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Abstract

Recent advancements in large language mod-
els (LLMs) have shown remarkable progress
in reasoning capabilities, yet they still face
challenges in complex, multi-step reasoning
tasks. This study introduces Reasoning with
Trees (RwT), a novel framework that syner-
gistically integrates LLMs with knowledge
graphs (KGs) to enhance reasoning perfor-
mance and interpretability. RwT reformulates
knowledge graph question answering (KGQA)
as a discrete decision-making problem, lever-
aging Monte Carlo Tree Search (MCTS) to it-
eratively refine reasoning paths. This approach
mirrors human-like reasoning by dynamically
integrating the LLM’s internal knowledge with
external KG information. We propose a real-
data guided iteration technique to train an evalu-
ation model that assesses action values, improv-
ing the efficiency of MCTS. Experimental re-
sults on two benchmark KGQA datasets demon-
strate that RwT significantly outperforms exist-
ing state-of-the-art methods, with an average
performance improvement of 9.81%. Notably,
RwT achieves these improvements without re-
quiring complete LLM retraining, offering a
more efficient and adaptable approach to en-
hancing LLM reasoning capabilities.

1 Introduction

Working with a large language model (LLM) is not
without risks, including responses corrupted from
hallucinations (Ji et al., 2023; Yeo et al., 2024),
where the generated answers seem credible but are
misinformation (Yao et al., 2024a). Hallucinations
can be a severe problem for LLMs because they can
spread misinformation, expose confidential infor-
mation, and create unrealistic expectations about
what they can do (Ge et al., 2024). One promising
approach to address this challenge is the integration
of knowledge graphs (KGs) into the LLM genera-
tion process (Xu et al., 2024; Shu et al., 2024).
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Figure 1: The lack of knowledge and hallucination is-
sues in current LLM+KG methods.
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Figure 2: Comparison of different knowledge graph
reasoning approaches

KGs are information-rich data that provide a
view of entities and how they interrelate (Ji et al.,
2020; Zhu et al., 2020). As structured repositories
of real-world facts and relationships expressed in a
machine-friendly format, KGs can augment LLMs
with reliable factual knowledge and enhance their
reasoning capability (Pan et al., 2024; Cao, 2024;
Wei Jie et al., 2024). Three methods emerge by pair-
ing a KG with an LLM, including taking LLM as
a retriever (Kim et al., 2023; Tan et al., 2023), em-
ploying it as a query generator (Jiang et al., 2023a)
or directly tuning the LLM on KGs (Luo et al.,
2023). As shown in Fig. 1, LLMs often perform
well on entities and relationships with high frequen-
cies but face challenges in less popular topics.
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Figure 3: The overall framework of RwT. For each simulation in the MCTS, this study uses the LLM as heuristics
to guide the trajectory to promising parts of the search tree and uses an evaluation model to evaluate the quality of
tree nodes.

This inconsistency points to a deeper, more
fundamental issue shared by all these methods:
they fail to effectively integrate the internal knowl-
edge of LLMs with external KG information in
a way that aligns with human intuitive reason-
ing (Agrawal et al., 2024). These approaches do not
follow the human intuitive process of continuously
reflecting, adjusting, and integrating new informa-
tion with existing knowledge. Humans iteratively
reassess and modify their reasoning paths, dynam-
ically incorporating new insights and correcting
errors. This continuous refinement and integra-
tion is crucial for effective problem-solving (Wang
et al., 2023c; Zhao et al., 2024).

To overcome these challenges and better mimic
human-like reasoning, this study proposes a faith-
ful question-answering method called reasoning
with trees (RwT) that synergizes LLMs with KGs
using Monte Carlo Tree Search (MCTS) (Browne
et al., 2012; Silver et al., 2016) for reliable and in-
terpretable reasoning. As shown in Figure 2, RwT
first identifies the question entity “Qian Xuesen”.
It then selects an appropriate relation to explore
based on the probability P (the likelihood of this
relation leading to the correct answer) predicted
by the LLM and the Q-value provided by MCTS
simulation. This process leads to the discovery
of next hop “Problems in motion of . . . ”. RwT
differs from traditional LLM-based approaches by
incorporating the LLM’s capabilities and structured
KG information, enabling more accurate and inter-
pretable reasoning. This method approaches the
KG question-answering task as a discrete decision-
making problem, managed through interactions be-
tween a reasoning environment and a policy model

(implemented with an LLM). As shown in Figure
3, the policy model observes environmental states
and suggests actions. This study employs a Monte-
Carlo planning algorithm for reconcilable search to
overcome the challenge of reconciling the LLM’s
internal training data with conflicting external KG
data. Specifically, RwT initializes candidate so-
lutions with an action value based on LLMs’ in-
herent knowledge, updating it iteratively with fac-
tual knowledge as entities access their next-hop
neighbors. This approach allows more informed
decisions that integrate internal and external knowl-
edge effectively. By directly reasoning over KGs,
the LLM provides heuristic strategies based on ob-
served candidate solutions, thus preventing the gen-
eration of non-executable queries. Additionally,
this study develops a real-data guided iteration tech-
nique to train an evaluate model (implemented with
a pre-trained language model) to assess action val-
ues. This evaluator is trained once and is adaptable
across various datasets.

RwT leverages the fixed LLM’s reasoning capa-
bilities and rich internal knowledge, while harness-
ing MCTS’s balanced exploration and evaluation
strengths. By only requiring the training of a small
PLM for evaluation, the method efficiently navi-
gates the knowledge graph to identify the correct
answer entity for the given KGQA task. Exper-
imental results on two benchmark KG question-
answering datasets show that the proposed method
significantly outperforms several previous methods.
The human evaluation also demonstrates that the
proposed method produces valid and faithful rea-
soning steps compared with existing LLMs, such
as GPT-4o and ChatGPT. To address the computa-
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tional complexity and improve inference efficiency,
we further propose a hop-level beam search (HBS)
as a lightweight alternative to iterative MCTS dur-
ing inference. Compared to the previous works,
RwT avoids the repetitiveness and local-optimality
issues of greedy decoding and mitigates the stochas-
ticity of a single sampled generation.

2 Preliminaries

2.1 Knowledge Graph Question Answering

Multi-hop KG question-answering is a natural lan-
guage processing task based on knowledge graphs.
It inputs a natural language question q and retrieves
the answer from a given knowledge graph G. Fol-
lowing the standard protocol (Saxena et al., 2020),
the subject entities in question q are given and
mapped to a node vq in G via entity-linking al-
gorithms (Yih et al., 2015). The node vq, known as
the seed node, is used to find a multi-hop adjacent
node va as the answer to the question q. This study
formulated the problem as a Markov Decision Pro-
cess (MDP) (Puterman, 1990). The transition prob-
ability is set to 1 since the transition to the related
entity is deterministic once the relation is selected.

2.2 Monte Carlo Tree Search

MCTS (Silver et al., 2016) is a sampling-based
search algorithm for strategy optimization in
decision-making problems. It iteratively builds a
search tree by repeating four phases: selection,
expansion, evaluation, and backpropagation. Dur-
ing the selection phase, it recursively selects child
nodes from the root using the upper confidence
bound (UCB) algorithm (Auer, 2000) (In the im-
plementation of RwT, we use PUCT, an extension
of UCB that incorporates prior probabilities) ,

UCB(i) = wi + C ·
√

2 lnNi

ni
(1)

where ni and Ni are the visit counts of the node i
and its parent node, respectively. C is a hyperpa-
rameter balancing exploration and exploitation and
wi is the average value of all descendant nodes of
i. After selection, the tree expands according to a
defined policy. In the evaluation phase, the value
of the newly expanded node is estimated using ei-
ther sampling or model-based methods. Finally, in
the backpropagation phase, the estimated value is
propagated back to all ancestor nodes of the newly
expanded node.

3 Reasoning with Trees

3.1 Overview

In RwT, the MCTS algorithm explores the knowl-
edge graph starting from an initial state s0, which
corresponds to the entity mentioned in the given
question q. Each node in the MCTS represents a
state st defined by the current entity in the knowl-
edge graph. From each state, possible actions at are
the relations connecting to other entities. Taking
an action leads to a new state st+1, transitioning to
the next entity via the chosen relation. The goal of
this exploration is to find a path in the knowledge
graph that leads to the correct answer entity for the
given question q.

Each state-action (entity-relation) pair is eval-
uated using a value model, which estimates the
future rewards and the current entity’s relevance to
the question. As shown in Figure 4, MCTS in RwT
iteratively selects, expands, evaluates, and backs up
the value of nodes to find the most promising paths
in the knowledge graph. The detailed process is de-
scribed in Algorithm 1 in appendix. Our approach
leverages a fixed LLM as the policy model, focus-
ing solely on training the evaluation model. The
evaluation model, which includes a roll-out and
critical models, is refined through iterative train-
ing to improve its accuracy in guiding the search
process.

3.2 MCTS Planning

For each action a of the state s, this method stores a
set of statistics {P (s, a), Q(s, a), N(s, a)}, where
P is the prior score (i.e., the likelihood score from
the policy model), Q is the action value, and N
is the visit count. Q(s, a) can be viewed as the
posterior score, considering the future impact of
a. Concretely, consider a complete reasoning path
consisting of T planning steps. At a given time
t, the state st represents the current entity in the
knowledge graph, encapsulating the result of all
previous reasoning steps. The subsequent reason-
ing step that might be taken is represented as the
action at, which corresponds to selecting a relation
connected to the current entity. The planning al-
gorithm ends after a fixed budget of simulations.
Each simulation consists of the following stages:
Selection. During the selection phase, the algo-
rithm starts at the root node (the given question
entity) and traverses the tree by selecting child
nodes according to the PUCT (Policy + UCT) algo-
rithm (Rosin, 2011). RwT employs PUCT instead
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Figure 4: An overview of the four operations of RwT. A relation in KG is selected, expanded, and simulated with
the policy and evaluation models until a terminal node is reached. Then, the signals from the value function are
backpropagated.

of the standard UCB algorithm as it is better suited
for integrating with neural network priors, which is
crucial for the approach using an LLM as the pol-
icy model. PUCT incorporates prior probabilities
into the selection process, allowing the method to
leverage the LLM’s knowledge to guide the tree
search. The selection criterion for an action a in
state st is given by:

at = arg max
a∈Tk

[
Q̂(st, a) + cpuct · P (st, a) ·

√
Nparent(a)

1 +N(st, a)

]
(2)

P (st, a) = πpolicy(a | st) (3)

where Q̂(st, a) represents the estimated state-
action value, indicating the expected future reward
for action a in state st. Tk represents the MCTS
tree constructed in the k-th round. In addition, cpuct
is a constant that helps balance exploration and
exploitation. The probability πpolicy(a|st) denotes
the likelihood of selecting action a in the state st as
determined by the policy model. LLM is a policy
model that provides the likelihood score of taking
action a (choosing relation) in a state st (current
entity). Detailed examples of LLM prompts are
provided in Appendix D. Additionally, Nparent(a)
and N(st, a) refer to the visit counts of the parent
node and the state-action pair, respectively.

The selection phase continues until a leaf node
is reached, ensuring that the most promising nodes
are explored based on prior knowledge and accu-
mulated statistics.
Expansion. Upon reaching a leaf node, it is ex-
panded by generating all possible actions from that
node. Each action corresponds to a transition to a
new state. For the knowledge graph, the possible
actions are the relations connected to the current
entity, leading to new entities. Consequently, all
unexplored entities connected to the current entity

are added to the search tree as leaf nodes of the
current node.
Evaluation. The newly expanded nodes are evalu-
ated using an evaluation function integrating future
rewards, state relevance, and actual outcomes. The
value function is defined as

V̂ (st) = (1− λ− µ) · Vroll-out(st)

+ λ · Vcritical(st) + µ · r(a(i)
t≥t, s

(i)

t′>t | st) (4)

where Vroll-out(st) is generated by the roll-out
model, which is based on a pre-trained LLM and
predicts the future reward (Q value) of the state
through simulated future steps. Vcritical(st) is com-
puted by the critical model, which uses a BERT
model (Reimers and Gurevych, 2019) to evaluate
whether the entity at the current node is a semanti-
cally reasonable answer to the question. The term
r
(
a
(i)
t′≥t, s

(i)
t′>t | st

)
represents the actual outcome,

where a
(i)
t′≥t and s

(i)
t′>t represent the actions and

states in the i-th simulation sampled by the pol-
icy model. r (· | st) is the reward of the outcome
in one simulation from the state st. The parameter
µ is set as an indicator function I(st). The reward
is used if the expanded node is terminal; otherwise,
the model relies on the estimated value. During in-
ference, µ is set to 0 to ensure consistency, always
relying on the value model for node evaluation,
including terminal nodes.

Backpropagation. After evaluation, the value of
the leaf node is propagated back through the tree,
updating the value estimates and visit counts for
all ancestor nodes along the path. The backpropa-
tion process ensures that the information gained
from evaluating the leaf nodes influences decision-
making at higher levels of the tree. The updated
rules are as follows:
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N(s,a)← N(s,a) + 1,

Q̂(s,a)← 1

N(s,a)

i∑
j=1

Is,a→st V̂ (st)
(j) (5)

3.3 Model Training
The proposed method leverages a pre-trained LLM
with extensive world knowledge and experience as
the policy model. A smaller evaluation model is
trained to ensure efficiency and accuracy in domain-
specific knowledge. The evaluation model con-
sists of the critical and roll-out models, working
together to comprehensively evaluate the states dur-
ing MCTS.
Initialization. The parameters of the evaluate
model are randomly initialized. At the start, the
evaluate model tends to predict values close to 0
due to its random initialization. As MCTS simula-
tions progress, rewards from terminal nodes (±1)
are back-propagated to their parent nodes. With
an increasing number of simulations N , the esti-
mated values Q̂ of intermediate nodes converge
towards the underlying true values within the range
of [−1, 1].
Roll-out Model. From the tree Tk constructed in
the k-th round of MCTS, solution paths correspond-
ing to terminal nodes with predicted answers are
sampled, denoted as x, along with the value estima-
tion of each node along these paths. A loss function
is then applied to update the roll-out model. The
loss function is defined as:

arg min
roll−out(k)

T (x)∑
t=1

∥∥∥∥Vroll-out(k)(st)

+ λ · Vcritical(st)− V̂(k−1)(st)

∥∥∥∥2
(6)

In this formulation, the loss function cap-
tures the difference between the predicted value
Vroll-out(k−1)

(st) + λ · Vcritical(st) from the estima-
tion model and the estimated value V̂ (st) across all
solution paths. T (x) denotes the number of steps
for reasoning path x. The last term V̂(k−1)(st) can
be calculated as follows:

V̂(k−1)(st) = (1− λ− µ) · Vroll-out(k−1)
(st)

+ λ · Vcritical(st) + µ · r(a(i)
t≥t, s

(i)

t′>t | st)
(7)

where V̂(k−1)(st) denotes the estimated value func-
tion from the (k−1)-th iteration as defined in Equa-

tion (4), which incorporates the updated evaluation
model from the previous iteration.
Critical Model. The critical model checks if the
entity contextually fits the question by assigning
a score based on semantic suitability. When the
question is first input into the policy model, it is
simultaneously asked to provide three possible an-
swers. Based on a fixed synonym-judging BERT
model, the critical model calculates the semantic
similarity to these three possible answers and takes
the average value as Vcritical. The integration en-
sures that the evaluation model’s predictions are
informed by both the critical model’s future reward
predictions and the semantic relevance.
Iterative Training Process. With the updated roll-
out model Vroll−out(k+1)

, the next round of MCTS
is initiated. This iterative training and MCTS re-
finement process continues, enhancing the roll-out
model’s accuracy and effectiveness over multiple
rounds.
Hop-level Beam Search for Efficient Inference.
Considering the computational complexity and
reasoning speed, we propose a hop-level beam
search (HBS) as an efficient inference plugin that
leverages trained RwT model without iterative
MCTS, achieving comparable accuracy while sub-
stantially reducing inference time. Details of HBS
and its performance analysis are provided in Ap-
pendix C.

4 Experiment

4.1 Experimental Setup

Datasets. Following existing work on
KGQA (Jiang et al., 2023b), this paper eval-
uated the reasoning performance of RwT on two
benchmark KGQA datasets: WebQuestionSP
(WebQSP) (Yih et al., 2016) and Complex
WebQuestions (CWQ) (Talmor and Berant, 2018).
These datasets include multi-hop KG reasoning
problems with up to 4 hops, and both are based on
the Freebase (Bollacker et al., 2008) knowledge
graph. The details of the datasets are described in
Appendix B.1.
Evaluation Protocol. To evaluate our reasoning
approach, we frame the task as a ranking problem
inspired by prior studies (Sun et al., 2018). Specif-
ically, for each question, we rank the candidate
entities by their answer scores and then determine
the accuracy of the highest-ranked answer using
the Hits@1 metric. Acknowledging that questions
can have multiple correct answers, we also incor-
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Type Methods WebQSP CWQ

Hits@1 F1 Hits@1 F1

Embedding &
Semantic Parsing

KV-Mem (Miller et al., 2016) 46.7 34.5 18.4 15.7
EmbedKGQA (Saxena et al., 2020) 66.6 - 45.9 -
NSM (He et al., 2021) 68.7 62.8 47.6 42.4
TransferNet (Shi et al., 2021) 71.4 - 48.6 -
KGT5 (Saxena et al., 2022) 56.1 - 36.5 -
SPARQL (Sun et al., 2020) - - 31.6 -
QGG (Lan and Jiang, 2020) 73.0 73.8 36.9 37.4
ArcaneQA (Gu and Su, 2022) - 75.3 - -
RnG-KBQA (Ye et al., 2022) - 76.2 - -

Retrieval

GraftNet (Sun et al., 2018) 66.4 60.4 36.8 32.7
PullNet (Sun et al., 2019) 68.1 - 45.9 -
SR+NSM (Zhang et al., 2022a) 68.9 64.1 50.2 47.1
SR+NSM+E2E (Zhang et al., 2022a) 69.5 64.1 49.3 46.3

LLMs

Flan-T5-xl (Chung et al., 2024) 31.0 - 14.7 -
Alpaca-7B (Taori et al., 2023) 51.8 - 27.4 -
LLaMA2-Chat-7B (Touvron et al., 2023a) 64.4 - 34.6 -
ChatGPT (OpenAI, 2023a) 66.8 - 39.9 -
GPT4o (OpenAI, 2023b) 82.2 - - -
ChatGPT+CoT (Wei et al., 2022) 75.6 - 48.9 -

LLMs+KGs

KD-CoT (Wang et al., 2023a) 68.6 52.5 55.7 -
UniKGQA (Jiang et al., 2023c) 75.1 70.2 50.7 48.0
DECAF (DPR+FiD-3B) (Yu et al., 2023) 82.1 78.8 - -
StructureGPT (Jiang et al., 2023a) 72.6 - - -
ReasoningLM (Jiang et al., 2023b) 78.5 71.0 69.0 64.0
RoG (Luo et al., 2023) 85.7 70.8 62.6 56.2
RwT (Ours) 87.0 79.7 72.4 66.7

Table 1: Performance comparison with different baselines on the two KGQA datasets.

porate the F1 metric for a more comprehensive
assessment.
Baselines. This study considers the following four
types of baseline methods for performance compar-
ison: (1) Traditional Embedding & Semantic Pars-
ing methods: KV-Mem (Miller et al., 2016), Em-
bedKGQA (Saxena et al., 2020), NSM (He et al.,
2021), TransferNet (Shi et al., 2021), KGT5 (Sax-
ena et al., 2022), SPARQL (Sun et al., 2020),
QGG (Lan and Jiang, 2020), ArcaneQA (Gu and
Su, 2022), RnG-KBQA (Ye et al., 2022). (2)
Retrieval methods: GraftNet (Sun et al., 2018),
PullNet (Sun et al., 2019), SR+NSM (Zhang
et al., 2022a), SR+NSM+E2E (Zhang et al.,
2022a). (3) Direct reasoning with LLMs: Flan-
T5-xl (Chung et al., 2024), Alpaca-7B (Taori
et al., 2023), LLaMA2-Chat-7B (Touvron et al.,
2023a), ChatGPT (OpenAI, 2023a), GPT4o (Ope-
nAI, 2023b), ChatGPT+CoT (Wei et al., 2022).
(4) LLMs + KGs methods: KD-CoT (Wang et al.,
2023a), UniKGQA (Jiang et al., 2023c), DE-
CAF (DPR+FiD-3B) (Yu et al., 2023), Struc-
tureGPT (Jiang et al., 2023a), ReasoningLM (Jiang
et al., 2023b), RoG (Luo et al., 2023). The details
of the baselines are described in Appendix B.2.

4.2 Implementation Details

Roll-out Model. For the roll-out model in RwT,
we use LLaMA3-Base-8B (MetaAI, 2024) as the

base PLM. We iteratively train this model on the
training splits of WebQSP and CWQ, as described
in Section 3.3. The training employs a learning rate
4e-5 and the AdamW optimizer (Loshchilov and
Hutter, 2019).
Critical Model. We use a finetuned Sentence-
BERT (Reimers and Gurevych, 2019) to measure
the semantic similarity between the entities found
in the current search and the answers predicted by
the policy model.
Training Data Generation via MCTS. The train-
ing procedure for this method’s value model uti-
lizes an iterative approach with R = 4 rounds. The
process continues until the improvement between
rounds becomes minimal. The experiment gen-
erates 8 Monte Carlo search trees per question-
answer pair during each round. The method ex-
tracts up to 5 correct and 5 incorrect reasoning
paths from these trees, maintaining an approximate
1:1 ratio of positive to negative examples. More
details of implementations and hyperparameter set-
tings are described in Appendix B.3.

4.3 Main Result

We used ChatGPT as the policy model and com-
pared RwT with other baselines on two datasets. As
shown in Table 1, the results show that RwT outper-
forms all baselines across all datasets and metrics.
Compared to the current SOTA models Reason-
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Figure 5: The Hits@1 score of our RwT compared with
three strong baselines (i.e., ReasoningLM, UniKGQA,
and NSM) on CWQ when tuning with various numbers
of samples

ingLM and RoG, RwT shows an average perfor-
mance improvement of 9.81% and 5.77%, respec-
tively. Additionally, unlike these SOTA models,
RwT does not require complete retraining of the
LLM. It only needs finetuning of a smaller PLM,
which can then be plugged into any LLM. On the
CWQ dataset, which has a higher average number
of hops from question to answer, our model per-
forms significantly better than other models. The
results indicate that RwT is particularly effective
in handling multi-hop deep knowledge reasoning
tasks with long logical chains.

Traditional embedding and semantic parsing
methods generally show limited performance. On
the other hand, retrieval-based methods, which con-
vert structured KG information into text, show
significant performance improvements on more
straightforward datasets like WebQSP but are lim-
ited to the more complex CWQ dataset.

Direct reasoning with LLMs has performed com-
parably to some supervised learning baselines (e.g.,
ChatGPT, LLaMA). However, these models still
struggle with multi-hop reasoning tasks. By in-
tegrating RwT as a plug-and-play module with
ChatGPT, we observed an 81.45% improvement in
Hits@1 on the CWQ dataset.

The overall performance of LLMs+KG methods
surpasses other types, demonstrating the effective-
ness of combining LLMs and KGs for KGQA tasks.
Among these methods, PLM-based approaches
(e.g., RoG and ReasoningLM) generally perform
better than LLM-as-query-generator methods (e.g.,
StructureGPT) and LLM-as-retriever methods (e.g.,
KD-CoT).

4.4 Plug and Play Performance
This section evaluates the performance improve-
ment of integrating RwT as a module into different
LLMs. RwT is trained using the same settings

Methods
WebQSP CWQ

Hits@1 Recall Hits@1 Recall

ChatGPT 66.77 49.27 39.9 35.07
+CoT 75.6 - 48.9 -
+RwT 87 78.6 72.4 59.51

Qwen-70B 68.43 54.29 35.23 30.45
+RwT 79.23 68.72 72.36 57.95

Alpaca-7B 51.78 33.65 27.44 23.62
+RwT 84.83 83.56 68.35 57.34

LLaMA2-Chat-7B 64.37 44.61 33.6 29.91
+RwT 87.34 79.54 70.24 60.32

Table 2: Effects of integrating the inference module of
RwT with different LLMs for reasoning.

and methods as before, with ChatGPT as the pol-
icy model on the training splits of the two datasets.
After training, we replace the policy model with dif-
ferent LLMs, keeping other settings unchanged. As
shown in Table 2, integrating RwT as a plugin with
other LLMs results in an average improvement of
55.88% and 66.33% in Hits@1 for ChatGPT and
Qwen, respectively. Even when combined with
the most miniature model, Llama-2 (7B param-
eters), RwT’s performance is significantly better
than larger LLMs. Additionally, this combination
shows a 31.57% improvement compared to Chat-
GPT+COT. These results indicate that finetuning
a smaller LLM as the evaluation model with the
RwT method effectively enhances LLM reasoning
performance, especially in scenarios involving ex-
ternal knowledge not covered in the LLM’s training
data. Additionally, RwT’s consistent performance
boost across LLMs of varying qualities and scales
indicates its ability to significantly reduce depen-
dency on LLMs’ background knowledge, mitigat-
ing the impact of domain-specific knowledge biases
or deficiencies in KG+LLM reasoning methods.

4.5 Tuning Efficiency

In this section, we investigate the finetuning ef-
ficiency of different models. As shown in Fig-
ure 5, our method achieves SOTA performance
for KGs+LLMs with minimal parameter tuning.
As the tuning increases, the model’s performance
improves and eventually stabilizes. Compared to
other models requiring full-scale retraining, RwT
requires approximately 80% less tuning data to
reach a stable state. Our method only needs to
finetune the PLMs to evaluate the current state,
which is a single-step reasoning task. In contrast,
other methods need to train LLMs to fully master
multi-hop reasoning capabilities, requiring more
parameters for tuning. This result suggests that our
method provides a promising approach to address-
ing the challenges of LLMs in multi-hop reasoning
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Question Where did Dr. Qian Xuesen's doctoral advisor attend school?

Answer Budapest University of Technology and Economics

Chat-GPT Dr. Qian Xuesen's alma mater is Shanghai Jiao Tong University.

GPT-4o Dr. Qian Xuesen's PhD advisor was Theodore von Kármán. Von Kármán was a renowned aerodynamicist and aerospace 
engineer who played a significant role in guiding Qian Xuesen's academic development and career. During his time at the 
California Institute of Technology, Qian Xuesen conducted many important research projects under von Kármán's 
supervision.

RwT Qian 
Xuesen

Research 
Field

Educational 
Background-

Undergraduate 
institution

aerospace 
engineering

Shanghai 
Jiao Tong 
University

Educational 
Background-

Doctoral 
dissertation

《Problems in 
motion of …》

Associate 
supervisor

cooperator

Von 
Kármán 

Educational 
Background-

Undergraduate 
institution

Budapest University of 
Technology and Economics

P=0.23 Q=-0.89

P=0.1 Q=-0.74

P=0.26 Q=0.94

P=0.43 Q=-0.31

P=0.12 Q=-0.68

P=0.50 Q=0.84

P=0.74 
Q=0.99

(a)

(b)

(c)

(d)

(f)

(e)

Doctoral 
supervisor

(f)

(g)

Figure 6: Case study of different knowledge graph reasoning Methods.

L-PM MCTS ROM CM Hits@1

✓ × × × 53.1
✓ ✓ × × 59.2
× ✓ ✓ × 63.9
✓ ✓ ✓ × 69.6
✓ ✓ ✓ ✓ 72.4

Table 3: Ablation studies on the CWQ test set of various
components of RwT, including LLM as policy model (L-
PM), MCTS, roll-out model (ROM), and critical model
(CM).

tasks with more efficient training.

4.6 Ablation Study
We assess the effectiveness of each component
in RwT and report the results on CWQ in Table
3. When the method only includes LLMs as the
sole component, it degrades into a greedy strat-
egy where the LLM selects the most likely option
based on expandable relations from the current en-
tity. This strategy achieved a Hits@1 performance
of 53.1%, slightly higher than the ChatGPT+CoT
strategy. This result indicates that having LLMs
reason based on the graph information alone helps
supplement external knowledge, providing LLMs
with more information for reasoning and improv-
ing accuracy. Adding MCTS modestly improves
accuracy to 59.2%, demonstrating the effectiveness
of mapping KGQA as a Markov Decision Process.
Without LLMs as the policy model, using a random
strategy with MCTS and a trained roll-out model
further enhances performance. A more significant
improvement is observed when combining all three
components, boosting accuracy to 69.6%. Finally,
integrating the critical model with the other com-
ponents yields the best performance for this task.

4.7 Case Study
In this section, we illustrate a case study in Figure
6. For clarity in presenting our method, we only

illustrate a subset of nodes from the original Monte
Carlo tree. As shown in Figure 6, our method
found a correct relational path (c)-(f)-(g) through
the MCTS search process, whereas the other solu-
tions contained some errors. Without comprehen-
sive background knowledge, the LLM predicted
a high probability for relation (a). Subsequently,
the value judgments and guidance from MCTS and
the evaluation model corrected this misjudgment
with a negative Q value. Similar corrections oc-
curred in the choice between correct relation (f)
and incorrect relations (d) and (e). On the other
hand, we can see that ChatGPT suffers from both
a lack of knowledge and misinterpretation of the
question semantics, incorrectly identifying the ini-
tial entity’s undergraduate alma mater as the Ph.D.
advisor’s alma mater. Besides, GPT-4o, through
the reasoning, found the Ph.D. advisor of the initial
entity and provided a detailed reasoning process,
but still could not answer the question due to the
lack of knowledge.

5 Conclusion

This paper introduces reasoning with trees (RwT),
an innovative framework that enhances LLM rea-
soning by integrating internal knowledge with ex-
ternal knowledge graph data. RwT employs an
MCTS framework to address data scarcity and
multi-step reasoning complexity through iterative
refinement. This process dynamically updates the
LLM’s understanding with reliable external infor-
mation, improving accuracy and interpretability.
Experimental results on benchmark datasets show
that RwT significantly boosts LLM performance
without requiring extra data annotations.
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6 Limitation

RwT significantly outperforms leading models like
GPT-4 and ChatGPT, highlighting its potential for
self-improvement and more faithful reasoning. De-
spite the significant advancements demonstrated
by the proposed reasoning with trees framework in
improving the reasoning capabilities of LLMs with
knowledge graph integration, several limitations
remain.

• While RwT improves interpretability and ac-
curacy by integrating external KG data, it may
still struggle with questions involving high
levels of ambiguity or uncertainty. The frame-
work relies on the assumption that the knowl-
edge graph contains accurate and relevant in-
formation, which may not always be the case.
In scenarios where the knowledge graph is in-
complete or contains conflicting information,
RwT’s performance may degrade.

• The current implementation of RwT has been
primarily evaluated on specific benchmark
datasets (WebQSP and CWQ) focused on
multi-hop KG reasoning tasks. The gener-
alization of RwT to other domains or types
of knowledge graphs (e.g., domain-specific
KGs) has not been extensively tested. Fu-
ture work should explore the adaptability of
RwT across various domains and investigate
domain-specific optimizations.
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Algorithm 1 Inference with MCTS (Where
TQ (st,a)) denotes the operation of retrieving Q-
values of nodes from the tree T )

Require: question q(s0), policy/roll-out/critical
models πpolicy, Vroll−out, Vcritical, simulations
N , max depth T .
Build the complete tree T by running
MCTSπpolicy ,Vroll−out,Vcritical

(s0, N, T ).
C = [s0], t = 0
while t < T and non-terminal path in C do

Initialize priority queue Ct+1

for st in C do
for a in Tchildren(st) do
st+1 = Cat[st, a]
Add (st+1, TQ(st,a)) to Ct+1

end for
end for
C ← Ct+1

end while
return Top-1 of C

A Related Work

A.1 Question Answering over Knowledge
Graph

Multi-hop Knowledge Graph Question Answering
(KGQA) involves deriving answers by traversing
multiple edges in a Knowledge Graph (KG). The
goal is to locate answer entities that may be several
hops away from the subject entities in a large-scale
KG. Existing approaches to KGQA can be cate-
gorized into embedding-based methods, retrieval-
augmented methods, and semantic parsing meth-
ods.

Embedding-based methods such as KV-Mem
(Miller et al., 2016) and EmbedKGQA (Saxena
et al., 2020), utilize vector representations of en-
tities and relations to facilitate reasoning. These
methods often employ sequential models to simu-
late multi-hop reasoning. For example, QA-GNN
(Yasunaga et al., 2021) and Greaselm (Zhang et al.,
2022b) leverage graph neural networks (Shen et al.,
2023, 2025) to incorporate the graph structure into
the reasoning process. Despite their effectiveness,
these methods require designing specialized archi-
tectures, limiting their flexibility and generalizabil-
ity.

Retrieval-augmented methods aim to enhance
reasoning by retrieving relevant subgraphs from
KGs. Early approaches (Sun et al., 2018, 2019) uti-
lized algorithms like PageRank and random walk

to retrieve subgraphs. However, these methods of-
ten failed to capture the semantic nuances of the
questions, leading to noisy retrieval results. More
recent approaches by Zhang et al. (2022a) and Li
et al. (2023) employ more sophisticated retrieval
techniques like relation paths-based subgraph re-
trieval and BM25 to improve performance. Nev-
ertheless, these methods still discard much of the
KG’s structural information, resulting in subopti-
mal outcomes.

Semantic parsing methods convert natural lan-
guage questions into executable queries. Works
proposed by Sun et al. (2020) and Lan and Jiang
(2020) dynamically generate and execute these
queries. However, these methods are heavily re-
liant on the quality of the generated queries, with
non-executable queries yielding no answers.

Unlike previous methods, our approach focuses
on harnessing the intrinsic knowledge within LLMs
to iteratively enhance their understanding and uti-
lization of KGs. By integrating question-answer
pairs, our method activates the latent knowledge
in LLMs, allowing them to autonomously refine
their reasoning process, akin to human learning and
adaptation.

A.2 Monte-Carlo Planning for Language
Monte-Carlo Planning (MCP) has been extensively
used in strategic games (Silver et al., 2017; Schrit-
twieser et al., 2020) but its application in natural
language processing (NLP) remains underexplored.
Previous works have attempted to apply MCP to
language generation tasks, such as decoding during
text generation (Kumagai et al., 2016, 2018; Chaf-
fin et al., 2022). These methods primarily focus
on improving the quality of generated text by ex-
ploring various decoding paths.Our work is among
the few that formulate question answering (QA)
as a decision-making problem, leveraging MCP
to optimize the QA process. Which mirrors hu-
man reasoning by iteratively refining the reasoning
paths based on new insights and corrections.

A.3 Reasoning with Language Models
Recent advancements have shown that Large LLMs
can effectively perform reasoning tasks by generat-
ing intermediate reasoning steps (Wang et al., 2024;
Chen et al., 2025, 2024). Techniques like Chain-of-
Thought prompting enable LLMs to break down
complex tasks into simpler steps, thereby improv-
ing their reasoning capabilities. Tree of thoughts
(Yao et al., 2024b) and graph of thoughts (Besta
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Datasets #Train #Test Max #hop

WebQSP 2,826 1,628 2
CWQ 27,639 3,531 4

Table 4: Statistics of datasets.
et al., 2024) further extend this concept by struc-
turing the reasoning process as a tree or graph,
exploring multiple reasoning paths simultaneously.

Despite these advances, issues like hallucina-
tions and lack of factual knowledge still affect
the faithfulness of the reasoning process (Tafjord
et al., 2022; Creswell and Shanahan, 2022). Meth-
ods such as ReACT (Yao et al., 2023) and En-
tailer (Tafjord et al., 2022) aim to mitigate these
problems by incorporating interaction with exter-
nal knowledge sources and introducing verification
mechanisms for the reasoning steps. Our approach
enhances these methods by incorporating Monte-
Carlo planning to generate and evaluate reasoning
steps. By using a deterministic corpus and real-
time knowledge retrieval from KGs, our method
reduces the likelihood of hallucinations and im-
proves the faithfulness of the reasoning process.
This allows for a more robust and reliable reason-
ing capability in LLMs, closely resembling human
problem-solving strategies.

B Experiment Details

B.1 Datasets
In this section, we provide more relevant details
about the datasets we used in experiments. We
utilized two significant benchmark datasets: We-
bQuestionSP (WebQSP) (Yih et al., 2016) and
Complex WebQuestions (CWQ) (Talmor and Be-
rant, 2018). These datasets are critical for evaluat-
ing the effectiveness of our proposed methods in
the field of knowledge graph question answering.
We provide a comprehensive description of each
dataset and the specific adaptations we made for
our experiments bellow, and the statistics of these
datasets are provided in Table 4.
WebQuestionsSP (WebQSP) WebQuestionsSP
consists of 4,737 natural language questions, each
answerable by entities within a maximum of 2 hops
from the topic entity in the Freebase knowledge
graph. We adopted the train, validation, and test
splits as defined by GraftNet [Sun et al., 2018]
to ensure consistency with previous research and
facilitate fair comparisons.
Complex WebQuestions 1.1 (CWQ) Complex
WebQuestions 1.1 is built upon WebQSP, intro-

ducing a higher level of complexity. It includes
questions that are more intricate and involve ad-
ditional constraints or extended entities to restrict
possible answers. The answers in CWQ are within
a maximum of 4 hops from the topic entity on the
Freebase knowledge graph

For our experiments, we followed the training
and test splits outlined in previous works such as
those by Sun et al. (2018) and Jiang et al. Jiang
et al. (2022). This approach ensures that our results
are directly comparable to established benchmarks.
Specifically, we constructed subgraphs of the Free-
base knowledge graph by extracting all triples that
lie within the maximum reasoning hops of question
entities in WebQSP and CWQ. This reduction in
the size of the knowledge graph aligns with method-
ologies employed in earlier studies[He et al., 2021;
Jiang et al., 2022].During the instruction-tuning
phase, we utilized the training splits from both We-
bQSP and CWQ. To optimize planning, we gener-
ated supervisory signals by extracting the shortest
paths connecting the questions and answers. These
paths were then used in the retrieval-reasoning opti-
mization phase, where they were fed into our model
alongside the questions to predict the correct an-
swers.

B.2 Baselines

For comparison, our baseline set consists of the
following methods which are presented below:

(1) Traditional Embedding & Semantic Pars-
ing Methods

• KV-Mem: KV-Mem (Miller et al., 2016) em-
ploys a Key-Value memory network to store
triples and perform multi-hop reasoning by
iteratively operating on the memory, enabling
effective question answering over knowledge
graphs.

• EmbedKGQA: EmbedKGQA (Saxena et al.,
2020) addresses KG reasoning as a sequential
link prediction problem by leveraging the em-
beddings of entities and questions, facilitating
accurate answer generation.

• NSM: NSM (He et al., 2021) uses a sequential
model to replicate the multi-hop reasoning
process, thereby enhancing the ability to infer
answers from knowledge graphs.

• TransferNet: TransferNet (Shi et al., 2021)
employs a graph neural network to capture the
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Hyperparameter Value

cpuct 1.25
R 4
λ 0.15
Simulations N 40
Temperature 0.6
max depth (max steps) T 5
Batch size 8
Optimizer type AdamW (Loshchilov and Hutter, 2017)
Learning rate 4e-5
lr scheduler type cosine
Warmup ratio 0.03
Epochs 20
Weight decay 0.0001

Table 5: Hyperparameter settings for the RwT model.

relationship between entities and questions,
thus aiding in the reasoning process.

• KGT5: KGT5 (Saxena et al., 2022) fine-tunes
a sequence-to-sequence framework on knowl-
edge graphs, generating answers based on the
input questions.

• SPARQL: SPARQL (Sun et al., 2020) intro-
duces a novel skeleton grammar to represent
the high-level structure of complex questions
using language modes.

• QGG: QGG (Lan and Jiang, 2020) gener-
ates a query graph for a question by concur-
rently adding constraints and extending rela-
tion paths.

• ArcaneQA: ArcaneQA (Gu and Su, 2022) dy-
namically generates the query based on results
from previous steps, ensuring more accurate
and contextually relevant answers.

• RnG-KBQA: RnG-KBQA (Ye et al., 2022)
first enumerates all possible queries and then
ranks them to produce the final output, opti-
mizing the query selection process.

(2) Retrieval Methods

• GraftNet: GraftNet (Sun et al., 2018) re-
trieves relevant subgraphs from knowledge
graphs using entity linking, facilitating tar-
geted question answering.

• PullNet: PullNet (Sun et al., 2019) combines
an LSTM with a graph neural network to re-
trieve a question-specific subgraph, enhancing
retrieval accuracy.

• SR+NSM: SR+NSM (Zhang et al., 2022a)
employs relation-path retrieval to obtain sub-
graphs for multi-hop reasoning, improving the
efficiency of the reasoning process.

• SR+NSM+E2E: SR+NSM+E2E (Zhang
et al., 2022a) adopts an end-to-end training
strategy to jointly train the retrieval and
reasoning modules of SR+NSM, achieving
better integration and performance.

(3) Direct Reasoning with LLMs

• Flan-T5-xl: Flan-T5-xl (Chung et al., 2024)
is an enhanced version of T5 models, instruc-
tion fine-tuned on a mixture of tasks to im-
prove performance on a wide range of natural
language processing applications.

• Alpaca-7B: Alpaca-7B (Taori et al., 2023)
is based on LLaMA and fine-tuned on an
instruction-following dataset, enhancing its
ability to generate contextually appropriate
responses.

• LLaMA2-Chat-7B: LLaMA2-Chat-7B (Tou-
vron et al., 2023b) is a large language model
optimized for dialogue purposes, facilitating
more natural and coherent conversational in-
teractions.
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• ChatGPT: ChatGPT (OpenAI, 2023a) is a
powerful closed-source language model capa-
ble of following instructions to perform com-
plex tasks with high accuracy and fluency.

• GPT4o: GPT4o (OpenAI, 2023b) is Ope-
nAI’s latest and most advanced model, of-
fering improved generation of nuanced and
contextually aware text.

• ChatGPT+CoT: ChatGPT+CoT (Wei et al.,
2022) employs the Chain-of-Thought prompt-
ing technique to enhance the reasoning capa-
bilities of ChatGPT, resulting in more accurate
and logical outputs.

(4) LLMs + KGs Methods

• KD-CoT: KD-CoT (Wang et al., 2023b) in-
tegrates knowledge retrieval from knowledge
graphs to generate faithful reasoning plans for
large language models, improving reasoning
accuracy.

• UniKGQA: UniKGQA (Jiang et al., 2022)
unifies the graph retrieval and reasoning pro-
cess into a single model using LLMs, achiev-
ing state-of-the-art performance on KGQA
tasks.

• DECAF (DPR+FiD-3B): DECAF (Yu et al.,
2022) combines semantic parsing and LLM
reasoning to jointly generate answers, attain-
ing high performance on KGQA tasks.

• StructureGPT: StructureGPT (Jiang et al.,
2023a) integrates the structural information of
knowledge graphs with LLMs, enabling more
accurate and interpretable reasoning.

• ReasoningLM: ReasoningLM (Jiang et al.,
2023b) combines the strengths of LLMs and
knowledge graphs to perform detailed and ac-
curate reasoning across complex queries.

• RoG: RoG (Luo et al., 2023) synergizes
LLMs with knowledge graphs using a
planning-retrieval-reasoning framework to
generate faithful and interpretable reasoning
results, achieving state-of-the-art performance
on KG reasoning tasks.

B.3 Parameter Details
For the solution generation via MCTS, we set
cpuct = 1.25, and set round R = 4, in every round,

Algorithm 2 Hop-level Beam Search

Require: Beam sizes B1, B2, question q (s0), pol-
icy / value models πθ, Vϕ, max hops T .
C ← [s0]×B1, t← 0 {Initialize candidates}
while t < T and non-terminal path in C do

Initialize priority queue Ct+1 {Max heap}
for st in C do

Sample {a(b)}B2
b=1 ∼ πθ(a|st) {LLM gen-

erates B2 samples in parallel}
for b = 1 to B2 do
st+1 ← Cat[st, a(b)]
Add (st+1, Vϕ(st+1)) to Ct+1 {Vϕ(st+1)
predicted by value model}

end for
end for
C ← Top-B1 of Ct+1

end while
return Top-1 of C {Return top-1 as the final
solution path}

we build 8 trees for each question-answer pair and
randomly sample at most 5 correct and 5 incorrect
solution processes. The ratio between positive and
negative examples is approximately 1:1. For super-
vised fine-tuning, we set the learning rate of 4e-5,
batch size of 8, the weight of the λ in evaluation
function(3) is setted to 0.15, and train the model
for 20 epochs. We employ the AdamW optimizer
(Loshchilov and Hutter, 2017) and the cosine learn-
ing rate scheduler with the warmup rate set to 0.03.
More hyperparameter details can be found in Table
5.

C Hop-level Beam Search for Efficient
Inference

C.1 Hop-level Beam Search

The hop-level beam search (HBS) is an efficient in-
ference plugin designed to leverage the RwT model
after it has been fully trained using the Monte Carlo
Tree Search (MCTS) process. This approach al-
lows for rapid inference without the need for it-
erative MCTS during the prediction phase. HBS
integrates seamlessly with the RwT framework by
utilizing the policy and value models that were
learned and refined during the MCTS training pro-
cess.

In the HBS approach, each hop corresponds to
a transition in the knowledge graph, aligning with
RwT’s graph-based reasoning paradigm. The algo-
rithm employs the trained policy model πθ to gener-
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Inference Strategy Hits@1 (%) Avg. Inference Time (s) Avg. Hops

Greedy Decoding 47.23 1.1 3.34
MCTS (B1 = 1) 72.40 9.3 4.57
HBS (B1 = 1, B2 = 5) 62.32 3.0 3.41
HBS (B1 = 2, B2 = 5) 68.45 2.6 2.95
HBS (B1 = 3, B2 = 5) 71.74 2.2 2.77
HBS (B1 = 4, B2 = 5) 71.80 2.9 2.43
HBS (B1 = 5, B2 = 5) 72.38 3.8 2.56

Table 6: Performance comparison of different inference strategies on the CWQ dataset.

ate candidate actions (hops) at each step, while the
value model Vϕ evaluates the quality of each candi-
date path, guiding the beam search process. This
integration allows HBS to maintain the robust rea-
soning capabilities developed through MCTS train-
ing, while significantly reducing inference time.

The key advantage of HBS lies in its ability
to perform efficient inference immediately after
the MCTS-based training is complete, without re-
quiring further adjustments or additional training
steps. This makes HBS a valuable tool for scenar-
ios where rapid deployment and quick inference
are crucial, while still benefiting from the deep rea-
soning capabilities instilled by the MCTS training
process.

The HBS algorithm proceeds as follows: Ini-
tially, it generates B1 candidates for the first hop.
For each subsequent hop, it expands B2 candidates
from each of the B1 previous candidates, resulting
in B1 ×B2 new candidates. These candidates are
then evaluated using the value model, and the top
B1 candidates are retained for the next hop. This
process continues until a terminal node is reached
or a maximum number of hops is achieved. The
specific steps of the HBS algorithm are detailed in
Algorithm 2.

C.2 Performance Analysis
To evaluate the effectiveness and efficiency of HBS,
we conducted a comprehensive analysis with vari-
ous beam sizes, comparing it with greedy decoding
and MCTS. Our experiments focused on the Com-
plex WebQuestions (CWQ) dataset, which presents
challenging multi-hop reasoning tasks. Table 6
presents the performance metrics for different in-
ference strategies. The Hits@1 score measures the
accuracy of the highest-ranked answer, while the
average inference time and average number of hops
provide insights into the computational efficiency
and reasoning depth of each method.

As evidenced by the results, HBS demonstrates a
favorable balance between accuracy and efficiency.
The HBS configuration with B1 = 5 and B2 = 5
achieves a Hits@1 score of 72.38%, which is nearly
equivalent to MCTS (72.40%) while significantly
reducing the average inference time from 9.3 sec-
onds to 3.8 seconds. This represents a substantial
improvement in efficiency without compromising
accuracy.

C.3 Efficiency Analysis
The hop-level beam search offers substantial im-
provements in inference efficiency compared to the
iterative MCTS approach. The reduced computa-
tion time is particularly noteworthy, with HBS (B1
= 5, B2 = 5) achieving nearly the same accuracy as
MCTS while reducing the average inference time
by approximately 59.1%.

This efficiency gain can be attributed to several
factors. First, HBS allows for parallel processing
in the generation of candidates at each hop, which
is particularly beneficial on multi-GPU systems.
Second, the beam search approach scales more
effectively with the complexity of the knowledge
graph, as it does not require building and expanding
a full Monte Carlo tree for each inference.

Furthermore, HBS offers flexibility in balancing
inference speed and reasoning quality through the
adjustment of beam sizes B1 and B2. As shown
in Table 6, increasing B1 generally improves accu-
racy but with diminishing returns and at the cost
of increased inference time. Interestingly, the in-
ference time exhibits a U-shaped curve as B1 in-
creases, with an optimal point at B1 = 3. This
pattern likely reflects the specific characteristics
of the CWQ dataset, where a moderate beam size
strikes the best balance between finding efficient
paths and computational overhead. The average
number of hops tends to decrease with larger beam
sizes, from 3.41 for B1 = 1 to 2.56 for B1 = 5. This
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suggests that HBS can find more direct paths to the
answer when considering more candidates at each
step, contributing to the overall efficiency of the
method. However, this benefit is partially offset
by the increased computational cost of evaluating
more candidates for larger B1 values.

The data reveals an optimal point at B1 = 3,
where HBS achieves the best balance between ac-
curacy (71.74%) and inference time (2.2 seconds).
This configuration offers a significant speed im-
provement over MCTS while maintaining competi-
tive accuracy and a relatively low average number
of hops (2.77).

In conclusion, HBS serves as an efficient plu-
gin for the RwT model, offering a practical solu-
tion for scenarios where inference speed is crucial,
while maintaining reasoning quality close to that
achieved by the full MCTS approach. The ability to
tune beam sizes provides users with the flexibility
to optimize for their specific requirements, whether
prioritizing accuracy or speed. The observed perfor-
mance characteristics underscore the importance
of carefully selecting beam sizes to achieve the
desired balance between accuracy and computa-
tional efficiency in complex reasoning tasks, partic-
ularly considering dataset-specific characteristics
that may influence the optimal configuration.

D Prompt Examples

Figure 7&8 show example prompt of RwT. For a
KGQA question and the provided knowledge graph,
starting from the initial reasoning state, RwT first
presents the question and asks the policy model
to provide the three most likely answers. Then it
provides the policy model with the candidate rela-
tions of the question entity and requests the LLM to
evaluate the likelihood that these relations will lead
to the correct answer entity. In each subsequent
iteration, RwT only asks the policy model to assess
the likelihood that the candidate relations of the
question entity will eventually lead to the correct
answer entity.
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Prompt example of RwT in the initial reasoning state:
[Human]: You are a helpful assistant that when I ask you a question, you will provide the three
most likely answers as responses.

Here are a few examples:
<question>Who is the student that coined the Euler-Lagrange equation?</question>
<answer>[A: Leonhard Euler, B: Joseph Louis Lagrange, C: Johann Bernoulli]</answer>

<question>What is the name of the first ruler’s youngest son whom Confucius served?</question>
<answer>[A: Bo Yu, B: Kong Li, C: Zi Lu]</answer>

Remaining examples . . .

Now let’s answer the question below:
<question>Where did Dr. Qian Xuesen’s doctoral advisor attend school? </question>

[Policy Model]: <answer>[A: Massachusetts Institute of Technology (MIT), B: California
Institute of Technology (Caltech), C: Stanford University] </answer>

[Human]: Now let’s play a deduction game. In this game, you need to find the answer by
reasoning based on the given questions. The inference process is divided into multiple steps. At
each step, I will provide you with an entity and its related relationships. Each time, you need to
fully consider the question and the current state of the entity, evaluate the possibility of ultimately
inferring the correct answer based on the given relationships.

Here are a few examples:
<question>Who is the student that coined the Euler-Lagrange equation?</question>
<current entity>[Euler-Lagrange equation]</current entity>
<current relations>[A: NamedAfter, B: DerivedFrom, C: HasFormulation] </current relations>
<answer>[A: NamedAfter 0.5, B: DerivedFrom 0.2, C: HasFormulation 0.1] </answer>

Remaining examples . . .

Now let’s play the game below:
<question>Where did Dr. Qian Xuesen’s doctoral advisor attend school? </question>
<current entity>[Qian Xuesen] </current entity>
<current relations>[A: CollaboratedWith, B: DerivedFrom, C: HasFormulation] </current
relations>

Figure 7: Prompt example of RwT in the initial reasoning state
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Prompt example of RwT after the initial reasoning state:

[Human]: Now let’s play a deduction game. In this game, you need to find the answer by
reasoning based on the given questions. The inference process is divided into multiple steps. At
each step, I will provide you with an entity and its related relationships. Each time, you need to
fully consider the question and the current state of the entity, evaluate the possibility of ultimately
inferring the correct answer based on the given relationships.

Here are a few examples:
<question>Who is the student that coined the Euler-Lagrange equation?</question>
<current entity>[Euler-Lagrange equation]</current entity>
<current relations>[A: NamedAfter, B: DerivedFrom, C: HasFormulation] </current relations>
<answer>[A: NamedAfter 0.5, B: DerivedFrom 0.2, C: HasFormulation 0.1] </answer>

Remaining examples . . .

Now let’s play the game below:
<question>Where did Dr. Qian Xuesen’s doctoral advisor attend school? </question>
<current entity>[Theodore von Kármán] </current entity>
<past reasoning paths>[Qian Xuesen→ Mentored→ Theodore von Kármán] </past reasoning
paths>
<current relations>[A: HasAchievement, B: HasEducation, C: CollaboratedWith] </current
relations>

Figure 8: Prompt example of RwT after the initial reasoning state
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