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Abstract

Entity alignment (EA) aims to match identi-
cal entities across different knowledge graphs
(KGs). Graph neural network-based entity
alignment methods have achieved promising
results in Euclidean space. However, KGs
often contain complex local and hierarchical
structures, which are hard to represent in a
single space. In this paper, we propose a
novel method named as UniEA, which unifies
dual-space embedding to preserve the intrin-
sic structure of KGs. Specifically, we simul-
taneously learn graph structure embeddings in
both Euclidean and hyperbolic spaces to max-
imize the consistency between embeddings in
the two spaces. Moreover, we employ con-
trastive learning to mitigate the misalignment
issues caused by similar entities, where embed-
dings of similar neighboring entities become
too close. Extensive experiments on benchmark
datasets demonstrate that our method achieves
state-of-the-art performance in structure-based
EA methods. Our code is available at https:
//github.com/wonderCS1213/UniEA.

1 Introduction

Knowledge graphs (KGs) represent real-world
knowledge in the form of graphs. They typically
store data in the form of triples (h, r, t), where h
represents the head entity, r the relation, and t the
tail entity. The completeness of KGs affects tasks
such as knowledge-driven question answering (Sun
et al., 2024) and recommendation (Cai et al., 2023;
Liang et al., 2025). Hence, it is essential to inte-
grate multiple source KGs to build a comprehensive
KG. Entity alignment (EA) serves as an important
step in this process. It aims to identify the same
real-world entities referenced across different KGs.

Recently, GNN-based EA methods have
achieved significant progress(Xie et al., 2023;
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Figure 1: Knowledge graph with hierarchical structures.

Wang et al., 2024a; Sun et al., 2020b). However,
these methods encounter two main challenges: (1)
limited performance in handling complex hierarchi-
cal structures, and (2) overly similar embeddings
for neighboring entities.

As shown in Figure 1, this is a common type of
hierarchical structure found in KGs. Traditional
GNN-based EA methods often embed entities like
“Iron Man” and “America” directly according to
their Euclidean distance. Nevertheless, this fails
to reflect the true distance between these two en-
tities, leading to distortion in the graph structure
embeddings. The hyperbolic space can capture the
hierarchical structure of graphs (Wang et al., 2024b;
Liang et al., 2024b). The hyperbolic distance bet-
ter represents the true distance between the enti-
ties “Iron Man” and “America”. In addition, some
methods (Wang et al., 2018; Yu et al., 2021) cause
similar entities within the same KG to have embed-
dings that are too close in distance. For example,
entities like “Robert Downey Jr.” and “Chris Evans”
share multiple neighboring entities, such as “The
Avengers” and “America”. Shared neighbors enti-
ties often lead to over-smoothing, which results in
incorrect entity alignment. Current methods have
proposed various solutions to these two challenges

https://github.com/wonderCS1213/UniEA
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(Sun et al., 2020a; Guo et al., 2021; Xie et al., 2023;
Wang et al., 2024a). For instance, Sun et al. (2020a)
and Guo et al. (2021) explore EA task in hyperbolic
space embedding and demonstrate that hyperbolic
space is more effective for learning the hierarchical
structure of graphs, which aids in entity alignment.
Xie et al. (2023) alleviates over-smoothing through
graph augmentation techniques. However, the aug-
mentation strategies, which randomly perturb the
graph topology, may degrade the quality of the
graph embeddings (Shen et al., 2023). Our moti-
vation is to consider hyperbolic space embedding
as an augmentation of graph embedding. This ap-
proach not only avoids the drawbacks of traditional
graph augmentation techniques but also leverages
the hierarchical structure information provided by
hyperbolic embedding.

To address the aforementioned issues, we pro-
pose a novel method named UniEA, which Unifies
the Euclidean and hyperbolic spaces embedding
for EA. Our method is not limited to embedding in
a single space. Specifically, we introduce graph at-
tention networks (GAT) (Velickovic et al., 2018) to
aggregate neighboring entities in Euclidean space,
and employ hyperbolic graph convolutional net-
works (HGCN) (Chami et al., 2019) to learn the
hierarchical structural information of the graph in
hyperbolic space. We maximize the consistency be-
tween the embedding in Euclidean space and hyper-
bolic space through contrastive learning, which
leads to more accurate entity embeddings. More-
over, the close distances of similar neighboring
embedding severely affect the final alignment of
entities. We employ contrastive learning once
again to address the issue. The contributions of
this work can be summarized as follows:

• We propose a novel EA method called UniEA.
To our best knowledge, this is the first method
for EA that unifying Euclidean and hyperbolic
space embeddings with contrastive learning.

• We also employ contrastive learning to mit-
igate misalignment issues caused by overly
close distances between similar entity embed-
dings.

• The extensive experiments on four public
datasets demonstrate that our method consis-
tently outperforms the state-of-the-art meth-
ods for structure-based EA.

2 Related work

In line with our work, we review related work in
three areas: EA in Euclidean space, representation
learning in hyperbolic space and improving EA
with graph augmentation.

2.1 EA in Euclidean space

Current embedding-based EA methods can be
broadly categorized into three types: TransE-based
methods, GNN-based methods and other methods.
All of these primarily aim to learn embeddings for
entities and relations from relational triples.

Due to the strong performance of TransE (Bor-
des et al., 2013) in capturing local semantic infor-
mation of entities, several methods have proposed
variants of TransE for application in EA. For in-
stance, Chen et al. (2017) addresses the inconsis-
tency in cross-lingual embedding spaces. Zhu et al.
(2017) emphasizes path information. Sun et al.
(2018) treats EA as a classification task. Pei et al.
(2019) enhances knowledge graph embedding by
leveraging nodes with varying degrees.

TransE-based EA methods lack the ability to
effectively model global structural information.
As a result, recent research increasingly favors
GNN-based approaches for EA. Stacking multi-
ple GNN layers allows the model to capture in-
formation from distant neighbors, thereby facilitat-
ing the learning of global structural information.
For example, Wang et al. (2018) directly stacks
multiple layers of vanilla GCN (Kipf and Welling,
2017) to obtain entity embeddings. Due to the
heterogeneity of KGs, the alignment performance
is limited. Sun et al. (2020b) employs a gating
mechanism to attempt capturing effective informa-
tion from distant neighbors. MRAEA (Mao et al.,
2020), RAEA (Zhu et al., 2021), KE-GCN (Yu
et al., 2021), RSN4EA (Guo et al., 2019), GAEA
(Xie et al., 2023), RHGN (Liu et al., 2023) , and
GSEA (Wang et al., 2024a) utilize rich relational
information to obtain entity embeddings. Xin et al.
(2022) encoded neighbor nodes, triples and relation
paths together with transformers. Unfortunately,
the ability to handle complex topological structures
in graphs is limited in Euclidean space.

Additionally, some methods integrate the rich in-
formation within KGs to enhance the performance
of EA tasks. This includes leveraging attributes
(Liu et al., 2020), entity names (Tang et al., 2020)
and more (Chen et al., 2023). Jiang et al. (2024)
explores the potential of large language models



3112

for EA task. Since our method focuses on struc-
tural information, we did not compare it with the
aforementioned approaches to ensure fairness, con-
sistent with prior work.

2.2 Representation learning in hyperbolic
space

Hyperbolic space has recently garnered consider-
able attention due to its strong potential for learn-
ing hierarchical structures and scale-free charac-
teristics. For example, Chami et al. (2019) first
introduced the use of graph convolutional networks
(GCN) and hyperbolic geometry through an induc-
tive hyperbolic GCN.

Hyperbolic space representation learning has
proven effective in downstream tasks such as node
classification (Liang et al., 2024b) and KG com-
pletion (Liang et al., 2024a,c). Notably, existing
work has successfully completed EA using hyper-
bolic space embedding. For example, Sun et al.
(2020a) extends translational and GNN-based tech-
niques to hyperbolic space, and captures associa-
tions by a hyperbolic transformation. Guo et al.
(2021) integrates multi-modal information in the
hyperbolic space and predict the alignment results
based on the hyperbolic distance. Although these
methods demonstrate the advantages of hyperbolic
embedding, they are limited to embedding solely
in hyperbolic space.

2.3 Improving EA with graph augmentation

Graph augmentation techniques primarily generate
augmented graphs by perturbing the original graph
through node dropout or edge disturbance, effec-
tively enhancing the model’s robustness to graph
data.

Graph augmentation techniques have been
proven effective in entity alignment tasks. GAEA
(Xie et al., 2023) opts to generate augmented
graphs by removing edges rather than adding new
ones, as introducing additional edges can lead to ex-
tra noise. GSEA (Wang et al., 2024a) employs sin-
gular value decomposition to generate augmented
graphs, capturing the global structural information
of the graph. It leverages contrastive loss to learn
the mutual information between the global and lo-
cal structures of entities. However, these methods
fall short in effectively learning the hierarchical
structure of graphs.

3 Preliminaries

In this section, we define the EA task and explain
the fundamental principles of hyperbolic space.
This foundation is essential for comprehending our
approach.

3.1 Entity alignment

Formally, we repesent a KG as G = {E ,R, T },
where E denotes entities, R denotes relations,
T = E × R × E repesents triples. Given two
KGs, G1 = {E1,R1, T1} repesent source KG,
G2 = {E2,R2, T2} repesent target KG. EA aims to
discern each entity pair(e1i , e

2
i ), e

1
i ∈ E1, e2i ∈ E2

where e1i and e2i correspond to an identical real-
world entity ei. Typically, we use pre-aligned seed
entities S to unify the embedding spaces of two
KGs in order to predict the unaligned entities.

3.2 Hyperbolic space

Hyperbolic geometry is a non-Euclidean geometry
with a constant negative curvature, where curvature
measures how a geometric object deviates from a
flat plane (Chami et al., 2020). In this paper, we
use the d-dimensional Poincaré ball model with
negative curvature −c(c > 0) : H(d,c) = {x ∈
Rd :∥ x ∥2< 1

c}. For each point x ∈ H(d,c), the
tangent space (a sub-space of the Euclidean space)
TxHc is a d-dimensional vector space at point x,
which contains all possible directions of path in
H(d,c) leaving from x.

Then, we introduce exponential and logarithmic
mappings in the hyperbolic space. Let α be the
feature vector in the tangent space ToHc, where o
is a point in the hyperbolic space H(d,c). Assuming
o is the origin, o = 0, the tangent space ToHc can
be mapped to H(d,c) via the exponential map:

expco(α) = tanh(
√
c∥α∥) α√

c∥α∥
. (1)

Conversely, the logarithmic map which maps β
to ToHc is defined as:

logco(β) = arctanh(
√
c∥β∥) β√

c∥β∥
. (2)

Here, β is hyperbolic space embedding.

4 Method

In this section, we elaborate on our approach in four
parts. As shown in Figure 2, our method includes:
1) Euclidean space embedding, 2) hyperbolic space
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embedding, 3) relation encoding and fusion, and 4)
the loss function.

We randomly initialize the entity and relation
embedding of G1, represented as zE1 ∈ R|E1|×de

and r1 ∈ R|R1|×dr , respectively. Similarly, the
entity and relation embedding of G2 are represented
as zE2 ∈ R|E2|×de and r2 ∈ R|R2|×de . Here, zE
denotes Euclidean space embedding; de and dr
stand for the dimensionality of entity and relation,
respectively.

4.1 Euclidean space embedding

The ability of GAT to aggregate neighbor informa-
tion in heterogeneous graphs has been well demon-
strated (Chen et al., 2023; Wang et al., 2024a). We
stack multiple layers of GAT to obtain Euclidean
space embedding:

ZE = [z(1), ..., z(L)]

= GAT (Wm,M, zE,0),
(3)

where M denotes the adjacency matrix, Wm ∈
Rd×d is a diagonal weight matrix for linear trans-
formation.

Due to the varying importance of the neigh-
borhoods aggregated by different layers of GAT.
For example, in Figure 1, aggregating the first-
order neighbors of “Chris Evans” is most bene-
ficial. While aggregating higher-order neighbors
can capture some implicit relationships of the en-
tity, it often introduces noise. Therefore, Xie et al.
(2023) introduce an attention mechanism to assign
different weights to the embeddings obtained from
different layers:

[ẑ(1), ..., ẑ(L)]

= softmax(
(ZEWq)(Z

EWk)
⊤

√
de

)ZE,
(4)

where 1/
√
de is the scaling factor, Wq and Wk

are the learnable paramenter matrices. Finally, the
Euclidean space embedding zE = 1

L

∑L
l=1 ẑ

(l).

4.2 Hyperbolic space embedding

Our method equips HGCN (Chami et al., 2019) to
learn the hierarchical structure of graphs in hyper-
bolic space.

Specifically, we project Euclidean space embed-
dings zE to hyperbolic space using exponential map
(Equation 1):

zH = expco(z
E), (5)

where zH ∈ H(d,c), in other words, we obtain
the first layer of embedding zH,0 in the hyperbolic
space.

For the hyperbolic space embedding of the l-th
layer, we can get the hyperbolic embedding of the
next layer by hyperbolic feature aggregation. The
hyperbolic aggregation process is as follows:

zH,l+1 = expco(σ(A logco(z
H,l)Wl)). (6)

A represents the symmetric normalized adjacency
matrix, σ is ReLU(·) and Wl is a trainable weight
matrix.

For example, for the input zH,0 in 0-th layer, we
can get zH,1 using Equation 6.

Finally, we can obtain the final output zH,L in
hyperbolic space. The L is a hyper-parameter de-
noting the number of layers of the HGCN.

4.3 Relation encoding and fusion
The same entities often share similar relations, and
relational semantic information is also highly bene-
ficial for EA. Mao et al. (2020) reveals that relying
solely on the in-degree directions to accumulate
neighboring information through directed edges is
insufficient. Incorporating information from the
out-degree directions as well would be highly ben-
eficial. This idea facilitates the bridging and prop-
agation of more information in graph. Hence, fol-
lowing this work, we use both in-degree and out-
degree relation encoders to learn the representation
of relations:

rei =
Arelin
ei r
|N in

ei |
⊕

Arelout
ei r
|Nout

ei |
, (7)

where |N in
ei | and |Nout

ei | are the in-degree and out-
degree of ei, respectively. Arelin denotes the adja-
cency matrix for in-degrees, r represents relation
embedding.

It is worth noting that before fusion, the hyper-
bolic space embedding are projected to Euclidean
space zH = logLo (z

H,L). Through the steps above,
we concatenate the entity-level and relation-level
features in Euclidean space to obtain the final out-
put.

z̃H = zH ⊕ r, z̃E = zE ⊕ r. (8)

Here, z̃H and z̃E denote final embedding in hyper-
bolic space and Euclidean space, respectively.

4.4 Loss function
Our loss function consists of three components: (i)
a contrastive loss for aligning Euclidean and hyper-
bolic space embeddings Linter, (ii) an intra-graph
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Figure 2: The framework of our proposed UniEA. Here, ⊕ denotes concatenate. The ‘Exp. Map’ operation is
derived from Equation 1; the ‘Log. Map’ operation is derived from Equation 2.

contrastive loss to mitigate the issue of neighboring
entity embeddings being too similar Lintra, and
(iii) a margin-based alignment loss for the entity
alignment task Lea.

4.4.1 Contrastive learning loss

To ensure that the Euclidean space embedding re-
tain their structure without distortion, we first use
contrastive learning Linter to maximize the con-
sistency (Xie et al., 2023; Shen et al., 2023) be-
tween the Euclidean and hyperbolic space embed-
dings. Moreover, previous methods suggest that
similar entity embedding should be closer (You
et al., 2020), but being too close can negatively
affect the results of EA. Therefore, we employ con-
trastive learning Lintra, aiming to push the dis-
tances between all entities within a graph further
apart. We define the contrastive learning loss as
follows:

L(GE,GH)
c,i = −log

exp(⟨z̃Ei ,
˜zHi ⟩)∑

k∈E exp(⟨z̃Ei , z̃Hk ⟩)
, (9)

Linter =
∑

n={1,2}

1

2|En|
∑
i∈En

(L(G̃E
n,G̃

H
n)

c,i +L(G̃H
n,G̃

E
n)

c,i ),

(10)

Lintra =
∑
i∈E

L(G̃E
1 ,G̃

E
1)

c,i (11)

Here, Lintra and Linter can be calculated using the
Equation 9.

4.4.2 Margin-based alignment loss
We use the pre-aligned entity pairs S to bring the
embeddings of the same entities in G1 and G2 closer,
while pushing the embeddings of different entities
further apart. We choose to use Euclidean space
embedding for the margin-based alignment loss:

Lea =
∑

(ei,ej)∈S

∑
(ea,eb)∈S̄(ei,ej)

[||z̃Eei − z̃Eej ||L2+

γ − ||z̃Eea − z̃Eeb ||L2]+,
(12)

where γ is a hyper-parameter of margin, [x]+ =
max{0, x} is to ensure non-negative output.
S̄(ei,ej) is a collection of negative samples com-
posed of randomly replaced entities ei and ej from
the seed set S.

4.4.3 Model training
We combine three loss functions to achieve the final
training objective:

L = Lea + λ(Linter + Lintra), (13)

where λ is a hyper-parameter to adjust the three
loss functions.

5 Experiments

In this section, we conduct extensive experiments
on four public datasets to demonstrate the superi-
ority of our method. Additionally, visualization of
the entity embedding from the two KGs intuitively
shows that our method is more beneficial for the



3115

EA task. Finally, we analyze the training efficiency
of the method.

5.1 Experiment settings

5.1.1 Datasets
To fully demonstrate the superiority of our method,
we select the OpenEA (15K-V1) dataset (Sun
et al., 2020c). The dataset includes two mono-
lingual datasets: DBpedia-to-Wikidata (D-W-15K)
and DBpedia-to-YAGO (D-Y-15K), as well as two
cross-lingual datasets: English-to-French (EN-FR-
15K) and English-to-German (EN-DE-15K). The
details of these four datasets are provided in Ap-
pendix A. The triples in OpenEA dataset consist
of URLs, which not only align with the degree
distribution of real-world KGs but also facilitate
research on structure-based EA methods. We ad-
here to the data split ratios used in prior studies
(Sun et al., 2020c), where 20% of the alignments
are used for training, 10% for validation, and 70%
for testing. We report the average results of five-
fold cross-validation. The results for each fold are
presented in Appendix B.

5.1.2 Implement details
Our experiment conducted with a single NVIDIA
4090 GPU with 24GB of memory. We initialize the
trainable parameters with Xavier initialization (Glo-
rot and Bengio, 2010) and optimize the loss using
Adam (Kingma and Ba, 2015). Regarding hyper-
parameters, the entity dimension is set to 256, and
the relation dimension is set to 32. The margin
for the alignment loss is set to 1. We perform a
grid search to determine the optimal parameter λ
for the final training objective, selecting from the
set {0.1, 1, 10, 100, 300, 1000}. The details of
λ are provided in Appendix C. GAT and HGCN
both utilize a two-layer network. We generate 5
negative samples for each positive sample. During
inference, we use Cross-domain Similarity Local
Scaling (Lample et al., 2018) to post-process the
cosine similarity matrix, which is employed by de-
fault in some recent works (Sun et al., 2020c; Liu
et al., 2023).

We use H@k and MRR as evaluation metrics to
assess our method, with higher values indicating a
greater number of correctly matched entities. We
select k values of {1, 5}.

5.1.3 Baseline
To comprehensively evaluate the superiority of our
method, we categorize our baselines into three

groups: TransE-based, GNN-based, and related
methods.

• TransE-based methods. These methods lever-
age variants of TransE to model each triple
individually, utilizing strong local structural
information: MTransE (Chen et al., 2017), IP-
TransE (Zhu et al., 2017), AlignE (Sun et al.,
2018), and SEA (Pei et al., 2019).

• GNNs-based methods. These methods ag-
gregate neighborhood information by stack-
ing multiple layers of networks: GCN-Align
(Wang et al., 2018), AliNet (Sun et al., 2020b),
KE-GCN (Yu et al., 2021), and RHGN (Liu
et al., 2023).

• Related methods. We classify these four meth-
ods into one category: HyperKA (Sun et al.,
2020a) is the method for EA in hyperbolic
space. GAEA (Xie et al., 2023) uses edge
deletion information for graph augmentation.
IMEA (Xin et al., 2022) is a strong baseline
that combines information from nodes, triples,
and relation paths. GSEA (Wang et al., 2024a)
uses singular value decomposition of the ad-
jacency matrix to obtain the global structural
information of the entities.

5.2 Main results
The results of all methods on OpenEA datasets are
shown in Table 1. Our method outperforms all
other methods. We conducted an analytical com-
parison with baseline methods. Since TransE and
SEA cannot effectively learn the structural features
of the graph, even with semi-supervised strategies,
they fail to improve alignment accuracy. HyperKA
operates in hyperbolic space, but since the hierar-
chical structure of the four datasets is not partic-
ularly pronounced, its performance is inferior to
some Euclidean space methods.

Methods that utilize relational semantic informa-
tion, such as GSEA, IMEA , GAEA, and RHGN,
significantly outperform others and indicate that
relationships are highly beneficial for entity align-
ment. GAEA uses contrastive learning on different
views, but its performance is unstable. Our method
is not limited by the drawbacks of traditional graph
augmentation methods. It not only captures neigh-
borhood information in Euclidean space but also
learns the hierarchical structure in hyperbolic space.
Our experiments demonstrate that learning the hi-
erarchical structure in knowledge graphs is crucial.
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Methods
EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

MtransE .247 .467 .351 .307 .518 .407 .259 .461 .354 .463 .675 .559
IPTransE .169 .320 .243 .350 .515 .430 .232 .380 .303 .313 .456 .378
AlignE .357 .611 .473 .552 .741 .638 .406 .627 .506 .551 .743 .636

SEA .280 .530 .397 .530 .718 .617 .360 .572 .458 .500 .706 .591
GCN-Align .338 .589 .451 .481 .679 .571 .364 .580 .461 .465 .626 .536

AliNet .364 .597 .467 .604 .759 .673 .440 .628 .522 .559 .690 .617
KE-GCN .408 .670 .524 .658 .822 .730 .519 .727 .608 .560 .750 .644
RHGN* .500 .739 .603 .704 .859 .771 .560 .753 .644 .708 .831 .762

HyperKA .353 .630 .477 .560 .780 .656 .440 .686 .548 .568 .777 .659
IMEA .458 .720 .574 .639 .827 .724 .527 .753 .626 .639 .804 .712

GAEA* .548 .783 .652 .731 .887 .800 .618 .802 .802 .671 .802 .731
GSEA* .561 .803 .669 .740 .893 .807 .628 .819 .713 .694 .836 .758

UniEA(ours) .580 .811 .682 .748 .898 .813 .648 .826 .728 .712 .841 .771

Table 1: Entity alignment result of OpenEA Datasets. The best result in each column is highlighted in bold. *
indicates results reproduced from their source code, while other experimental results are from Xie et al. (2023). For
fairness in the experimental results, we modified the GAEA code to use CSLS during the inference phase.

(a) H@1 (b) H@5 (c) MRR

Figure 3: The results of ablation experiment on EN-FR-15K and D-W-15K.

5.3 Ablation studies

We conducted ablation experiments on EN-FR-15K
and D-W-15K by removing Linter, Lintra, and
Linter&Lintra. As shown in Figure 3, all metrics
decreased after the removal of each module, demon-
strating the effectiveness of each component.

• w/o Linter: By removing the learning in hy-
perbolic space and using GAT to aggregate
neighborhood information and learn relational
semantics in Euclidean space, we observed a
decline in all metrics across the datasets. This
indicates that learning both Euclidean and hy-
perbolic embedding through contrastive learn-
ing is effective.

• w/o Lintra: Removing contrastive learning
within the G1 in Euclidean space also resulted
in a decline in the performance. Our method

shows the most significant decline and effec-
tively pushes similar but easily confused enti-
ties further apart in the embedding space.

• w/o Linter&Lintra: The decline observed af-
ter removing it demonstrates that combining
Lintra and Linter is beneficial for enhancing
alignment performance.

5.4 Visualization of Entity Embedding

To more intuitively highlight the performance of
our method, we use t-SNE (Rauber et al., 2016)
to visualize the entity embedding. In the baseline,
we categorized all comparison methods into three
groups, and then, we selected the top three meth-
ods for comparison. We randomly selected 3,000
entity pairs, and the final embeddings are shown in
Figure 4.

The embedding from AlignE (Figure 4(a)) are
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(a) AlignE (b) GAEA (c) RHGN (d) UniEA(ours)

Figure 4: Visualization of entity embedding on EN-FR-15K. Different colors represent different KGs.

clearly the worst, with one KG’s embeddings con-
centrated in the upper left and the other in the
lower right. As a result, during the alignment in-
ference phase, it fails to match the correct entities.
GAEA (Figure 4(b)) shows multiple clusters along
the edges, with the left half being sparser than the
right. The distribution of entity embedding is un-
even, which causes similar entities to be placed
too close together, leading to incorrect alignments.
RHGN (Figure 4(c))shows a large cluster in the up-
per right corner, with uneven distribution and poor
embedding results. In contrast, our method (Fig-
ure 4(d)) exhibits a uniform distribution without
noticeable clustering. Observing the surrounding
area, the points of different colors in our method
overlap completely and indicate better embedding
performance. Therefore, our method achieves re-
sults superior to other methods.

5.5 Auxiliary Experiments

5.5.1 Parameter sizes analysis
We selected four baseline models for comparison of
parameter sizes, as shown in Table 2. GAEA uses
a single GAT network for training, significantly re-
ducing its model complexity. Our method requires
different networks for training in both Euclidean
and hyperbolic spaces, which causes the param-
eter size of our model to be nearly double that
of GAEA. However, our parameter size is much
smaller than that of IMEA, which uses complex
features. Despite this, our method outperforms all
structure-based methods.

5.5.2 Efficiency analysis
To evaluate the time efficiency of our method,
we conducted a comparative analysis with GAEA.
We also included our variant, UniEA-w/o Lintra,
which does not use contrastive learning for similar
entities. The final results are shown in Figure 5.
For a fair comparison, we ran 300 epoch and used
the same entity embedding dimension of 256 and

Methods #Params (M)

AliNet ∼16.18M
IMEA ∼20.44M
GAEA ∼8.10M
RHGN ∼8.62M
UniEA(ours) ∼15.86M

Table 2: Methods parameters comparison

Figure 5: H@1 results and training times on EN-FR-
15K.

relation embedding dimension of 32.
GAEA updates the augmented graph every 10

epochs, which impacts its training efficiency. In
contrast, our method does not require augmented
graph updates, making it the faster. However, since
the UniEA method introduces contrastive learning
to push similar entities further apart, it requires
longer training time than variant UniEA.

6 Conclusion

In this paper, we propose a novel method for EA
that unifies dual-space through contrastive learn-
ing. We take the learning in hyperbolic space as
a specialized form of graph augmentation. This
study focuses on maximizing the consistency be-
tween Euclidean and hyperbolic space embeddings
through contrastive learning. Additionally, we em-
ploy contrastive learning to increase the distance
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between embedding of similar entities in Euclidean
space, thereby preventing erroneous alignments
caused by similarity. Finally, we conduct analyses
through ablation studies, visualizations, parame-
ter size comparisons, and evaluations of time effi-
ciency.

Limitation

We acknowledge three limitations in our method.
First, in the Auxiliary Experiments, we discuss
parameter size and time efficiency. While our ap-
proach addresses the drawbacks of traditional con-
trastive learning in generating contrastive views,
the introduction of a hyperbolic convolutional net-
work results in a significant number of parame-
ters. Second, our method focuses solely on learn-
ing structural and relational information, leaving
a wealth of attribute information within KGs un-
tapped. Finally, real-world KGs are predominantly
unlabeled, and labeling data is costly. We lack un-
supervised or semi-supervised strategies to enhance
alignment performance.
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Appendix

A Dataset Statistics

Table 3 provides rich information about OpenEA
datasets.

B Our methods result of OpenEA
Datasets

We used the same parameters for 5-fold cross-
validation for each dataset. The reported result
UniEA(avg.) in Table 4 is obtained by averaging
over five-fold.

C Hyper-parameter settings.

We conducted a single experiment with fold 4, and
ultimately chose λ = 300 for the EN-FR-15K, EN-
DE-15K, and D-W-15K datasets, while selecting
λ = 100 for the D-Y-15K dataset. The experimen-
tal results are shown in Table 5.
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Dataset
EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

English French English German DBpedia Wikidata DBpedia YAGO

#Ent. 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000
#Rel. 267 210 215 131 248 169 165 28

#Rel tr. 47,334 40,864 47,676 50,419 38,265 42,746 30,291 26,638

Table 3: The statistics of OpenEA datasets

Fold
EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

1 .580 .807 .680 .744 .901 .812 .654 .831 .733 .712 .838 .770
2 .576 .808 .679 .748 .895 .813 .652 .829 .731 .716 .845 .774
3 .585 .816 .687 .752 .902 .817 .646 .824 .727 .717 .847 .775
4 .580 .810 .682 .746 .895 .811 .647 .824 .727 .710 .838 .768
5 .582 .818 .685 .751 .899 .815 .644 .823 .723 .709 .840 .769

UniEA(avg.) .580 .811 .682 .748 .898 .813 .648 .826 .728 .712 .841 .771

Table 4: Entity alignment result of OpenEA datasets on every fold.

λ
EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

0.1 .544 .787 .652 .712 .883 .787 .603 .806 .693 .672 .824 .740
1 .544 .790 .653 .715 .879 .788 .603 .807 .694 .672 .828 .742
10 .547 .795 .657 .718 .882 .791 .616 .817 .704 .688 .834 .754

100 .572 .811 .678 .741 .895 .809 .641 .830 .725 .710 .838 .768
300 .580 .810 .682 .746 .895 .811 .647 .824 .727 .703 .824 .759
500 .577 .806 .679 .744 .893 .810 .641 .820 .721 .690 .819 .749
1000 .572 .793 .670 .742 .887 .806 .634 .806 .711 .682 .820 .745

Table 5: Experimental results with different hyper-parameters λ.
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