com-
pared to the Starcoderbase+COC, the Starcoder-
base+COC+rethinking shows performance gains
in Informativeness and Useful, with minimal im-
provement in Naturalness and Truthfulness. This
is likely due to the stronger correlation between
our ranking metric and Informativeness and Useful
criteria.

6 More Examaples for Case Study

Figure 5(a) and Figure 5(b) show two cases of gen-
erated summaries under three settings: CodeT5,
CodeT5+COC, and CodeT5+COC+rethinking. In
these two cases, CodeT5 struggles to capture the
key information in the code, while CodeT5+COC
and CodeT5+COC+rethinking successfully iden-
tify the essential details. For instance, in Fig-
ure 5(a), the reference summary highlights two
key parts: "Smallest integer greater than n" and
"digit m exactly k times". The summary gener-
ated by CodeT5 misunderstands "k times" as "k
digits" and fails to mention the important detail
"Smallest integer greater than n". On the other
hand, CodeT5+COC does include these two key
information but both are incorrect. First, the code
aims to find a number "greater than n", rather
than "equal to n". Second, the goal is to find
an integer that "contains" the number m exactly k
times, not the one that "does not contain" it. These

3051

Figure 5: Three cases from the XLCoST-Python benchmark.

cases demonstrate that while COC can enhance the
amount of key information in the summary, it may
also introduce errors. Compared to CodeT5+COC,
CodeT5+COC+rethinking filters out these two er-
roneous pieces of information, ensuring a more ac-
curate summary. Figure 5(c) presents a case where
all three settings generate correct summaries. It can
be observed that the code in this case is relatively
simple and does not involve complex terms like
Fibonacci Numbers in Figure 5(b). In such cases,
there may be no need to introduce COC. Therefore,
we can only activate COC in more complex code
to provide additional informative context, which
helps reduce the cost of COC generation.

7 Conclusions And Future Work

In this paper, we introduce the RBCoSum frame-
work for automatic code summarization. It reduces
the substantial gap between code and summaries
by incorporating the Chain of Comments (COC)
into the model. Moreover, we propose a rethinking
process that utilizes a learned ranker as an explicit
mechanism for re-checking the alignment between
the generated summary and the code. Also, we pro-
pose to leverage code LLMs to build positive and
negative samples for training the ranker. The ex-
tensive experiments show that RBCoSum achieves
consistent and strong improvement on the XLCoST-
Java and XLCoST-Python datasets. In the future,
we will explore multiple finer-grained dimensions
for the rethinking process rather than solely relying
on the digital score.

8 Limitations

Although we validate the effectiveness of RBCo-
Sum in both Java and Python programming lan-
guages, including additional programming lan-
guages would more clearly demonstrate that the
proposed method is language-agnostic.

Acknowledgements

This research is supported by the Science and Tech-
nology Planning Project of Guangdong Province
(2020B0101100002), the National Natural Sci-
ence Foundation of China (62076100, 62476097,
62402185), the Fundamental Research Funds for
the Central Universities, South China Univer-
sity of Technology (x2rjD2240100), Guangdong
Provincial Fund for Basic and Applied Basic Re-
search—Regional Joint Fund Project (Key Project)
(2023B1515120078), Guangdong Provincial Nat-
ural Science Foundation for Outstanding Youth
Team Project (2024B1515040010), the China Com-
puter Federation (CCF)-Zhipu AI Large Model
Fund.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings

3052

of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2018. code2seq: Generating sequences from
structured representations of code. In International
Conference on Learning Representations.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-
Hyong Lee. 2021. Learning sequential and structural
information for source code summarization. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 2842–2851.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1536–1547.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
In International Conference on Learning Representa-
tions.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In 2018 IEEE/ACM
26th International Conference on Program Compre-
hension (ICPC), pages 200–20010.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred api knowledge. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, pages 2269–2275.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, An-
dres Codas, Mark Encarnación, Shuvendu K Lahiri,
Madanlal Musuvathi, and Jianfeng Gao. 2022. Fault-
aware neural code rankers. In Advances in Neural
Information Processing Systems.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2073–2083.

Denis Kocetkov, Raymond Li, LI Jia, Chenghao Mou,
Yacine Jernite, Margaret Mitchell, Carlos Muñoz Fer-
randis, Sean Hughes, Thomas Wolf, Dzmitry Bah-
danau, et al. 2022. The stack: 3 tb of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 228–231.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th international conference on program com-
prehension, pages 184–195.

Jia Allen Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and
Zhi Jin. 2021. Editsum: A retrieve-and-edit frame-
work for source code summarization. In 2021 36th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 155–166.

Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis
Kocetkov, Chenghao Mou, Marc Marone, Christo-
pher Akiki, LI Jia, Jenny Chim, Qian Liu, et al. 2023.
Starcoder: may the source be with you! Transactions
on Machine Learning Research.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

https://aclanthology.org/2021.findings-acl.251
https://aclanthology.org/2021.findings-acl.251
https://aclanthology.org/P16-1195
https://aclanthology.org/P16-1195

3053

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Hao Liu, Yanlin Wang, Zhao Wei, Yong Xu, Juhong
Wang, Hui Li, and Rongrong Ji. 2023. Refbert: A
two-stage pre-trained framework for automatic re-
name refactoring. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, pages 740–752.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2020. Retrieval-augmented generation
for code summarization via hybrid gnn. In Interna-
tional Conference on Learning Representations.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Antonio Valerio Miceli-Barone and Rico Sennrich.
2017. A parallel corpus of python functions and
documentation strings for automated code documen-
tation and code generation. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 314–319.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2269–2279.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
Cast: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4053–4062.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I Wang. 2022. Natural lan-
guage to code translation with execution. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3533–3546.

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. 2019.
Automatic source code summarization with extended
tree-lstm. In 2019 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of the
33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 397–407.

Yanlin Wang, Ensheng Shi, Lun Du, Xiaodi Yang, Yux-
uan Hu, Shi Han, Hongyu Zhang, and Dongmei
Zhang. 2021a. Cocosum: Contextual code summa-
rization with multi-relational graph neural network.
arXiv preprint arXiv:2107.01933.

Yu Wang, Yu Dong, Xuesong Lu, and Aoying Zhou.
2022. Gypsum: learning hybrid representations for
code summarization. In Proceedings of the 30th
IEEE/ACM International Conference on Program
Comprehension, pages 12–23.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven Hoi. 2023.

https://aclanthology.org/2021.emnlp-main.332
https://aclanthology.org/2021.emnlp-main.332
https://aclanthology.org/2021.emnlp-main.332
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206

3054

Codet5+: Open code large language models for code
understanding and generation. In The 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021b. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8696–8708.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summariza-
tion. In Advances in Neural Information Processing
Systems.

Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code
summarization with structure-induced transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1078–1090.

Pengcheng Yin and Graham Neubig. 2019. Reranking
for neural semantic parsing. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4553–4559.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. arXiv preprint arXiv:2312.14187.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
783–794.

Tianyi Zhang, Tao Yu, Tatsunori B Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida I Wang.
2023. Coder reviewer reranking for code generation.
In Proceedings of the 40th International Conference
on Machine Learning, pages 41832–41846.

Yu Zhou, Juanjuan Shen, Xiaoqing Zhang, Wenhua
Yang, Tingting Han, and Taolue Chen. 2022. Au-
tomatic source code summarization with graph at-
tention networks. Journal of Systems and Software,
188:111257.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence. In Deep Learning for Code Workshop.

A Ranking Data Creation Procedure and
Statistics

Algorithm 1 outlines the detailed construction
process of the ranking dataset. Table 4 shows the
distribution of the ranking dataset obtained by four
different code LLMs (StarCoder(Li et al., 2023),

Model Prompt example

StarCoder
"<fim_prefix>def hello_world():\n"""
<fim_suffix>""" \n\tprint("hello world!")
<fim_middle>"

Code Llama
"<PRE>def hello_world():\n\t""" <SUF>"""\n\t
print("hello world!") <MID>"

CodeT5+ "def hello_world():\n\tprint("hello world!")

Incoder
"def hello_world():\n\t""" <|mask:0|>"""\n\t
print("hello world!")<|mask:1|><|mask:0|>

Table 3: Prompt example for each code LLM.

Algorithm 1 The creation procedure of ranking
dataset

Input: Code summarization datasets D =
{D1, Di, ..., DI}, and code LLMs M =
{M1,Mj , ...,MJ}
Output: Ranking dataset Drank

for each instance (x, y) in Di do
for each model Mj in M do

Obtain a set of K unique candidate sum-
maries y′1:K , by first sampling N sum-
maries y′1:N from Mj and then removing
all duplicated summaries.
Compute the ranking metric based on y and
each y′ and sort y′1:K with the ranking met-
ric from highest to lowest.
for each candidate summary y′k in y′1:K do

Get the binary ranking label for y′k with
the following defined rules (λ ∈ (0, 1]
and we perform an upward rounding of
the value of λK):

vk =

{
1 if k ∈ [1, λK⌉]
0 if k ∈ [λK,K]

Append the ranking training samples
{(x, y′k, vk)|y′k ∈ S} for code snippet
x to the ranking dataset Drank.

end for
end for

end for

Code Llama(Roziere et al., 2023), CodeT5+ (Wang
et al., 2023) and Incoder(Fried et al., 2022)) and
four code summarization datasets (CodeSearch-
Net(Husain et al., 2019), XLCoST-Java, XLCoST-
Python, and code-docstring-corpus(Miceli-Barone
and Sennrich, 2017). For these four models, we
use the prompt aligned with the prompt format em-
ployed during model pre-training for each model
to optimal summary generation. Table 3 shows a
prompt example for each model. We will open-

https://aclanthology.org/2021.findings-acl.93
https://aclanthology.org/2021.findings-acl.93

3055

Dataset
StarCoder Code Llama CodeT5+ Incoder

All
Train Valid Train Valid Train Valid Train Valid

CodeSearchNet 157,147 6,332 77,665 4,118 70,465 4,005 80,434 4,275 404,468
XLCoST-Java 195,045 9,317 94,970 4,176 98,323 4,349 85,911 3,798 495,889

XLCoST-Python 187,110 8,614 68,285 3,155 31,655 1,356 35,304 1,595 337,074
Code-docstring-corpus 28,516 1,510 58,787 3,103 27,435 1,454 30,172 1,599 152,576

All 567,845 25,773 299,707 14,552 227,878 11,164 231,821 11,267 1,390,007

Table 4: The distribution of created ranking dataset using four code LLMs and four code summarization datasets.
We construct ranking data for XLCoST-Java and XLCoST-Python using only the code in the training set.

Dataset PL # Training # Validation # Test Lines per code Tokens per code Tokens per summary
XLCoST-Java Java 9,623 494 911 3.71 227.09 10.67
XLCoST-Python Python 9,263 472 887 3.82 215.29 10.70

Table 5: Statistics of XLCoST-Java and XLCoST-Python datasets.

source our source code and the collected ranking
dataset to the community and this large ranking
dataset can serve as a valuable pre-training re-
source.

B Dataset Statistics

The statistics of XLCoST-Java and XLCoST-
Python datasets are listed in Table 5

C Baselines

• Seq2Seq (Bahdanau et al., 2015) uses an
LSTM-based encoder-decoder architecture
with an attention mechanism to learn from
the code and generate summaries.

• Vanilla Transformer (Vaswani et al., 2017)
adopts a Transformer encoder-decoder archi-
tecture with 6 layers of the encoder and 6
layers of the decoder. We directly tune it from
scratch.

• NeuralCodeSum (Ahmad et al., 2020) takes
the Transformer structure and replaces the
original positional encoding with the relative
positional encoding, which encodes the pair-
wise relationships between the tokens in the
source code text.

• GypSum (Wang et al., 2022) introduces par-
ticular edges related to the control flow of a
code snippet into the abstract syntax tree for
graph construction and designs two encoders
to learn from the graph and the token sequence
of source code, respectively.

• CodeT5 (Wang et al., 2021b) builds on an
encoder-decoder Transformer model with the

same architecture as T5 (Raffel et al., 2020)
and makes better use of the code semantics
conveyed from developer-assigned identifiers.
We directly tune CodeT5-large with the train-
ing set for code summarization

• Starcoderbase (Li et al., 2023) is an ensem-
ble of code LLMs with parameter sizes rang-
ing from 1B to 7B. It is trained on 80+ pro-
gramming languages from The Stack (Ko-
cetkov et al., 2022), utilizing the fill-in-the-
middle objective. We use the Starcoderbase
model with 1B parameters and directly tune it
with the training set.

• *Incoder (Fried et al., 2022) is pre-trained
on a mixture of multilingual code data from
GitHub and StackOverflow posts, utilizing a
causal masking objective. This model pos-
sesses both code understanding and gener-
ation capabilities. We utilize the InCoder
model with 6.7B parameters.

• *StarCoder (Li et al., 2023) is a 15.5B param-
eter model with an 8K window size and FIM
(Fill In the Middle, or infilling) capability. It
outperforms many previous open-source large
language models that support code summa-
rization.

• *Code Llama-Base (Roziere et al., 2023) is a
family of LLMs for code generation and infill-
ing, ranging in scale from 7B to 34B param-
eters. All Code Llama models are initialized
with Llama 2 (Touvron et al., 2023) model
weights and trained on 500B tokens from a
code-heavy dataset. We use the 7B versions
of Code Llama from the Hugging Face.

3056

Models
XLCoST-Java XLCoST-Python

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR
Code Llama-Instruct 5.54 13.64 22.05 4.82 15.44 22.69

Code Llama-Instruct+COC 8.78 18.69 24.31 8.36 19.80 24.79
DeepSeek Coder-Instruct 10.27 23.61 31.66 10.11 23.78 31.31

DeepSeek Coder-Instruct+COC 11.23 25.78 31.76 11.72 26.62 31.83
GPT-3.5-Turbo 12.58 25.50 30.28 13.03 25.80 29.88

GPT-3.5-Turbo + COC 13.11 26.33 31.33 14.42 27.29 31.18

Table 6: Code Summarization performance of LLMs+COC.

Models COC score BLEU ROUGE-L METEOR
Code Llama-Instruct 2.05 20.1 35.38 32.43
DeepSeek V2-Chat 2.7 21.34 37.22 34.62
GPT-3.5-Turbo 2.85 21.92 38.6 34.75

Table 7: Investigation of summarization performance
against the COC quality on XLCoST-Java.

• *Code Llama-Instruct (Roziere et al., 2023)
The Code Llama-Instruct models are based on
Code Llama and fine-tuned with an additional
5B tokens to better follow human instructions.
We also use the 7B version of Code Llama-
Instruct.

• *Deepseek-Coder-Base (Guo et al., 2024) is
composed of a series of code LLMs. Each
model is pre-trained on 2T tokens from
scratch and employs an extra fill-in-the-blank
task to support infilling abilities. We use the
6.7B version of Deepseek-Coder-Base.

• *Deepseek-Coder-Instruct (Guo et al.,
2024) is initialized from Deepseek-Coder-
Base and fine-tuned on 2B tokens of instruc-
tion data.

• *GPT-3.5-Turbo (Ouyang et al., 2022) has
been trained on a diverse range of internet
text, enabling it to demonstrate impressive
understanding and generation capabilities in
both language and code.

D LLMs+COC Without Fine-tuning

Section 5.1 demonstrates that COC enhances the
summarization performance of code LLMs under
fine-tuning settings. In this section, we explore the
effects of integrating COC into LLMs under zero-
shot prompting. Concretely, we prompt the instruct-
based LLMs to consider both the code and the COC
generated by GPT-3.5-Turbo with the following
input: "Examine the code snippet and its COC
(chain of comments). Provide a brief summary that

captures the essence of the code.
Code Snippet:<fill the code snippet here>
COC:<fill the COC here>

As shown in Table 6, we find that LLMs+COC
improve summarization performance by a large
margin. This enhancement not only underscores
the effectiveness of combining LLMs with COC
but also confirms the robustness of COC in general-
izing across different contexts. We also observe the
most significant improvement in the Code Llama-
Instruct model. This potentially suggests that the
COC provides more pronounced benefits to LLMs
with weaker baseline performance.

E Impact of COC Quality on
Summarization Performance

Due to the lack of labeled COC, it is challenging to
directly analyze the impact of COC quality on sum-
marization performance using conventional metrics
like BLEU. As a result, in Section 5.2, we manipu-
late the quality of COC indirectly by incorporating
irrelevant COC sentences. Here, we conduct a
manual evaluation of COC quality to investigate
its direct influence on the summarizer. We prompt
Code Llama-Instruct, DeepSeek V2-Chat(Liu et al.,
2024), and GPT-3.5-Turbo to generate COC, with
CodeT5+COC as the summarizer. Then, we ran-
domly select 100 instances and manually score the
generated COC based on accuracy criteria (to what
extent the COC accurately captures the essence of
code block) rated from 0 to 4. The COC score for
is obtained by averaging the accuracy scores across
all evaluators. As shown in Table 7, we observe a
strong correlation between the quality of the COC
and the performance of code summarization. This
demonstrates that our proposed COC is effective
and that introducing high-quality COC has a signif-
icantly positive impact on the performance of code
summarization.

	Introduction
	Related Work
	RBCoSum
	SCOC
	COC generation
	Summarization with COC

	Rethinking
	Inference
	Ranking Data Creation
	Ranker
	Learning Objective

	Experimental Setup
	Datasets and Metrics
	Implementation Details
	Baselines

	Results Discussion
	Overall Comparison
	Contribution Investigation of COC
	Ablation Study of Rethinking
	The Study of Strategies for Positive and Negative Sample Selection
	Human evaluation

	More Examaples for Case Study
	Conclusions And Future Work
	Limitations
	Ranking Data Creation Procedure and Statistics
	Dataset Statistics
	Baselines
	LLMs+COC Without Fine-tuning
	Impact of COC Quality on Summarization Performance

