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Abstract
Despite the impressive capabilities of large lan-
guage models (LLMs) in aspect-based senti-
ment analysis (ABSA), the role of syntactic
information remains underexplored in LLMs.
Syntactic structures are known to be crucial for
capturing aspect-opinion relationships. To ex-
plore whether LLMs can effectively leverage
syntactic information to improve ABSA perfor-
mance, we propose a novel multi-step reason-
ing framework, the Syntax-Opinion-Sentiment
Reasoning Chain (Syn-Chain). Syn-Chain se-
quentially analyzes syntactic dependencies, ex-
tracts opinions, and classifies sentiment. We
introduce Syn-Chain into LLMs via zero-shot
prompting, and results show that Syn-Chain
significantly enhances ABSA performance,
though smaller LLMs1 exhibit weaker per-
formance. Furthermore, we enhance smaller
LLMs via distillation using GPT-3.5-generated
Syn-Chain responses, achieving state-of-the-art
ABSA performance. Our findings highlight the
importance of syntactic information for improv-
ing LLMs in ABSA and offer valuable insights
for future research2.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task which aims to an-
alyze the sentiment polarity associated with spe-
cific aspects in a sentence (Pontiki et al., 2014).
For example, in the sentence "Great food but the
service was dreadful!", "food" and "service" are
aspect terms, exhibiting positive and negative sen-
timents, respectively. The potential to analyze user
sentiments at such a granular level has garnered sig-
nificant attention from both industry and academia.

Identifying an aspect’s sentiment depends on
capturing the associated opinion, which typically
∗Corresponding author
†Equal contribution
1In this study, smaller LLMs refer to language models with

fewer than 10 billion(B) parameters.
2https://github.com/rf-x/Syn-Chain-ABSA

reveals the sentiment orientation (Kandhro et al.,
2024). Attention mechanisms have been employed
to capture words linked to the aspect term (Yang
et al., 2017; Liu and Zhang, 2017; Wang et al.,
2016), but these methods often struggle with lin-
guistic complexities (Sun et al., 2019). Conse-
quently, incorporating syntactic information has
gained widespread acceptance (Zhang et al., 2019;
Nazir et al., 2022). Some studies constructed con-
nections between words based on syntactic depen-
dency trees and utilized graph neural networks to
capture latent relationships among sentiment ele-
ments (Wang et al., 2020; Wu et al., 2021; Chen
et al., 2022; Yang et al., 2023; Zhong et al., 2023).
Leveraging additional syntactic information along
with word dependencies significantly enhances
ABSA performance.

Recently, large language models (LLMs) have
demonstrated exceptional generalization and con-
textual understanding capabilities. They also ex-
hibit impressive sentiment comprehension abilities
(Wang et al., 2024b). The incorporation of instruc-
tions and demonstrations within prompts, follow-
ing the in-context learning (ICL) paradigm, has
further boosted LLMs performance (Zhang et al.,
2023). Yang et al. (2024) improved LLMs perfor-
mance in cross-domain ABSA tasks by providing
diverse examples. Wang et al. (2024a) trained a
retriever that selects examples based on semantic
relevance, syntactic structure, and aspect-sentiment
alignment, but LLMs have not directly leveraged
syntactic information.

Given the success of syntactic information in
prior ABSA studies, and the findings by Roy et al.
(2023), which show that LLMs possess a certain de-
gree of syntactic and semantic parsing abilities, we
are motivated to explore whether LLMs can utilize
syntactic information to further enhance their per-
formance in ABSA. Drawing inspiration from the
multi-hop reasoning Chain-of-Thought (CoT) ap-
proach (Fei et al., 2023) for ABSA , we propose a



3124

Syntax-Opinion-Sentiment Reasoning Chain (Syn-
Chain): (1) analyzing syntactic dependency infor-
mation, (2) capturing aspect-related opinions using
dependency relations, and (3) performing compre-
hensive sentiment analysis.

Our experiments on several ABSA benchmark
datasets demonstrate that Syn-Chain significantly
improves LLM performance in ABSA, although
smaller LLMs with limited syntactic understanding
benefit less. Additionally, we leverage GPT-3.5
to automatically generate Syn-Chain reasoning in-
formation for supervised training. We fine-tune
T5 (Raffel et al., 2020) and Flan-T5 (Chung et al.,
2024) using full-parameter tuning, and Llama-2-7B
(Touvron et al., 2023) and Llama-3-8B (AI@Meta,
2024) using parameter-efficient tuning, both achiev-
ing results that surpass baseline models. These
findings highlight that even in LLM-based research,
syntactic information continues to offer valuable
insights for ABSA.

The main contributions of this work include:

• We propose Syn-Chain, a multi-step reason-
ing framework that integrates syntactic infor-
mation into LLMs to enhance ABSA perfor-
mance. To the best of our knowledge, we are
the first to explore the direct use of syntactic
information in LLMs for ABSA.

• We construct Syn-Chain ABSA datasets for
supervised training, enabling smaller LLMs
to effectively utilize syntactic information.

• Extensive experiments on ABSA benchmarks
validate the effectiveness of Syn-Chain and
provide insights into integrating syntactic in-
formation within LLMs.

2 Related Work

As a subtask of sentiment analysis, ABSA poses
a more intricate challenge, garnering substantial
attention in recent years. A key point of ABSA is
capturing information related to aspect terms. At-
tention mechanisms have been widely adopted to
capture contextual relationships with target words
(Tang et al., 2016; Wang et al., 2016; Cheng et al.,
2017; Ma et al., 2017; Li et al., 2018; Gu et al.,
2018; Fan et al., 2018). However, these mecha-
nisms often underperform when opinion words are
distant from their corresponding aspects. To ad-
dress this, researchers have explored leveraging
syntactic information to identify relevant words
for aspects (Huang and Carley, 2019; Zhang et al.,

2019). Specifically, syntactic dependency trees and
graph neural networks have been constructed to
model the intricate connections between words and
target aspects (Huang and Carley, 2019; Sun et al.,
2019; Wang et al., 2020; Zhang et al., 2022; Liang
et al., 2022).

More recently, the advent of pretrained language
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) has revolutionized
ABSA, yielding impressive results (Song et al.,
2019; Jiang et al., 2019). For instance, Wang
et al. (2020) combined BERT with graph neural
networks to encode syntactic information (Wang
et al., 2020), and (Phan and Ogunbona, 2020) ex-
plored grammatical and syntactic features based on
BERT to enhance ABSA performance.

LLMs have made significant advancements in
sentiment analysis, especially in zero-shot settings
(Zhang et al., 2023; Wang et al., 2024b). Their
emergence has facilitated novel techniques like
CoT reasoning (Wei et al., 2022) and ICL (Dong
et al., 2024). For instance, Fei et al. (2023) lever-
aged multi-step CoT for comprehending implicit
sentiments and opinions. Yang et al. (2024) investi-
gated multi-domain ABSA under the ICL paradigm.
Additionally, Wang et al. (2024a) trained a retriever
to select demonstrations for ICL.

Despite these advancements, current LLM-based
ABSA research largely overlooks syntactic infor-
mation, a crucial component in traditional ABSA
methods. Thus, this study aims to explore if incor-
porating syntactic knowledge can further enhance
their ABSA performance.

3 Methodology

3.1 Task Definition

Given a sentence X with an aspect term A ∈ X ,
the goal of ABSA is to predict the sentiment polar-
ity y ∈ {Positive,Negative,Neutral} towards
A. LLMs tackle this task by processing a prompt
that includes X and A, subsequently generating a
sentiment prediction, that is P (y|X,A).

3.2 Syn-Chain Prompting

As shown in Fig. 1, Syn-Chain consists of three
sequential steps: syntactic parsing, opinion extrac-
tion, and sentiment classification. We provide the
following notation: S represents the syntactic de-
pendency sequence; Q1, Q2, and Q3 denote the
analysis targets of the three steps, respectively; and
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Step 3: Sentiment Classification

R 2 :  The adjectives "fresh" and "hot" are 
generally associated with positive dining 
experiences, further  emphasized by the 
concluding phrase " ready to eat!" which 
conveys enthusiasm and satisfaction.
Q3 :  Based on the common sense and such 
speaker's opinion, what is the sentiment 
polarity towards "Food"?

Step 1: Syntactic Parsing
X: Food is always fresh and hot-ready to eat!

Q 1 :  Based on the syntactic dependency of 
the sentence, analyze information related 
to the "Food" in the sentence.

4
3
2
1

ID

fresh
always

is
Food
Text

...

...

...

...

...

... ... ...
2
2
2
2

Head

acomp
advmod

root
nsubj

DepRel

... ...

S :

E :  Each line in the sequence represents a 
word in the sentence, and each element 
within a line .. .  (Describe the structure of 
syntactic dependency sequences).

Step 2: Opinion Extraction

R1 :  "Food" (ID 1) is the subject (DEPREL: 
nsubj) of the verb "is" (ID 2). This means it 
is the main topic of the sentence and the 
adjective phrase "fresh and hot-ready to eat" 
describes its state.
Q2: Considering the context and information 
related to "Food", what is the user's opinion 
towards "Food"?

X: Food is always fresh and hot-ready to eat! X: Food is always fresh and hot-ready to eat!

R3: The sentiment towards "Food" in the given sentence is positive. Because the sentence 
employs positive adjectives like "fresh" and "hot" to describe the food. These words are 
generally associated with pleasant dining experiences. Additionally, the phrase "ready to eat!" 
implies enthusiasm and satisfaction, further reinforcing the positive sentiment towards the food.

2024/9/5 18:48 framework.svg
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Figure 1: Overview of the Syn-Chain Prompting Process. The response from the previous step is utilized in the
subsequent step.

R1, R2, and R3 represent the corresponding out-
puts of LLMs.

Step 1: Syntactic Parsing. We begin by using
spaCy3 to generate a dependency parse for each
sentence, which is converted into the CoNLL-U for-
mat, a tabular representation for LLM processing.
Each line in the CoNLL-U format corresponds to a
word and its associated attributes, such as part-of-
speech and dependency relations (see Appendix A
for details).

Given the discrepancy between syntactic depen-
dency information and natural language expres-
sions, we add the descriptions of each attribute’s
meaning, denoted as E. By querying the LLMs
about aspect-related information, we obtain natural
and readable description of the syntactic structure,
denoted as R1, This process can be formalized as
P (R1|X,S,E,Q1).

Step 2: Opinion Extraction. Building upon the
syntactic analysis provided byR1, we ask the LLM
to analyze user opinions related to specific aspects.
The resulting response, R2, is generated in the
format P (R2|X,R1, Q2).

Step 3: Sentiment Classification. Leveraging the
aspect opinions from R2, the LLM classifies the
sentiment polarity of the aspect term, producing a
reasoned judgment denoted as R3. This process
is represented as P (R3|X,R2, Q3). By extracting
polarity words from R3, we derive the predicted
sentiment label ŷ.

3.3 Syn-Chain Supervised Learning

The understanding and reasoning capabilities of
smaller models are limited, particularly when deal-
ing with syntactic dependency information that is

3https://spacy.io/

expressed differently in natural language. Leverag-
ing reasoning information from powerful LLMs as
supervisory signals and distilling this knowledge
into smaller models can effectively enhance their
performance on specific tasks (Li et al., 2022; Ho
et al., 2023; Fan et al., 2024). To this end, we
construct Syn-Chain data for fine-tuning smaller
models.

Data Construction. As shown in Fig. 1, the re-
sponses R1, R2, and R3 generated by the LLM
are directly used as target responses for model
training. However, incorrect sentiment predictions
by the LLM can result in unreasonable responses
that mislead the model during training. To ensure
consistency between each step’s response and the
final sentiment label, we obtain reasoning by in-
putting prompts conditioned on the true sentiment
label y. This process is formalized as P (R̃j |Cj , y),
where Cj represents the input for each step (where
j ∈ [1, 2, 3]), and R̃j is the corresponding LLM-
generated response.

Model Training. Following the construction of the
Syn-Chain dataset, we employ supervised learn-
ing to train the model. Technically, Syn-Chain
supervised learning is a multi-task learning frame-
work that addresses three primary tasks: syntactic
parsing, opinion extraction, and sentiment classifi-
cation. The model’s inputs and outputs align with
the steps outlined in Section 3.2, where the goal
of outputs is to generate R̃j . The unified training
objective for all three tasks can be formulated as a
generative loss:

LG = − 1

N

N∑
i

T∑
t=1

logP (gi,t|ĝi,<t, C) (1)

where N represents the total number of samples,
and T represents the length of the sequence for
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Dataset Split Pos. Neu. Neg. Total Len of S Len of R1 Len of R2 Len of R3

Rest14 Train 2164 633 805 3602 17.54 108.05 59.55 38.28
Test 728 196 196 1120 16.31 108.72 58.67 38.15

Lap14 Train 987 460 866 2313 19.28 108.84 62.03 39.42
Test 341 169 128 638 15.99 111.98 61.89 39.34

Rest15 Train 912 36 256 1204 16.98 110.00 58.83 37.89
Test 326 34 182 542 18.17 109.63 59.69 37.38

Rest16 Train 1240 69 439 1748 17.33 110.20 59.38 37.83
Test 469 30 117 616 19.71 110.86 59.20 37.68

Table 1: Statistics of the ABSA datasets. “Len" represents the average length of the corresponding sequence.

each sample, gi,t denotes the true token at position
t, ĝi,<t denotes the generated sequence up to po-
sition t, and P (gi,t|ĝi,<t, C) is the probability of
generating token gi,t given ĝi,<t and input C.

Error Propagation. In executing Step 2 and Step
3 of Syn-Chain, the model depends on the output
from the prior step. During training, ground-truth
responses are used, but during inference, the model
relies on its generated outputs, leading to poten-
tial error propagation. Errors in earlier steps can
accumulate, affecting sentiment predictions. To
mitigate this issue, we propose a training strategy
to "break the chain", which prevents error propaga-
tion by ensuring that the response from the previous
step is not used as input for the subsequent step. For
example, the notation 1⊕ 2� 3 indicates that Step 1
and Step 2 are linked, and the connection between
Step 2 and Step 3 is deliberately severed. In other
words, R2 from Step 2 is not used as input to Step
3, which is formally represented as P (R3|X,Q3).
This ensures that any errors from the first two steps
do not affect predictions in the third step.

The training of Step 1 and Step 2 is designed
to equip the model with the ability to comprehend
syntactic information and capture aspect-related
opinions. Even when the chain is broken, the
model retains these capabilities within the multi-
task learning framework, while minimizing the risk
of error accumulation. Notably, our breaking strat-
egy is based on independent Step 3, and the model
is trained to focus exclusively on sentiment pre-
diction from the first sentence of R̃3, excluding
subsequent reasoning content.

4 Experimental Setup

4.1 Datasets
We utilize four ABSA datasets in our experiments:
Rest14 and Lap14, sourced from (Pontiki et al.,
2014), Rest15 from (Pontiki et al., 2015), and

Rest16 from (Pontiki et al., 2016). To balance
experimental rigor with resource constraints, we
focus on Rest14 and Lap14 for zero-shot exper-
iments due to the high cost of LLM API usage.
This allows us to conduct in-depth ablation studies.
Fine-tuning experiments are conducted on local
GPUs. This setup enabled us to compare a broader
range of methods using four common datasets.

Detailed statistics of these datasets are shown in
Table 1. Instances with multiple aspects within a
single sentence are split into multiple single-aspect
samples. The supplementary Syn-Chain data sub-
stantially enrich the informational content of the
original sentences.

4.2 Implement Details and Metrics
We evaluate Syn-Chain prompting on several
LLMs including GPT-3.5, GPT-4o4, Gemini-1.55,
Llama-2-7B (Touvron et al., 2023), and Llama-
3-8B (AI@Meta, 2024). Details of the prompts
can be found in Appendix A. For supervised fine-
tuning, we ensure a fair comparison with previous
methods by performing full-parameter fine-tuning
on T5 and Flan-T5. Additionally, we employ LoRA
fine-tuning (Hu et al., 2022) for Llama-2-7B and
Llama-3-8B. All model parameters are obtained
from the Transformers library6. For full fine-tuning,
we set the learning rate to 5e-5, batch size to 4, and
train for 10 epochs. For LoRA fine-tuning, we use
a learning rate of 1e-4, batch size of 2, and train for
10 epochs with α = 16 and r = 8. Both setups use
the AdamW optimizer.

The experiments are implemented in PyTorch
and execute on two A5000 GPUs. We employ
Accuracy (Acc) and Macro-F1 score (F1) for eval-
uation. For fine-tuned models, results are reported
as the average of three independent runs.

4OpenAI API: https://openai.com/api/
5Google Gemini API: https://ai.google.dev/
6https://huggingface.co/
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Method Rest14 Lap14

Acc F1 Acc F1

GPT-3.5 82.50 71.27 79.62 74.63
+ Syn-Chain 85.08 78.61 80.09 76.45

GPT-4o 86.96 76.36 82.13 76.40
+ Syn-Chain 90.26 83.85 82.60 78.01

Gemini-1.5 87.41 80.22 78.52 71.66
+ Syn-Chain 87.58 81.06 79.31 74.54

Llama-2-7B 74.73 65.02 73.04 69.10
+ Syn-Chain 77.58 64.10 71.00 64.56

Llama-3-8B 82.23 67.83 78.36 71.73
+ Syn-Chain 81.42 71.73 75.23 70.97

T5 87.50 81.44 80.87 76.69

Table 2: Experimental results of Syn-Chain Zero-shot
Prompting on ABSA. T5 is fine-tuned on ABSA and
provided for comparison.

Format Syn-Chain1⊕3 Syn-Chain

Acc F1 Acc F1

CoNLL-U 77.56 71.68 80.09 76.45
XML 76.33 68.29 81.50 77.21
JSON 76.80 68.87 81.50 77.15
HTML 76.48 68.76 80.87 77.11

Table 3: Performance comparison of GPT-3.5 on Lap14
using different syntactic representations. 1⊕ 3 indicates
that only Steps 1 and 3 of the Syn-Chain are used.

5 Experimental Results and Analysis

5.1 Syn-Chain Zero-shot Prompting

Main Results. As shown in Table 2, we com-
pare the performance of various LLMs before and
after applying the Syn-Chain strategy. For more
powerful models, such as GPT-3.5 and GPT-4o,
the performance improves significantly after us-
ing Syn-Chain. Specifically, on the Res14 dataset,
the F1 scores of GPT-3.5 and GPT-4o increase by
7.34% and 7.49%, respectively. GPT-4o achieves
the best performance on both datasets, even surpass-
ing fine-tuned models. However, smaller LLMs,
Llama-2-7B and Llama-3-8B, generally experience
a decline in performance. Their limited capacity
makes it difficult to benefit from the complex rea-
soning process of Syn-Chain.

Effectiveness of Syn-Chain. As shown in Table 3,
a comparison between removing Step 2 (1⊕ 3) and
the full Syn-Chain strategy highlights the impor-
tance of opinion extraction (Step 2). The perfor-
mance of 1⊕ 3 is lower than that of direct sentiment
prediction on aspect terms using LLMs. This result

0 20 40 60 80 100

GPT-4o

Llama-3-8B

Step 1 Errors Step 2 Errors Step 3 Errors

Figure 2: Proportions of different error types in Syn-
Chain sentiment prediction errors.

indicates that Syn-Chain effectively leverages syn-
tactic information to enhance LLM performance.

In Syn-Chain, syntactic information supports
opinion extraction, which in turn strengthens senti-
ment analysis. Directly incorporating syntactic in-
formation for sentiment analysis introduces weaker
task interdependencies, making the model’s reason-
ing more complex and limiting performance im-
provements. By decomposing the task into smaller,
more manageable steps, Syn-Chain more effec-
tively harnesses the model’s reasoning and com-
prehension capabilities.

Syntactic Information Format Analysis. As
shown in Table 3, we compare the effects of differ-
ent data formats. We devise a tabular representa-
tion using newlines and tabs to incorporate syntac-
tic dependency information effectively into LLMs.
This approach replaces traditional tree structures
to better align with the LLMs’ sequential process-
ing nature. Additionally, we try other structured
formats such as XML, JSON, and HTML. When
employing Step 1 and Step 3 (1⊕ 3), the CoNLL-U
format achieves the best performance. However,
with the full Syn-Chain strategy, XML format out-
performs the others. This suggests that LLMs can
understand and reason with various syntactic for-
mats. In subsequent fine-tuning experiments, we
use the CoNLL-U format due to its simplicity and
minimal introduction of special symbols, reducing
the model’s learning complexity.

Error Analysis. To gain deeper insights into the
models’ understanding of syntactic information,
we conduct a manual analysis of Syn-Chain results
from GPT-4o and Llama-3-8B the best-performing
models among the large and small models, respec-
tively. Specifically, we randomly select 100 sam-
ples from the sentiment prediction errors: 50 from
Rest14 and 50 from Lap14. Through manual evalu-
ation, we identify at which step in Syn-Chain errors
occur. We categorize the errors into three types:
1) Step 1 errors, where the syntactic description
does not align with the provided syntactic informa-
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tion, 2) Step 2 errors, where the opinion descrip-
tion is inconsistent with the original sentence, and
3) Step 3 errors, where the final sentiment judg-
ment is incorrect. Since the process follows a chain
structure, if an earlier step is incorrect, subsequent
steps are not evaluated (e.g., if Step 1 is incorrect,
Step 2 and Step 3 are not considered). The evalua-
tion is conducted independently by three master’s
students with expertise in English and natural lan-
guage processing (NLP). To mitigate the risk of
overlooking errors in the lengthy model responses,
a consensus-based approach is adopted to resolve
any discrepancies among the evaluators.

As shown in Fig. 2, GPT-4o rarely makes mis-
takes in Step 1, demonstrating a solid understand-
ing of the provided syntactic information. In con-
trast, Llama-3-8B exhibits more errors in syntac-
tic comprehension. Additionally, we observe that
GPT-4o’s outputs are more structured and easier
to read (see Fig. 5 in the Appendix). Both models
show higher error rates in Step 2 than in Step 3,
as the sentiment inclination is often conveyed in
Step 2, making it account for a higher proportion
of errors in these sentiment misclassification cases.
This also highlights the importance of generating
reasoning information conditioned on sentiment la-
bels when constructing Syn-Chain fine-tuning data,
which avoid inconsistencies between reasoning and
sentiment labels.

5.2 Syn-Chain Fine-tuning

Baseline. We select BERT-SPC (Song et al., 2019)
and BERT-PT (Xu et al., 2019), both of which
are BERT-based models. Additionally, we con-
sider several works that combine BERT with graph
neural networks to leverage syntactic dependency
trees. BERT-RGAT (Wang et al., 2020) employs
relational graph attention to capture syntactic de-
pendencies. BERT-DualGCN (Li et al., 2021) in-
tegrates both syntactic and semantic knowledge.
BERT-TGCN (Tian et al., 2021) incorporates de-
pendency types into the graph convolutional net-
work. BERT-SenticGCN (Liang et al., 2022) fur-
ther enriches the dependency graph with affective
knowledge. Moreover, we fine-tune T5, Flan-T5,
Llama-2-7B, and Llama-3-8B on ABSA to provide
additional baselines.

Main Results. As shown in Table 4, generative
models such as T5 and Flan-T5 outperform BERT-
based methods. Specifically, T5-base and Flan-
T5-base excess BERT-SPC by 4.44% and 5.24%

in average F1 scores. While BERT combined
with graph neural networks to incorporate syntac-
tic information yields significant performance im-
provements, our Syn-Chain1⊕2�3 training strategy
achieves the best results with T5-base and Flan-
T5-base, surpassing the previously top-performing
BERT-SenticGCN across all four datasets.

As model size increases, Flan-T5-large demon-
strates noticeably better performance than Flan-T5-
base. Furthermore, LoRA fine-tuning on larger
models such as Llama-2-7B and Llama-3-8B leads
to further improvements in ABSA performance.

Effectiveness of Breaking Chain. We evaluate
the full Syn-Chain and three variations of the bro-
ken Syn-Chain: 1� 3, 1� 2� 3, and 1⊕ 2� 3. The
numbers 1, 2, and 3 correspond to the three sequen-
tial steps in the Syn-Chain process, while ⊕ and
� represent linked and broken steps, respectively.
The broken versions are designed with an indepen-
dent Step 3 to prevent the final sentiment prediction
from being influenced by erroneous information.

As shown in Table 4, the best performance across
different models is consistently achieved by Syn-
Chain1⊕2�3, which breaks the connection between
Step 2 and Step 3. This ensures sufficient learning
of syntactic information while avoiding the propa-
gation of errors to the final sentiment classification.
In contrast, the full Syn-Chain1⊕2⊕3 generally per-
forms worse than the baseline. Smaller models
have limited reasoning capabilities, and even with
supervised learning, they may struggle to maintain
accuracy in multi-step reasoning.

When comparing Syn-Chain1�3 and Syn-
Chain1�2�3, the latter demonstrates superior per-
formance, with higher average F1 scores. This
suggests that learning from more related tasks ef-
fectively enhances the model’s performance.

Impact of Error Propagation. To investigate the
impact of error propagation, we conduct two com-
parative experiments on Llama-3-8B trained with
Syn-Chain1⊕2⊕3. In one experiment, the ground-
truth response from Step 1 is used in Step 2 during
inference, ensuring that no errors are introduced in
the first step. In the other experiment, ground-truth
responses of previous steps are used as inputs for
both Step 2 and Step 3, guaranteeing that the first
two steps are error-free. These experiments allow
us to evaluate the impact of errors introduced at
different stages of Syn-Chain.

As shown in Table 5, when only R̃1 is used,
there is a slight performance improvement. How-
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Method Rest14 Lap14 Rest15 Rest16 AVG

Acc F1 Acc F1 Acc F1 Acc F1 F1

Full Fine-Tuning

BERT-SPC 84.11 76.68 77.59 73.28 83.48 66.18 90.10 74.16 72.58
BERT-PT 84.95 76.96 78.07 75.08 - - - - -
BERT-RGAT 85.18 78.38 78.21 73.27 82.84 69.33 90.91 75.76 74.19
BERT-DualGCN 87.13 81.16 81.80 78.10 - - - - -
BERT-TGCN 86.16 79.95 80.88 77.03 85.26 71.69 92.32 77.29 76.49
BERT-SenticGCN 86.92 81.03 82.12 79.05 85.32 71.28 91.07 79.56 77.73

T5-base 87.50 81.44 80.87 76.69 86.34 72.03 93.83 77.92 77.02
+ Syn-Chain1⊕2⊕3 81.07 72.43 78.19 73.68 78.59 65.52 90.58 69.28 70.02
+ Syn-Chain1�3 87.76 81.20 81.50 78.03 86.34 73.13 92.85 77.54 77.48
+ Syn-Chain1�2�3 88.12 82.05 81.22 78.71 86.34 73.76 93.50 79.98 78.63
+ Syn-Chain1⊕2�3 88.30 82.47 81.81 79.12 86.71 74.17 94.37 80.15 78.98

Flan-T5-base 87.58 81.36 81.66 78.42 86.90 74.20 93.34 77.30 77.82
+ Syn-Chain1⊕2⊕3 81.78 72.23 80.56 76.09 85.97 67.47 93.66 74.26 72.51
+ Syn-Chain1�3 86.69 79.91 82.28 79.00 85.05 72.84 92.50 78.86 77.65
+ Syn-Chain1�2�3 87.75 82.47 81.97 78.72 87.26 76.04 93.18 76.77 78.50
+ Syn-Chain1⊕2�3 88.39 82.79 83.22 80.04 87.82 76.86 93.50 79.25 79.73

Flan-T5-large 89.62 84.19 84.16 81.04 89.22 78.08 94.61 84.62 81.98
+ Syn-Chain1⊕2⊕3 85.98 76.19 80.09 74.84 88.00 73.70 94.80 80.25 76.25
+ Syn-Chain1�3 89.08 84.15 84.01 81.44 87.82 78.54 92.12 83.31 81.86
+ Syn-Chain1�2�3 89.71 84.81 84.63 82.61 89.81 78.91 95.12 84.61 82.74
+ Syn-Chain1⊕2�3 90.35 85.30 85.10 82.72 90.22 79.04 95.29 85.03 83.62

LoRA Fine-Tuning

Llama-2-7B 89.73 84.86 84.79 81.85 90.22 78.52 94.48 82.26 81.87
+ Syn-Chain1⊕2⊕3 86.87 79.61 82.75 79.43 90.03 69.43 93.18 72.86 75.33
+ Syn-Chain1�3 89.91 84.67 84.63 82.41 89.66 81.17 94.80 81.94 82.55
+ Syn-Chain1�2�3 90.44 85.14 85.57 83.07 91.88 82.31 94.96 84.43 83.74
+ Syn-Chain1⊕2�3 90.71 86.10 85.89 83.28 91.88 82.71 94.96 84.78 84.22

Llama-3-8B 90.62 85.10 84.48 81.33 91.69 81.39 94.96 83.46 82.82
+ Syn-Chain1⊕2⊕3 87.23 81.67 82.60 79.27 89.37 72.30 93.99 77.70 77.74
+ Syn-Chain1�3 91.25 86.94 86.05 83.45 92.61 82.80 95.29 83.41 84.15
+ Syn-Chain1�2�3 90.71 86.25 86.52 84.05 91.51 81.36 95.45 84.89 84.14
+ Syn-Chain1⊕2�3 91.87 87.61 86.36 84.21 91.88 83.65 95.94 85.50 85.24

Table 4: Experimental results of fine-tuned models on ABSA. AVG is the average performance of the model across
four data sets. The superscript numbers 1, 2, and 3 correspond to the three sequential steps in the Syn-Chain process.
⊕ and � denote link and break, respectively. Different combinations represent various training strategies.

Input Rest14 Lap14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1

Syn-Chain1⊕2⊕3 87.23 81.67 82.60 79.27 89.37 72.30 93.99 77.70
w/ R̃1 88.14 82.57 83.54 80.35 89.72 73.70 94.50 78.95
w/ R̃1, R̃2 97.94 97.00 97.02 96.49 94.49 94.22 95.19 92.53

Table 5: Performance of Syn-Chain fine-tuned Llama-3-8B using ground-truth R̃1 or R̃2 during inference, illustrating
the impact of error propagation.

ever, when both R̃1 and R̃2 are utilized, the model
achieves a significant boost in performance. The
majority of errors tend to originate from Step 2, as
the response in this step typically conveys senti-

ment polarity, which strongly influences the final
outcome. Therefore, the use of the ground-truth R̃2

results in a substantial performance improvement
by minimizing errors propagated from Step 2.
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Input Rest14 Lap14

Acc F1 Acc F1

X , A 87.50 81.44 80.87 76.69
X , A, R̃1 87.32 81.17 81.81 77.98
X , A, R̃2 98.12 97.29 97.49 97.07

Table 6: Automatic evaluation results of R̃1 and R̃2.
Perform sentiment classification on different inputs us-
ing the fine-tuned T5.

5.3 Syn-Chain Data Quality Analysis

We use GPT-3.5 to automatically generate Syn-
Chain reasoning information for supervised learn-
ing. To better understand the quality of the gener-
ated data, we conduct data quality analysis through
both automatic and manual evaluation. In the third
step of training, we exclude the reasoning informa-
tion. Therefore the training data of Step 3 can be
guaranteed to be consistent with sentiment labels.
We do not assess its quality.

Automatic Evaluation. We train two specialized
aspect-level sentiment classifiers based on T5 to
assess the influence of R̃1 and R̃2. These clas-
sifiers take X and A as inputs, with R̃1 or R̃2

added respectively, formulated as P (y|X,A, R̃1)
and P (y|X,A, R̃2). We train and test the models
on the Rest14 and Lap14 datasets. The results,
shown in Tabel 6, indicate that R̃1 has no signifi-
cant impact on sentiment classification, while R̃2

achieves near-perfect performance. This is likely
because R̃2 typically contains words that explicitly
express sentiment polarity, indicating a high consis-
tency between R̃2 and sentiment labels. R̃1 is less
directly useful for sentiment classification, making
its quality difficult to assess automatically.

This raises the question of whether the improve-
ment in Syn-Chain is driven by syntactic parsing
or opinion extraction. In other words, does solely
relying on opinion extraction lead to enhanced sen-
timent classification performance? We explore in
Section 5.4.

Manual Evaluation. We randomly selected 100
samples, 50 from the Lap14 dataset and 50 from
the Rest14 dataset, to assess the correctness of the
generated R̃1 and R̃2. Three master’s students pro-
ficient in English and NLP independently evaluated
the correctness of these outputs. The evaluation
of R̃1 focus on its alignment with the provided
syntactic information, while the evaluation of R̃2

center on its consistency with the original sentence

Method Rest14 Lap14

Acc F1 Acc F1

GPT-3.5 82.50 71.27 79.62 74.63
+ Syn-Chain1⊕3 82.05 69.01 77.56 71.68
+ Syn-Chain2⊕3 83.83 69.38 77.27 67.15
+ Syn-Chain1⊕2⊕3 85.08 78.61 80.09 76.45

Llama-3-8B 90.62 85.10 84.48 81.33
+ Syn-Chain1�3 91.25 86.94 86.05 83.45
+ Syn-Chain2�3 90.35 85.28 86.05 83.86
+ Syn-Chain1⊕2�3 91.87 87.61 86.36 84.21

Table 7: Performance comparison of models under zero-
shot and fine-tuned settings using syntactic information,
opinion extraction, and both.

and sentiment label. In cases of disagreement, a
consensus is reached through discussion. GPT-3.5
exhibits a low error rate of only 5% for both R̃1 and
R̃2, demonstrating strong comprehension capabili-
ties. The few errors observed in R̃1 are primarily
due to incorrect dependency relation descriptions,
whereas those in R̃2 are mainly attributed to incon-
sistencies between the generated content and the
sentiment polarity.

5.4 Role of Syntax and Opinion
As shown in Table 7, we conduct experiments un-
der both zero-shot GPT-3.5 and fine-tuned Llama-3-
8B, comparing models that rely solely on syntactic
information, those that rely solely on opinion ex-
traction, and those that utilize both. Experimental
results demonstrate that models relying on a single
information source experience a performance de-
cline. Specifically, for GPT-3.5, only by combining
the syntactic analysis step and the opinion extrac-
tion step can we significantly surpass the baseline.
Llama-3-8B under fine-tuned settings also validates
this synergistic effect. These findings indicate that
syntactic information and opinion extraction play
complementary roles in sentiment classification,
jointly promoting a deeper understanding of text
by the model. The Syn-Chain design effectively
enhances model performance by organically com-
bining these two information sources, validating its
effectiveness in ABSA.

6 Conclusion

In this paper, we propose Syn-Chain, a novel frame-
work that integrates syntactic information to im-
prove the performance of LLMs in ABSA. By
decomposing ABSA into three sequential steps:
syntactic parsing, opinion extraction, and senti-
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ment classification, Syn-Chain enables more ef-
fective utilization of syntactic dependencies and
enhances the model’s reasoning capabilities. Fur-
thermore, we fine-tune smaller LLMs and intro-
duce a breaking-chain strategy that mitigates error
propagation, ensuring accurate sentiment classifi-
cation even when earlier steps contain errors. Our
experimental results demonstrate that Syn-Chain
significantly improves LLMs’ zero-shot ability in
ABSA and out fine-tuned performance significantly
outperforms previous models. This work highlights
the potential of syntactic information to enhance
LLM performance in ABSA tasks.

Limitations

While our proposed Syn-Chain framework demon-
strates notable improvements in ABSA, there are
several limitations to our approach. First, ABSA
consists of various sub-tasks beyond sentiment clas-
sification, such as aspect term and opinion extrac-
tion. LLMs generally struggle with extraction tasks,
particularly in identifying the correct boundaries of
aspect terms and opinions, leading to inconsisten-
cies with the golden labels. This limitation arises
from the inherent difficulty LLMs face in aligning
extracted spans with precise human annotations.
Although our method incorporates syntactic infor-
mation to improve sentiment classification, its ef-
fectiveness in significantly enhancing extraction
tasks remains uncertain.

Furthermore, although Syn-Chain demonstrates
that LLMs can effectively understand and utilize
syntactic information, the datasets used in our ex-
periments are primarily derived from user reviews,
which generally feature relatively simple syntactic
structures. This simplicity may not fully capture
the complexity of more diverse sentence structures
found in other domains, such as news articles or
academic texts. As a result, the applicability and
robustness of Syn-Chain in handling more complex
syntactic dependencies remain to be fully evalu-
ated. Future work should explore its effectiveness
across a wider range of text types with more intri-
cate syntactic characteristics to determine whether
the framework can generalize to more complex lin-
guistic environments.

Ethics Statement

In this research, we utilize publicly available
datasets, which have been widely used in the aca-
demic community. As such, there are no concerns

regarding copyright infringement or proprietary
data. The use of these datasets adheres to the terms
of use specified by the dataset providers.

For the manual evaluation, we employed three
master’s students, each tasked with analyzing 300
samples. Each evaluator were compensated $100
for their time and effort. This payment rate reflects
a fair and competitive compensation for the amount
of work involved. Additionally, all evaluators par-
ticipated voluntarily and were informed of the tasks
and compensation prior to the study.
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Appendix

A Prompt Details

The prompt consists of two parts: the system
prompt and the user prompt. The system prompt
informs the LLMs of their role, task, and basic
requirements, ensuring consistent and coherent re-
sponses. For the three steps in Sys-Chain, we de-
sign specific system prompts as illustrated in Fig. 3.
The system prompts for Step 1 and Step 2 primarily
focus on limiting the response length, while the
system prompt for Step 3 guides the format of the
generated content to facilitate accurate extraction
and classification of sentiment polarity. The user
prompt, shown in Fig. 4, provides an example of
Syn-Chain completing ABSA. In Step 1, we pro-
vide the syntactic information of the sentence and
the corresponding meaning. Fig. 5 presents the re-
sults of GPT-4o’s syntactic parsing, demonstrating
a more structured and readable output.

You are an AI assistant that helps people find 
information.  Please refine your reply and 
ensure its accuracy. The reply length is 
limited to 200 words.

Step 1: Syntactic Parsing

You are an AI assistant that helps people find 
information.  Please refine your reply and 
ensure its accuracy. The reply length is 
limited to 120 words.

Step 2: Opinion Extraction

You are an sentiment analysis expert.  I will 
provide you with a sentence and a certain 
aspect mentioned in the sentence. Please 
analyze the sentiment polarity of that aspect 
in a given sentence. 
Output:  The sentiment towards {Aspect} in 
the given sentence is {positive, negative or 
neutral}. Because...

Step 3: Sentiment Classification

2024/9/9 16:54 sys_content.svg

file:///C:/Users/Misaka/Desktop/ABSA-Tree/Writing/图/sys_content.svg 1/1

Figure 3: System content prompts in Syn-Chain
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Step 1: Syntactic Parsing

"Meatball parm" is a compound noun phrase in this sentence, acting as the subject of the verb phrase "is 
good".  The dependency parse shows both words are nouns ("NN") and "meatball" modifies " parm" 
(compound relationship). This tells us the sentence expresses a positive opinion about a dish called 
"meatball parm".

Sentence: " I think the meatball parm is good."

4
3
2
1

ID

5

7
6

8

meatball
the

think
I

TEXT

parm

good
is

.

meatball
the

think
I

LEMMA

parm

good
be

.

NOUN
DET

VERB
PRON
POS

NOUN

ADJ
AUX

PUNCT

NN
DT

VBP
PRP
TAG

NN

JJ
VBZ

.

-
-
-
-

FEATS

-

-
-

-

5
5
2
2

HEAD

6

6
2

2

compound
det
root

nsubj
DEPREL

nsubj

acomp
ccomp

punct

-
-
-
-

DEPS

-

-
-

-

-
-
-
-

MISC

-

-
-

-

The following is the CoNLL-U format for the syntactic dependency relationship of this sentence:

Each row in the table represents a word in the sentence, and each column represents some specific 
properties of the word, including ID (Word position in the sentence, starting from 1), TEXT (word itself), 
Lemma (the base form of the word), POS (the simple universal part-of-speech tag), TAG (the detailed 
part - of - speech tag), FEATS (other grammatical features, empty here), HEAD (the header word of the 
dependency relationship of the current word), DEPREL (dependency label, describing the relationship 
between the current word and the header word), DEPS (word dependency, empty here), MISC (other 
additional information, empty here).
Based on the syntactic dependency information of the sentence, analyze information related to "Meatball 
parm" in the sentence.

Step 2: Opinion Extraction

The speaker believes that the "meatball parm" is good. This is clear from the sentence's structure where 
"meatball parm," a compound noun referring to a food dish, is the subject, and "is good" is the predicate 
attributing a positive quality to the subject.

Sentence: " I think the meatball parm is good."
"Meatball parm" is a compound noun phrase in this sentence, acting as the subject of the verb phrase "is 
good".  The dependency parse shows both words are nouns ("NN") and "meatball" modifies " parm" 
(compound relationship). This tells us the sentence expresses a positive opinion about a dish called 
"meatball parm".
Considering the context and information related to "meatball parm", what is the speaker's opinion towards 
"meatball parm"?

Sentence: " I think the meatball parm is good."
The speaker believes that the "meatball parm" is good. This is clear from the sentence's structure where 
"meatball parm," a compound noun referring to a food dish, is the subject, and "is good" is the predicate 
attributing a positive quality to the subject.
Based on the common sense and such speaker's opinion, what is the sentiment polarity towards "meatball 
parm"?

Step 3: Sentiment Classfication

The sentiment towards meatball parm in the given sentence is positive. Because the sentence directly 
states "the meatball parm is good," using the positive adjective "good" to describe it.

2024/9/9 11:05 prompt1.svg

file:///C:/Users/Misaka/Desktop/ABSA-Tree/Writing/图/prompt1.svg 1/1

Figure 4: A zero-shot Syn-Chain prompt for GPT-3.5.
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Step 1: Syntactic Parsing

Sentence: " I think the meatball parm is good."
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The following is the CoNLL-U format for the syntactic dependency relationship of this sentence:

Each row in the table represents a word in the sentence, and each column represents some specific 
properties of the word, including ID (Word position in the sentence, starting from 1), TEXT (word itself), 
Lemma (the base form of the word), POS (the simple universal part-of-speech tag), TAG (the detailed 
part - of - speech tag), FEATS (other grammatical features, empty here), HEAD (the header word of the 
dependency relationship of the current word), DEPREL (dependency label, describing the relationship 
between the current word and the header word), DEPS (word dependency, empty here), MISC (other 
additional information, empty here).
Based on the syntactic dependency information of the sentence, analyze information related to "Meatball 
parm" in the sentence.

In the sentence "I think the meatball parm is good," the phrase "meatball parm" consists of two words: 
"meatball" and "parm." Here is the analysis of these words based on the CoNLL-U format provided:

1. meatball (ID 4)
 - Text: meatball
 - Lemma: meatball
 - POS: NOUN
 - Tag: NN
 - FEATS: _
 - HEAD: 5 (parm)
 - DEPREL: compound
 - DEPS: _
 - MISC: _

2. parm (ID 5)
 - Text: parm
 - Lemma: parm
 - POS: NOUN
 - Tag: NN
 - FEATS: _
 - HEAD: 6 (is)
 - DEPREL: nsubj
 - DEPS: _
 - MISC: _

Analysis:
- "meatball" is a noun that functions as a compound modifier of "parm." This means "meatball" is 

providing additional descriptive information about "parm."
- "parm" is a noun that serves as the nominal subject (nsubj) of the verb "is." This indicates that 
"parm" is the main subject of the clause "parm is good."

In summary, "meatball parm" is a compound noun phrase where "meatball" modifies "parm," and 
"parm" is the subject of the clause describing it as "good."

2024/12/3 18:00 prompt-4o.svg

file:///C:/Users/Misaka/Desktop/ABSA-Tree/Writing/图/prompt-4o.svg 1/1

Figure 5: The result of GPT-4o output in syntactic parsing step.
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