
Proceedings of the 31st International Conference on Computational Linguistics, pages 3203–3221
January 19–24, 2025. ©2025 Association for Computational Linguistics

3203

SKIntern: Internalizing Symbolic Knowledge for Distilling Better CoT
Capabilities into Small Language Models

Huanxuan Liao1,2, Shizhu He1,2*, Yupu Hao1,2, Xiang Li1,2,
Yuanzhe Zhang4, Jun Zhao1,2, Kang Liu1,2,3

1 The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3 Shanghai Artificial Intelligence Laboratory, Shanghai, China

4 National Science Library, Chinese Academy of Sciences, Beijing, China
{liaohuanxuan2023, haoyupu2023, lixiang2022}@ia.ac.cn {shizhu.he, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

Small Language Models (SLMs) are attract-
ing attention due to the high computational
demands and privacy concerns of Large Lan-
guage Models (LLMs). Some studies fine-tune
SLMs using Chains of Thought (CoT) data dis-
tilled from LLMs, aiming to enhance their rea-
soning ability. Furthermore, Some CoT dis-
tillation methods introduce external symbolic
knowledge into the generation process to im-
prove the limited knowledge memory, reason-
ing ability and out-of-domain (OOD) general-
ization of SLMs. However, the introduction of
symbolic knowledge increases computational
overhead and introduces potential noise. In
this paper, we introduce SKIntern, an innova-
tive approach that empowers SLMs to inter-
nalize symbolic knowledge and few-shot ex-
amples gradually through a progressive fine-
tuning process, guided by a predefined linear
decay schedule under curriculum learning. By
efficiently internalizing knowledge, SKIntern
reduces computational overhead and speeds up
the reasoning process by focusing solely on
the question during inference. It outperforms
state-of-the-art baselines by over 5%, while re-
ducing inference costs (measured in FLOPs)
by up to 4× across a wide range of SLMs in
both in-domain (ID) and out-of-domain (OOD)
tasks. Our code will be available at https:
//github.com/Xnhyacinth/SKIntern.

1 Introduction

Large Language Models (LLMs) (Touvron et al.,
2023; Yang et al., 2024) have greatly excelled at
various complex reasoning tasks such as mathe-
matical (Li et al., 2024a), symbolic (Suzgun et al.,
2022) and logical (Dave et al., 2024) reasoning,
by applying Chains of Thought (CoT) prompting
(Wei et al., 2022) and In-Context Learning (ICL)
(Ye et al., 2023; Shum et al., 2023). Nonetheless,
the high computational expenses and data privacy

*Corresponding author

(ii) KARD

Generate

Fine-tune

KB

Retrieve

(iii) CasCoD

(i) Std-CoT
Generate Fine-tune

Q R + A

Generate
Fine-tune

Q + K
R + A

Q R
Fine-tune

Q + R A

Stage 1

Stage 2

Generate(iv) SKIntern

SLM

LLM

Fine-tune and
Internalize

Progressively

Rationale (R)

Knowledge (K)

Trainable

Frozen

Performance Efficiency

Q R + A

Q + K R + A

Figure 1: Knowledge utilization comparisons of SKIn-
tern and other typical CoT distillation methods. (i)
Std-CoT: SLM is fine-tuned to generate the rationale
and answer for the question (Q -> R + A). (ii) KARD:
Fine-tune the SLM to generate the rationale and answer
based on the question and the retrieved symbolic knowl-
edge (Q + K -> R + A). (iii): CasCoD: Decompose the
single CoT learning step into two comprehensive learn-
ing steps of rationale generation (Q -> R) and rationale
utilization (Q + R -> A). (iv): SKIntern: Like human in-
terns, SLMs gradually absorb and internalize symbolic
knowledge provided by LLMs during the progressive
fine-tuning, thereby achieving efficient (Q -> R + A)
and effective reasoning (modeling K in parameters).

issues associated with LLMs have highlighted the
need for Small Language Models (SLMs) (Xu et al.,
2024). However, these advanced reasoning and
knowledge capabilities are typically modeled in
larger models (≥13B), making it challenging to
replicate in SLMs (≤7B) (Kaplan et al., 2020).

To improve the reasoning ability of SLMs, ex-
isting works (Fu et al., 2023; Li et al., 2024b) aim
to distill the reasoning ability of LLMs into SLMs
by fine-tuning SLMs with high-quality rationales
obtained from LLMs, known as standard CoTs dis-
tillation (Std-CoT) (Magister et al., 2023). How-
ever, due to the limited parameter size of SLMs,
they cannot effectively memorize all knowledge
and model reasoning ability, making it difficult to
generalize to out-of-domain (OOD) tasks.

Recently, several methods have been proposed to

https://github.com/Xnhyacinth/SKIntern
https://github.com/Xnhyacinth/SKIntern

3204

further improve the knowledge memory and reason-
ing ability of SLMs. For example, as illustrated in
Figure 1, KARD (Kang et al., 2023) uses external
knowledge bases to enhance the memory capacity
of SLMs, while CasCoD (Dai et al., 2024) em-
ploys cascading decomposition to support gradual
learning. However, those methods lead to two chal-
lenges: 1) Redundant and noisy symbolic knowl-
edge degrades the effect of CoT distillation. Doc-
ument retrieval based on similarity frequently re-
sults in repetitive and trivial content, complicating
the model’s ability to extract key information (Liu
et al., 2023). Additionally, retrieved documents
often contain irrelevant or misleading information,
introducing noise that diminishes the model’s per-
formance. 2) Long input and multi-stage gen-
eration reduce the inference efficiency of CoT
distillation. Processing additional documents and
rationales imposes significant memory and compu-
tational burdens, and the complex inference pro-
cess complicates deployment and implementation,
reducing overall efficiency. Therefore, a key chal-
lenge of CoT distillation is: Can we effectively and
efficiently transfer the rich knowledge and rea-
soning ability of LLMs through CoT distillation
while minimizing computational overhead?

To resolve the above challenge, we examine
the human learning process and draw analogies to
model fine-tuning. For instance, at first, an intern
typically needs detailed explanations, examples,
and documentation to learn new skills (Zou et al.,
2024). However, once they have internalized this
knowledge and mastered the required skills, such
extensive information is no longer needed. There-
fore, we believe that if SLMs are provided with
detailed guidance and symbolic knowledge while
learning rationales from LLMs, their learning out-
comes can be greatly enhanced. By gradually in-
ternalizing this knowledge into their parameters,
SLMs can independently develop efficient reason-
ing abilities, eliminating the need for additional
document retrieval or multi-stage generation.

To perform an efficient and effective CoT distilla-
tion, we introduce a novel approach SKIntern that
internalizes the symbolic knowledge during model
fine-tuning and enables efficient inference without
additional context. Specifically, our method com-
prises two key steps. Initially, for each training
instance, LLMs generate rationales and symbolic
knowledge (such as the learning summaries and
supplementary materials) and we select the most
relevant ones using cosine similarity. Secondly, we

gradually perform token-level symbolic knowledge
compression and instance-level example pruning
based on a predefined linear decay schedule. This
refined information is then used to fine-tune the
SLM to generate the rationale from the LLMs and
the answer. As the schedule progresses, both sym-
bolic knowledge and examples are internalized into
the model’s parameters, enabling effective reason-
ing based solely on the questions during inference.

We evaluate SKIntern on open-source mod-
els like TinyLLaMA (Zhang et al., 2024) and
LLaMA2-7B (Touvron et al., 2023) across fac-
tual, mathematical, and general reasoning bench-
marks. By internalizing symbolic knowledge into
parameters and addressing questions exclusively
during inference, SKIntern surpasses strong base-
lines in both ID and OOD tasks while significantly
reducing computational requirements (measured in
FLOPs). This supports our hypothesis that internal-
izing symbolic knowledge can significantly reduce
inference costs, thereby avoiding explicit process-
ing during inference. Additionally, we find that the
performance of SKIntern can be further enhanced
by incorporating few-shot examples into parame-
ters with minimal additional computation. These
improvements suggest that our method balances
efficiency and effectiveness, making it highly suit-
able for optimizing SLM inference performance in
cost-sensitive scenarios. In conclusion, the contri-
butions of this paper are summarized as follows:

• We propose a novel CoT distillation method
SKIntern designed to emulate the incremental
learning process of interns, gradually learning
and mastering knowledge and skills.

• We progressively internalize the symbolic
knowledge generated by the LLM and the
selected examples into parameters, thereby
achieving effective and efficient inference
without the need for additional information.

• We conducted extensive experiments on 7 rea-
soning benchmarks. SKIntern outperforms
robust baselines by 5% in both ID and OOD
tasks, while reducing inference costs by up to
4× across a broad spectrum of SLMs.

2 Related Work

CoT Distillation transfers the reasoning ability of
LLMs to SLMs, where reasoning ability is an emer-
gent property that enables LLMs to excel in reason-
ing tasks through Chains of Thought (CoT) prompt-

3205

ing (e.g., Let’s think step-by-step) (Wei et al., 2022;
Ho et al., 2022). Recent works (Magister et al.,
2023; Fu et al., 2023) show that this CoT inference
mechanism can be used for distillation: fine-tuning
a smaller student model using CoT sequences ex-
tracted from a larger teacher model significantly
boosts performance. Further studies (Hsieh et al.,
2023; Li et al., 2024b) have proposed treating the
learning of rationales and answers as distinct op-
timization objectives. However, these approaches
often overlook the limited memory and reasoning
ability of SLMs, making it difficult to generalize
to OOD tasks. KARD (Kang et al., 2023) boosts
SLMs’ memory by retrieving external knowledge,
while CasCoD (Dai et al., 2024) refines rationale
perception through cascading decomposition learn-
ing. However, both methods require processing
more tokens (document retrieval and multi-stage
generation), which introduces additional complex-
ity and uncontrollability in reasoning tasks. Our
proposed method mirrors how interns learn a new
task by first providing full symbolic knowledge and
examples and gradually internalizing them into the
parameters, achieving effective inference without
additional information.
Prompt Compression condenses lengthy prompts,
retaining only essential information while reduc-
ing length. This process can be divided into
three main methods: Information entropy-based
techniques (Li et al., 2023; Jiang et al., 2023)
use a small language model to calculate the self-
information or error-proneness of tokens, remov-
ing those with lower error-proneness; Soft prompts
methods (Chevalier et al., 2023; Mu et al., 2023)
require fine-tuning LLM parameters to use learn-
able tokens for condensing prompts; Interpretable
summaries methods (Xu et al., 2023; Pan et al.,
2024) extract data from the LLM to train models
for generating more interpretable text summaries.
A method analogous to ours is PromptIntern (Zou
et al., 2024), which achieves prompt compression
through progressive fine-tuning. We internalize
knowledge and examples into the parameters by
gradually pruning the prompt during training, al-
lowing the prompt to be discarded during inference.

3 Methodology

In this section, we introduce the detailed proce-
dures of SKIntern. As illustrated in Figure 2, SKIn-
tern starts with the full knowledge and examples,
and progressively prunes tokens to gradually inter-

nalize them into the model’s parameters, reducing
the prompt length and the number of computations
towards the model. Below, we first describe how
to extract CoT and symbolic knowledge from the
teacher LLM in § 3.1. Then we introduce tech-
niques for symbolic knowledge compression and
examples pruning to convert them into parameters
in § 3.2. Finally, we present a customized pro-
gressive fine-tuning pipeline for SKIntern in § 3.3.
Note, SKIntern achieves great results without addi-
tional knowledge and examples in input compared
with Std-Cot during inference, merely depending
on the knowledge stored in the parameters.

3.1 Rationale and Knowledge Generation
Rationale Generation. In our problem setup,
we assume a given training dataset Dtrain =
{(xi,yi)}

n
i=1 for the target task, where xi is the

input sequence (question in QA) and yi is the label
(answer in QA). LLMs can generate high-quality
rationales, which is known as the emergent abil-
ity (Ho et al., 2022). Our objective is to trans-
fer this capability to SLMs through CoT distil-
lation. Firstly, we leverage the CoT prompting
(Wei et al., 2022) to guide the teacher LLM in gen-
erating proper l rationales for each training data
point: rij = LLM(pc,xi,yi) where r are gener-
ated rationales, j ∈ {1, ..., l} and pc is the prompt
which is shown in Appendix D.1. To maintain high-
quality CoT data, we filter out reasoning processes
that do not yield correct results, retaining only the
distilled CoT sequences that lead to accurate out-
comes as the training data (Hsieh et al., 2023).
Symbolic Knowledge Generation. Rationales of-
fer insights into the logic behind answers, which is
crucial for SLMs to respond more precisely. How-
ever, SLMs with limited parameters may struggle
to retain all training data and complex reasoning
capabilities, which can affect the quality of ratio-
nale generation (Kang et al., 2023). Furthermore,
this single learning might lead SLMs to focus on
directly answering questions after reading, poten-
tially impairing their ability to generalize in rea-
soning (Dai et al., 2024). Hence, it is imperative
to present the SLM with knowledge in the initial
stages of learning to facilitate its understanding.

We use prompt pk which is in the Appendix
D.2 to enable teacher LLM to generate learning
summaries km that incorporate thinking processes
and supplemental knowledge kp, collectively re-
ferred to as symbolic knowledge k. Formally, the
teacher LLM generate m knowledge using the

3206

Fine-tune

T Schedule Steps E Epochs

Full Knowledge with N tokens

Full Examples with K shots

E/T Epochs

Schedule S0-T

Prune Knowledge
Prune Examples

S1

St

…

None

E/T Epochs

0θ

1θ

Tθ

SLM Question

Previous Schedule

Examples

Rationale Knowledge

LLM LLMLingua2

Schedule St

Keep St tokens Keep St shots

Following Schedule
(a) SKIntern framework (b) Schedule-wise Fine-tune

Generate

…
Prune Knowledge
Prune Examples

E/T Epochs

Prune Knowledge
Prune Examples

ST

tθ

…

…

Generate
Rationale and Knowledge Generation

Token in Knowledge
(Not Pruned)

T1 T2 T3 T4 T5 T6 E1T7 E2 E5E4E3 E6 E7

Token in Knowledge
(Pruned)

Example
(Not Pruned)

Example
(Pruned)

Random Select

T1 T2 T3 T4 T5 T6 T7 E1 E2 E5E4E3 E6 E7

T1 T3 T5 E2 E6 E7

T1 T2 T3 T4 T5 T6 E1T7 E2 E5E4E3 E6 E7

Figure 2: Overview of the SKIntern framework. SKIntern starts with full symbolic knowledge and examples,
and progressively prunes them to gradually internalize knowledge, reducing the prompt length and the number of
computations towards the SLM. Based on schedule S, we perform effective knowledge compression and example
pruning before fine-tuning the SLM to generate rationales and answers. Gradual fine-tuning makes SLMs internalize
knowledge and examples into parameters, thereby enhancing performance without increasing computational cost.

question xi, the rationale ri and the answer yi:
kij = LLM(pk,xi,yi, ri), where j ∈ {1, ...,m}.
A rationale typically addresses a specific question,
whereas knowledge generally offers broader expla-
nations, methods and outlines.

3.2 Progressive Internalization

Before this work, knowledge augmentation has
been successfully applied to optimize SLM infer-
ence (Kang et al., 2023). However, these methods
necessitate processing full knowledge during both
training and inference phases, significantly increas-
ing computation overhead. Consequently, they are
unsuitable for scenarios with limited computational
resources. In contrast, by pruning the number of
tokens gradually during the training phase, SKIn-
tern processes only the question during inference
without requiring additional symbolic knowledge.

We implement a predefined schedule S to regu-
late the pruning rate of knowledge and examples.
At each step, the pruned symbolic knowledge and
few-shot examples are appended to the question,
fine-tuning the SLM over E/T epochs, where the

total training spans E epochs. As shown in Figure
2 (a), with T total schedule steps, the value of S
progressively decreases from 1 to 0. As the com-
pression rate increases and fine-tuning progresses,
the knowledge in the input gradually reduces to 0,
leading to the internalization of knowledge into the
model’s parameters.
Symbolic Knowledge Compression. Inspired by
prompt compression works (Pan et al., 2024), we
aim to gradually increase the compression rate to
reduce the symbolic knowledge at the token-level
determined by St at t-th step and internalize it into
the parameters, which can be expressed as:

kt
i = LLMLingua2(ki,St) (1)

where LLMLingua21 (Pan et al., 2024) is a task-
agnostic prompt compression method that distills
knowledge from the LLM and fine-tunes the en-
coder to compress prompts without losing key in-
formation, kt is the compressed symbolic knowl-
edge at t-th step, varying at different schedule St.

1We apply LLMLingua-2 as the default compressor as it
performs the best before June 2024.

3207

Considering that prompt compression is our means
of pruning, we directly utilize existing prompt com-
pression methods and models to achieve the com-
pression of knowledge at different learning sched-
ule steps.
Example Pruning. During inference, incorporat-
ing few-shot examples can significantly enhance
model performance, and incorporating these exam-
ples into the fine-tuning stage can further improve
the comprehension of various task inputs and out-
puts (Zou et al., 2024). However, directly adding
verbose minority examples to the input would in-
crease the load on the context window and elevate
inference computation and latency. So we propose
a similarity-based instance-level pruning method
to internalize the examples into parameters. For
each training instance (xi,yi), we begin by em-
ploying a relevance scoring function sim(·, ·) to
assess the similarity between its and different in-
stances in the training set and select the most K
relevant examples De

i :

De
i = {(xj ,yj) | xj ∈ top K(sim(xi,xj))} (2)

Inspired by compression techniques, we propose
instance-level examples pruning to leverage the
performance gains while mitigating the generation
of substantial additional overhead. We gradually
reduce the number of examples from K to 0 over
a total of T schedule steps, to achieve complete
example internalization. The number of examples
Kt at t-th step can be expressed as:

Kt = ⌊K × St⌋ (3)

Finally, we randomly select Kt examples from the
set De

i as examples eti for t-th step fine-tuning.

3.3 SKIntern Pipeline

Fine-tuning SLMs with Rationales. For each
specific schedule step St, we utilize the compressed
symbolic knowledge kt

i and pruned examples eti for
fine-tuning the SLM pθ with trainable parameters θ
to generate the rationale rij and answer yi for the
question xi as follows:

Lt(θ) = − 1

n · l

n∑
i=1

l∑
j=1

log pθ(rij ,yi | kt
i, e

t
i,xi)

(4)
We aim to minimize the negative log-likelihood
of the sequence comprising the rationale rij and
answer yi, ensuring rationale precedes the answer.

Progressive Fine-tuning. For a total of T schedule
steps, we fine-tune the SLM parameters with the
learning rate η for internalizing as follows:

θt+1 = θt − η∇θLt(θ) (5)

Inference. After progressive fine-tuning, we utilize
the updated model parameters, denoted as θT , to
conduct inferences without the need for additional
knowledge or examples. Consequently, we can
simply handle the question and complete efficient
and effective inference.

4 Experiment

In this section, we conduct extensive experiments
and comprehensive analysis to evaluate the effec-
tiveness of SKIntern on both in-domain (ID) and
out-of-domain (OOD) datasets.

4.1 Datasets
Following Ying et al. (2024), we focus on three
practical abilities: factual, mathematical, and gen-
eral reasoning. For each ability, we select a rel-
evant public dataset as the ID dataset, integrate
its training data into the target dataset Dtrain for
mixed training, and combine its test data into the
evaluation dataset Deval. Additionally, each ability
includes OOD datasets in Deval, allowing us to eval-
uate the model’s ability to generalize and enhance
performance beyond the ID training environment.
Factual Reasoning: We select the Multitask Lan-
guage Understanding (MMLU) (Hendrycks et al.,
2021a) as the ID dataset, which includes multiple-
choice questions across 57 subjects. For OOD eval-
uation, we use the ARC (Clark et al., 2018), com-
prising both Easy and Challenge segments.
Mathematical Reasoning: We select Meta-
MathQA (Yu et al., 2023) as the ID dataset, which
only has a training set that includes a high-quality
collection of mathematical reasoning question-
answer pairs, derived from GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021b). We
use GSM8K as the ID evaluation and GSM8K+ (Li
et al., 2024a) for OOD evaluation.
General Complex Reasoning: We chose BIG-
Bench Hard (BBH) (Suzgun et al., 2022) as the ID
dataset, which includes 27 challenging tasks span-
ning arithmetic, symbolic reasoning, and more, de-
rived from BIG-Bench (BB) (bench authors, 2023).
Most of the data consists of multiple-choice ques-
tions. For OOD evaluation, we use BB-Sub filtered
by CasCoD, and AGIEval (Zhong et al., 2023) sub-
tasks about English multiple-choice questions.

3208

Methods In-Domain Out-Of-Domain Avg Rel.

BBH-test GSM8K BB-sub AGIEval GSM8K-PLUS ARC-E ARC-C FLOPs

Closed-source model and Open-source models (Zero-shot-CoT)
GPT-3.5-turbo (Teacher) 43.2 72.6 44.0 50.5 55.9 91.8 84.1 63.2 -
LLaMA-3-70B-Instruct 62.6 89.2 51.0 66.3 72.9 97.6 93.2 76.1 -

TinyLLaMA-1.1B based
Zero-shot (Radford et al., 2019) 14.0 2.0 17.7 17.8 1.5 19.4 15.0 12.5 ×1.0
Zero-shot-CoT (Kojima et al., 2022) 13.5 1.4 17.7 10.4 1.3 16.0 13.4 10.5 ×1.0
Fine-tuning 48.8 3.5 26.0 21.2 3.7 28.0 24.6 22.3 ×0.9
Knowledge-Augmented Fine-tuning 49.3 3.7 27.4 21.9 3.3 29.4 25.3 22.9 ×3.7
Std-CoT (Magister et al., 2023) 47.8±.43 7.9±.27 27.6±.31 21.5±.56 4.3±.62 28.2±.69 25.0±.48 23.2 ×1.0
MT-CoT (Li et al., 2024b) 44.1±.78 4.1±.35 25.0±.45 21.4±.64 2.8±.83 33.5±.52 25.1±.59 22.3 ×0.9
Step-by-step (Hsieh et al., 2023) 42.4±.56 4.3±.47 26.2±.38 21.1±.72 3.1±.54 29.6±.61 25.9±.66 21.8 ×0.9
KARD (BM25) (Kang et al., 2023) 49.5±.61 7.6±.40 26.9±.43 20.2±.48 4.0±.77 28.2±.85 26.5±.91 23.3 ×3.9
CasCoD (Dai et al., 2024) 48.1±.49 6.8±.39 23.1±.64 19.4±.73 4.8±.48 29.0±.63 27.1±.42 22.6 ×3.0
SKIntern (ours) 55.5±.71 8.1±.65 31.4±.44 24.4±.90 5.3±.68 36.8±.89 31.2±.32 27.5 ×1.0

LLaMA2-7B based
Zero-shot (Radford et al., 2019) 17.3 2.7 18.6 19.2 2.4 25.2 20.6 17.0 ×6.4
Zero-shot-CoT (Kojima et al., 2022) 13.5 3.1 12.2 10.3 2.1 29.1 20.2 12.9 ×6.4
Fine-tuning 57.8 5.8 33.3 31.0 5.8 73.3 56.3 37.6 ×5.6
Knowledge-Augmented Fine-tuning 58.7 6.3 34.2 31.8 6.1 75.1 57.0 38.5 ×23.7
Std-CoT (Magister et al., 2023) 58.1±.74 20.5±.71 30.7±.48 23.6±.65 12.0±.26 73.4±.81 55.9±.78 39.2 ×6.4
MT-CoT (Li et al., 2024b) 45.6±.43 6.8±.59 27.8±.75 31.7±.89 6.0±.72 74.2±.46 57.6±.38 35.7 ×5.7
Step-by-step (Hsieh et al., 2023) 54.3±.37 8.4±.93 32.9±.55 32.4±.64 5.9±.57 77.7±.35 61.8±.87 39.1 ×5.6
KARD (BM25) (Kang et al., 2023) 58.9±.53 27.5±.71 30.3±.45 18.9±.38 19.1±.73 73.7±.41 57.0±.82 40.8 ×24.5
CasCoD (Dai et al., 2024) 58.9±.59 29.2±.75 32.2±.36 28.8±.29 21.4±.79 74.7±.91 57.3±.62 43.2 ×19.0
SKIntern (ours) 69.3±.58 33.9±.71 37.2±.51 31.3±.49 21.2±.83 78.1±.24 62.1±.67 47.6 ×6.4

Table 1: Performance (%) of LLaMA2-7B (Touvron et al., 2023) and TinyLLaMA-1.1B (Zhang et al., 2024) with
different methods across seven selected datasets. Bold indicates the best in each setting. We report the mean and
standard deviation of accuracy with 3 different runs for CoT distillation methods. Relative FLOPs cost is calculated
relative to the TinyLLaMA with Zero-shot. We calculate the FLOPs required on BBH-test for each method.

4.2 Baselines

We compare our method with the following base-
lines: 1) Teacher & Vanilla Student in Zero-shot
(Radford et al., 2019) and Zero-shot-CoT (Kojima
et al., 2022). 2) Fine-tuning involves fine-tuning
a model to generate answers given only questions.
The performance of the baselines above illustrates
the capability of SLMs to solve tasks using only
training data, without external guidance or addi-
tional knowledge. 3) CoT distillation includes
Std-CoT (Magister et al., 2023) which is the stan-
dard CoT distillation method, enabling direct fine-
tuning of the student model with CoT data; Step-
by-step (Hsieh et al., 2023) is a multi-task method
that extracts rationales and answers separately; MT-
CoT (Li et al., 2024b) is another multi-task method
that optimizes both answer prediction and CoT
generation simultaneously; CasCoD (Dai et al.,
2024) decomposes the traditional single-step learn-
ing process into two cascaded learning steps. 4)
Knowledge-Augmentation involves attaching re-
trieved passages to the question during both train-
ing and inference. This includes Knowledge-
Augmented Fine-tuning focuses on generating
answers only, and KARD (Kang et al., 2023) em-

2.95×

4.88×

Figure 3: Accuracy (%) against FLOPs for varying
model sizes. FLOPs calculations are based on process-
ing all examples from the same task during inference.

phasizes learning the generation of rationales.

4.3 Implementations
For all experiments, we use the LLaMA3-8B,
LLaMA2-7B (Touvron et al., 2023), Qwen2 (0.5B,
1.5B, 7B) (Yang et al., 2024) and TinyLLaMA-
1.1B (Zhang et al., 2024) as the student SLM. We
query the teacher model GPT-3.5-turbo to annotate

3209

Figure 4: Efficiency on training data and model size. The backbone model for the data size variation is Qwen2-7B.

the CoTs data with the manual prompt (Suzgun
et al., 2022). Unless otherwise specified, T is set
to 4 (§4.6), and total epochs E is set to 12.

We employ LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning of the student SLMs.
All experiments are conducted on 2 A100 GPUs
with 80GB. During the inference stage, we utilize
vLLM (Kwon et al., 2023) to accelerate inference.
Detailed information about training, inference and
hyperparameters is provided in Appendix A.

4.4 Main Results

We report the performance and inference costs of
SKIntern and baselines in Table 1 and Figure 3
(More results are shown in Appendix B) and find:

SKIntern outperform baselines with fewer
FLOPs. As shown in Figure 3, when FLOPs-
matched (in a vertical comparison), SKIntern out-
performs KARD which retrieves documents to aug-
ment reasoning, and CasCoD which enhances rea-
soning by cascaded decomposition. Specifically,
from Table 1, it is evident that SKIntern shows
an average improvement of 8.4% with LLaMA2-
7B and 5.9% with TinyLLaMA-1.1B, respectively.
This highlights the utility of dynamic pruning and
gradual internalization of symbolic knowledge.

SKIntern are up to 4× more efficient than
baselines. Table 1 demonstrates that SKIntern uses
2-4× fewer FLOPs than state-of-the-art KARD and
CasCoD. Although other CoT distillation meth-
ods can achieve similar computational savings,
their performance is significantly worse than SKIn-
tern (≥ 8%). Specifically, their performance is
10% lower on the mathematical reasoning dataset
GSM8K and 15% lower on the complex reasoning

dataset BBH. Furthermore, SKIntern achieves com-
parable performance with fewer FLOPs, as shown
in Figure 3 (in a horizontal comparison).

4.5 Efficiency on Dataset and Model Sizes

To evaluate the efficiency of SKIntern in terms of
training data and model size, we measured test ac-
curacy using Qwen2 (Yang et al., 2024) models
across various methods while varying the amount
of training data and model size. As shown at the
bottom of Figure 4, SKIntern successfully trans-
fers the reasoning ability of the teacher LLM into
the parameters, even with minimal training data.
As the amount of training data increases, SKIntern
consistently outperforms other baselines, with the
improvement magnitude growing as well. This sug-
gests that SKIntern performs optimally across
different data volumes and achieves superior
reasoning ability distillation. Even with a lim-
ited dataset, SKIntern outperforms other methods,
demonstrating robustness and sample efficiency.

Regarding model size efficiency, as shown at
the top of Figure 4, SKIntern outperforms other
baselines across various model scales. Notably,
SKIntern enables Qwen2-7B to surpass the teacher
model, GPT-3.5 Turbo, in both ID and OOD tasks,
despite having fewer parameters. SKIntern offers
substantial advantages for models of varying sizes,
consistently outperforming other methods. These
results underscore the practical benefits of SKIn-
tern in resource-limited environments, as it reduces
the computational demands for SLMs while deliv-
ering performance on par with or surpassing larger
models. This further demonstrates that SLMs
(0.5B) struggle to fully leverage CoT reasoning

3210

SKIntern BBH BB AGIEval GSM8K+ ARC-E
Pattern of Schedule S
- exp 64.8 36.2 30.0 16.3 76.0
- exp−1 59.5 31.2 28.8 15.4 73.9
- linear 69.3 37.2 31.3 21.2 78.1

Step of Schedule T

- T = 3 60.2 33.4 29.1 15.5 74.8
- T = 4 69.3 37.2 31.3 21.2 78.1
- T = 7 65.7 35.0 30.0 20.9 76.6

Table 2: Comparison of schedule patterns and steps of
SKIntern. The backbone model is LLaMA2-7B.

generated by LLMs, highlighting the need for
our SKIntern approach.

4.6 Analysis on Schedule

Schedule Pattern. We examine the effectiveness
of different schedule patterns during the progres-
sive fine-tuning process, focusing on their impact
on reasoning performance. The patterns tested in-
clude exponential, inverse exponential, and linear
decay. As shown in Table 2, the linear decay con-
sistently delivers the highest performance , show-
casing superior parsing efficiency and language
understanding. In contrast, the inverse exponential
schedule exhibits the lowest effectiveness, while
the exponential decay offers moderate performance
but remains inferior to the linear schedule. These
findings indicate that a gradual, steady reduction
is more advantageous than a more aggressive
approach. Progressive fine-tuning with a linear de-
cay schedule appears to yield optimal performance
compared to other patterns.

Schedule Setup. We explore the optimal schedule
step T for linear decay during progressive fine-
tuning. With the total number of epochs set to
12, we chose the common divisors of 12 for lin-
ear decay, where T corresponds to the decay step
plus 1. As seen in Table 2, T = 4 offers the
best performance, while T = 7 shows slightly
lower results, and T = 3 yields the poorest perfor-
mance. This suggests that overly frequent sched-
ule changes hinder sufficient learning in the initial
stages, whereas sparse schedules cause large, dis-
ruptive jumps, complicating smooth progression
and increasing learning difficulty. Therefore, se-
lecting an appropriate schedule step is crucial
for effectively internalizing knowledge and en-
hancing reasoning abilities in SLMs.

Methods BBH BB AGIEval GSM8K+ ARC-E
SKIntern 69.3 37.2 31.3 21.2 78.1
w/o km 59.8 30.8 28.7 15.3 74.1
w/o kp 62.3 32.1 29.5 16.2 75.7
w/o e 61.9 34.1 29.4 18.1 74.6

Table 3: Ablation studies on different components.

Figure 5: Ablation studies of k on vanilla methods.

4.7 Ablation Studies

To demonstrate the effectiveness of SKIntern, we
conducted ablation studies using LLaMA2-7B by
creating three variants: (1) w/o km, which removes
the learning summary during fine-tuning; (2) w/o
kp, where supplemental knowledge is excluded;
and (3) w/o e, where example pruning is omitted.
As shown in Table 3, the removal of any of these
components results in reduced performance, high-
lighting the critical role of internalizing both knowl-
edge and examples in enhancing SLMs’ complex
reasoning abilities during progressive fine-tuning.

Additionally, we investigate the effectiveness of
the generated symbolic knowledge (see Figure 5).
Incorporating learning summaries km and supple-
mentary knowledge kp into the original zero-shot,
zero-shot-cot, and few-shot-cot significantly en-
hances performance. Remarkably, this improve-
ment occurs without fine-tuning, demonstrating the
utility and generalization of symbolic knowledge
in augmenting the model’s inference capabilities.

5 Conclusion

In this paper, we introduce SKIntern, a novel CoT
distillation method designed to internalize sym-
bolic knowledge and rich examples into model pa-
rameters, thereby enhancing the ability of SLMs
to tackle complex reasoning tasks. Through a sys-
tematic schedule, symbolic knowledge generated
by the LLM including learning summaries and sup-
plementary knowledge is compressed and selected

3211

examples are refined. These elements are then used
to fine-tune the SLM, enabling it to produce coher-
ent rationales and accurate answers. We implement
a customized progressive fine-tuning pipeline to
accommodate various schedule steps and training
epochs. Extensive experiments demonstrate that
our method not only improves reasoning perfor-
mance on both in-domain (ID) and out-of-domain
(OOD) tasks but also significantly accelerates in-
ference and reduces computational resource usage.

Limitations

Method We have demonstrated through SKIntern
that the performance of SLM on complex inference
tasks can be significantly improved while greatly
reducing computational overhead. However, it is
important to acknowledge the limitations of our
research. The effectiveness of our knowledge en-
hancement largely depends on the incremental fine-
tuning required to internalize the original symbolic
knowledge and examples, which increases the com-
plexity and cost of training. Additionally, using
LLM to generate supplementary symbolic knowl-
edge necessitates further monetary expenditure due
to API calls.

Task While our current tests encompass factual
knowledge, mathematics, and complex reasoning,
the method’s efficacy for different tasks, such as
various coding exercises and extended text tasks,
requires further analysis and experimentation. Ad-
ditionally, further investigation is needed to deter-
mine which types of symbolic knowledge and task
examples are more easily learned and internalized.

Large Language Models Regarding the experi-
ments, given our limited computing and financial
budgets, we chose GPT-3.5-Turbo as the teacher.
Using GPT-4 would likely better verify the effec-
tiveness of our method, SKIntern. Additionally,
our aim to enhance the complex reasoning ability
of SLMs restricted our choice to mainstream mod-
els, such as Llama2, Llama3, and Qwen2, thereby
excluding other excellent models like Phi3 and
DeepSeek. However, exploring larger LMs such
as 13B and 72B with SKIntern could be of great
interest, presenting a promising direction for fu-
ture research. Experimental results indicate that
enhancing powerful models like Llama3-8B and
Qwen2-7B surpasses GPT-3.5-Turbo and matches
Llama3-70B.

Ethical Considerations

In this paper, we proposed a novel knowledge en-
hancement method aimed at leveraging the knowl-
edge of LLMs. However, LLMs may generate
inappropriate or discriminatory knowledge. Our
approach does not introduce ethical concerns. The
datasets we used are public, and there are no pri-
vacy issues.

Acknowledgements

This work was supported by the National Key R&D
Program of China (No. 2022ZD0160503) and
the National Natural Science Foundation of China
(No.62376270, No.62276264).

References
BIG bench authors. 2023. Beyond the imitation game:

Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning
Research.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3829–3846, Singapore. Associa-
tion for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Chengwei Dai, Kun Li, Wei Zhou, and Songlin Hu.
2024. Improve student’s reasoning generalizabil-
ity through cascading decomposed cots distillation.
arXiv preprint arXiv:2405.19842.

Neisarg Dave, Daniel Kifer, C. Lee Giles, and Ankur Ar-
jun Mali. 2024. Investigating symbolic capabilities
of large language models. ArXiv, abs/2405.13209.

Yao Fu, Hao-Chun Peng, Litu Ou, Ashish Sabharwal,
and Tushar Khot. 2023. Specializing smaller lan-
guage models towards multi-step reasoning. ArXiv,
abs/2301.12726.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:269983499
https://api.semanticscholar.org/CorpusID:269983499
https://api.semanticscholar.org/CorpusID:256390607
https://api.semanticscholar.org/CorpusID:256390607
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

3212

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022.
Large language models are reasoning teachers. In
Annual Meeting of the Association for Computational
Linguistics.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
Preprint, arXiv:2310.06839.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji
Kawaguchi, and Sung Ju Hwang. 2023. Knowledge-
augmented reasoning distillation for small language
models in knowledge-intensive tasks. In Advances in
Neural Information Processing Systems 37: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, December 10-16, 2023,
New Orleans.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Yu Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. ArXiv,
abs/2004.04906.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the

ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024a. Gsm-plus: A compre-
hensive benchmark for evaluating the robustness
of llms as mathematical problem solvers. ArXiv,
abs/2402.19255.

Shiyang Li, Jianshu Chen, yelong shen, Zhiyu Chen,
Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, Wenhu Chen, and Xifeng Yan.
2024b. Explanations from large language models
make small reasoners better. In 2nd Workshop on
Sustainable AI.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank
Guerin. 2023. Compressing context to enhance infer-
ence efficiency of large language models. Preprint,
arXiv:2310.06201.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 1773–1781, Toronto, Canada. Associ-
ation for Computational Linguistics.

Jesse Mu, Xiang Lisa Li, and Noah D. Goodman.
2023. Learning to compress prompts with gist to-
kens. ArXiv, abs/2304.08467.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Vic-
tor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky
Zhao, Lili Qiu, Dongmei Zhang, Karl Cobbe, Vineet
Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Ja-
cob Hilton, and Reiichiro Nakano. 2024. Llmlingua-
2: Data distillation for efficient and faithful task-
agnostic prompt compression. In Annual Meeting of
the Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: an
imperative style, high-performance deep learning li-
brary. Curran Associates Inc., Red Hook, NY, USA.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

https://api.semanticscholar.org/CorpusID:254877399
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:268063753
https://api.semanticscholar.org/CorpusID:268063753
https://api.semanticscholar.org/CorpusID:268063753
https://openreview.net/forum?id=rH8ZUcfL9r
https://openreview.net/forum?id=rH8ZUcfL9r
https://arxiv.org/abs/2310.06201
https://arxiv.org/abs/2310.06201
https://api.semanticscholar.org/CorpusID:259360665
https://api.semanticscholar.org/CorpusID:259360665
https://doi.org/10.18653/v1/2023.acl-short.151
https://api.semanticscholar.org/CorpusID:258179012
https://api.semanticscholar.org/CorpusID:258179012
https://api.semanticscholar.org/CorpusID:268531237
https://api.semanticscholar.org/CorpusID:268531237
https://api.semanticscholar.org/CorpusID:268531237

3213

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

KaShun Shum, Shizhe Diao, and Tong Zhang. 2023.
Automatic prompt augmentation and selection with
chain-of-thought from labeled data. arXiv preprint
arXiv:2302.12822.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin
Chi, Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Annual Meeting of the Association for
Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023.
Recomp: Improving retrieval-augmented lms with
compression and selective augmentation. ArXiv,
abs/2310.04408.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models. arXiv preprint
arXiv:2402.13116.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin

Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024. Qwen2 technical
report. ArXiv.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In International Conference on
Machine Learning, pages 39818–39833. PMLR.

Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang,
Bo Wang, Qianru Sun, Xuanjing Huang, and
Shuicheng Yan. 2024. Llms-as-instructors: Learning
from errors toward automating model improvement.
arXiv preprint arXiv:2407.00497.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. ArXiv, abs/2401.02385.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Jiaru Zou, Mengyu Zhou, Tao Li, Shi Han, and Dong-
mei Zhang. 2024. Promptintern: Saving infer-
ence costs by internalizing recurrent prompt during
large language model fine-tuning. arXiv preprint
arXiv:2407.02211.

A Experimantal Settings

A.1 Datasets

For each ability, we select a relevant public dataset,
integrate its training data into the target dataset
Dtrain for mixed training, and combine its test data
into the evaluation dataset Deval. Additionally, each
ability includes an OOD dataset in Deval. This

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:263830734
https://api.semanticscholar.org/CorpusID:263830734
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:266755802
https://api.semanticscholar.org/CorpusID:266755802
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

3214

setup allows us to evaluate the model’s ability to
generalize and enhance performance beyond the
ID training environment.

Table 4 shows the statistics details of the selected
datasets.

For MMLU (Hendrycks et al., 2021a), we adhere
to previous prompt styles (Suzgun et al., 2022),
instructing the teacher model (e.g., GPT-3.5-Turbo)
to generate answers and Chains of Thought (CoT).
By excluding samples with incorrect answers, we
ultimately obtained a total of 1,556 samples. For
MetaMathQA (Yu et al., 2023), we acquired 3,500
samples through random sampling. For BB (bench
authors, 2023), we followed the CasCoD (Dai et al.,
2024) methodology by filtering the original dataset
for tasks containing the keyword "multiple choice"
and randomly extracting up to 100 examples for
each task. Note that tasks in BBH do not involve
BB-sub.

During the evaluation stage, we use Exact Match
(Rajpurkar et al., 2016) as the evaluation metric.

The answer generation between the involved
models is conducted in a zero-shot setting, with
all models set to a temperature of 0.8 and a max-
imum token length of 1024. The prompt can be
found in the Appendix D.1.

A.2 Hyperparameter

The complete set of stable hyperparameters used
for both baseline models and the proposed SKIntern
training and inference runs can be found in Table 5
and Table 6, respectively.

In our research, we ensured consistent hyperpa-
rameter settings across all baselines, including the
proposed SKIntern method, to maintain the fairness
of our comparative analysis. Detailed hyperparam-
eters and their explanations are presented below.
For SKIntern, particularly in the fourth step, we
reduced the enhanced distillation parameters to 3
epochs and fixed the batch size at 8, as the concate-
nation of specialized knowledge results in longer in-
puts. We maintained a consistent batch size across
all baselines to eliminate any performance differ-
ences attributable to varying batch sizes, which de-
pend on model size, with larger models use smaller
batch sizes. The learning rate, a key parameter af-
fecting model performance, was set to 5e-5, 1e-4,
2e-4, and 3e-4 in a series of experiments, revealing
that larger models require smaller learning rates.
Consequently, we adjusted the learning rate accord-
ing to model size.

A.3 Implementations
Our implementations are based on huggingface
transformers v4.42.1 (Wolf et al., 2020) using Py-
Torch v2.3.1 (Paszke et al., 2019) and LlamaFac-
tory (Zheng et al., 2024).

For CasCoD (Dai et al., 2024), we adhere to
the optimal settings recommended by the authors,
specifically setting α to 0.3. For KARD (Kang
et al., 2023), we employ the BM25 configuration
(Robertson and Zaragoza, 2009), a sparse retrieval
method based on word frequency, and retrieve three
documents per question. Wikipedia serves as the
external knowledge base for all datasets. For all
retrievers used in SKIntern, including BM25, Con-
triever (Izacard et al., 2021), and DPR (Karpukhin
et al., 2020), we utilize the Pyserini2 library, which
offers a reproducible information retrieval frame-
work.

A.4 Symbolic Knowledge Collection
For specialized knowledge collection, using 2-shot
hand-written examples, the teacher model is con-
figured with a temperature of 0.8 and a maximum
length of 1024 tokens. It generates specialized
knowledge corresponding to each incorrect exam-
ple produced by the student SLMs. The prompt
can be found in the Appendix D.2.

B Extended Results

In Table 7, we present the results of various mod-
els discussed in this paper, including LLaMA3-8B,
QWen2-0.5B, 1.5B, and 7B, utilizing different base-
line methods along with the outcomes of SKIntern.

C Case Study

We present two cases from Tables 8 and 9 to com-
pare the Chains of Thought (CoTs) generated by
SKIntern, the teacher large language model (LLM),
and the standard CoTs distillation method (Std-
CoT). We use ✓ and ✗ to indicate the correctness
of the CoT.

Table 8 shows that the Std-CoT’s response is
confused and fails to comprehend the question ac-
curately. Although it has a rough idea, its rationale
is entirely incorrect as it struggles to emulate the
rationale of the teacher LLM.

Table 9 presents the symbolic knowledge gener-
ated by the LLM for a training example in BBH,
encompassing learning summaries and supplemen-
tary information. This symbolic knowledge offers

2https://github.com/castorini/pyserini

3215

Abilities Task # Train # Train (Filtered) # Test

Factuality
ID: MMLU Dev + Val: 1,815 1,555 -
OOD: ARC-C - - 1,172
OOD: ARC-E - - 2,376

Math
ID: MetaMathQA 395,000 3,500 -
OOD: GSM8K - - 1,319
OOD: GSM8K-PLUS - - 1,400

Reasoning
ID: BBH 6,511 3,805 1,304
OOD: BB-sub - - 5,384
OOD: AGIEval - - 2,546

All Sum - 8,860 15,501

Table 4: Statistical details of the selected datasets. Since MMLU lacks official training data, we combined the
development and validation datasets to form a training set. To maintain sample balance, we matched the size of
MetaMathQA to that of BBH. We obtained balanced samples from two dataset augmentation modes, MATH_Aug
and GSM_Aug, resulting in a total of 3,500 samples.

Hyperparameter TinyLLaMA-1.1B LLaMA2-7B LLaMA3-8B Qwen2-0.5B Qwen2-1.5B Qwen2-7B

Max Input Len 2048 4096 4096 4096 4096 4096
Max Output Len 128 128 128 128 128 128
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Learning Rate 2e-4 1e-4 5e-5 2e-4 1e-4 1e-4
precision fp16 fp16 fp16 fp16 fp16 fp16
Training epochs 12 12 12 12 12 12
Warmup Steps 10% of total training steps
Batch Size 32 16 8 32 16 8
Gradient Accumulation 1 2 4 1 2 4
rank of LoRA 32 32 32 32 32 32

Table 5: Training hyperparameters.

3216

Hyperparameter Student Teacher

Rationale Reasoning

do_sample False True False
temperature 0.6 0.8 0.6
top-p 0.95 1.0 0.95
top-k 50 50 50
max_new_tokens 1024 2048 1024
return sequences 1 2 1

Table 6: Generation configs of students and teachers.

detailed logical reasoning and positional insights,
which assist the LLM in understanding and solving
these problems.

D Instruction Details

D.1 Prompt for Generating CoTs
We use the prompt template below to call the
teacher model to generate the CoTs for the training
datasets.

Generate CoTs

You are an expert assistant teacher. The following are tasks about {Task_Name}. {Task Descrip-
tion}. Explain your reasoning first and your response should conclude with the format “Therefore,
the answer is".

Question: {QUESTION}
Answer: Let’s think step by step.

D.2 Prompt for Specialized Knowledge
Collection

Generate Learning Summary only prompts
LLMs to analyze the SLM’s errors and generate
the specialized knowledge of learning summary.
Generate Learning Summary and Supplemen-
tary Knowledge prompts LLMs to analyze the
SLM’s errors and generate the specialized knowl-
edge of learning summary and Supplementary
Knowledge, providing additional relevant back-
ground knowledge to further assist SLMs in solving
similar complex reasoning tasks in the future.

3217

Methods In-Domain Out-Of-Domain Avg Rel.

BBH-test GSM8K BB-sub AGIEval GSM8K-PLUS ARC-E ARC-C FLOPs

Closed-source model and Open-source models (Zero-shot-CoT)
GPT-3.5-turbo (Teacher) 43.2 72.6 44.0 50.5 55.9 91.8 84.1 63.2 -
LLaMA-3-70B-Instruct 62.6 89.2 51.0 66.3 72.9 97.6 93.2 76.1 -

LLaMA-3-8B based
Zero-shot (Radford et al., 2019) 18.2 2.8 27.4 29.7 2.2 50.8 50.0 25.9 ×6.2
Zero-shot-CoT (Kojima et al., 2022) 26.5 6.6 23.5 32.2 3.7 68.1 55.5 30.9 ×6.2
Fine-tuning 43.7 11.7 29.1 35.3 9.4 75.2 65.2 38.5 ×5.4
Knowledge-Augmented Fine-tuning 30.4 9.9 14.4 13.0 8.5 40.8 33.9 21.6 ×23.3
Std-CoT (Magister et al., 2023) 79.4 61.6 40.5 41.3 45.6 83.2 71.9 60.5 ×6.2
MT-CoT (Li et al., 2024b) 62.8 13.1 36.3 43.9 11.4 83.6 72.3 46.3 ×5.5
Step-by-step (Hsieh et al., 2023) 64.0 11.5 38.8 43.7 9.0 84.3 74.6 46.6 ×5.4
KARD (BM25) (Kang et al., 2023) 81.4 64.3 43.1 43.4 48.6 85.6 76.1 63.2 ×24.2
CasCoD (Dai et al., 2024) 32.1 59.1 18.1 23.6 46.1 34.6 27.7 34.5 ×17.7
SKIntern (ours) 80.8 62.5 42.8 43.6 48.1 89.9 75.9 63.4 ×6.2

Qwen2-0.5B based
Std-CoT (Magister et al., 2023) 65.8 26.7 29.6 25.6 17.1 43.6 32.0 34.3 ×0.4
MT-CoT (Li et al., 2024b) 47.2 5.3 30.5 27.7 4.4 46.0 35.1 28.0 ×0.4
Step-by-step (Hsieh et al., 2023) 44.2 5.2 28.9 26.2 3.1 41.8 36.2 26.5 ×0.4
KARD (BM25) (Kang et al., 2023) 66.3 30.9 31.7 23.9 18.2 48.9 37.2 36.7 ×1.7
CasCoD (Dai et al., 2024) 37.6 27.7 20.0 15.6 17.6 21.5 14.8 22.1 ×1.2
SKIntern (ours) 65.9 30.9 30.8 27.0 18.5 48.5 35.6 36.7 ×0.4

Qwen2-1.5B based
Std-CoT (Magister et al., 2023) 68.2 52.7 35.7 34.0 37.3 69.3 56.4 50.5 ×1.3
MT-CoT (Li et al., 2024b) 58.0 6.7 36.4 34.2 6.1 72.7 57.5 38.8 ×1.1
Step-by-step (Hsieh et al., 2023) 48.4 5.8 32.8 34.4 6.1 72.1 57.6 36.7 ×1.1
KARD (BM25) (Kang et al., 2023) 72.2 55.4 37.4 31.2 39.4 74.0 62.2 53.1 ×5.2
CasCoD (Dai et al., 2024) 31.7 53.4 25.4 24.7 38.8 57.1 47.8 39.8 ×3.8
SKIntern (ours) 70.1 54.8 36.5 36.3 41.8 76.5 62.7 54.1 ×1.3

Qwen2-7B based
Std-CoT (Magister et al., 2023) 80.7 71.5 43.4 49.9 60.0 90.5 80.3 68.0 ×6.0
MT-CoT (Li et al., 2024b) 70.0 15.2 42.6 49.4 12.1 90.9 80.2 51.5 ×5.3
Step-by-step (Hsieh et al., 2023) 68.8 15.2 41.2 49.1 10.9 72.1 71.8 47.0 ×5.2
KARD (BM25) (Kang et al., 2023) 80.2 75.3 43.2 49.6 60.6 92.1 83.5 69.2 ×23.6
CasCoD (Dai et al., 2024) 35.7 72.3 23.8 37.4 60.6 70.1 63.1 51.9 ×17.4
SKIntern (ours) 78.8 76.1 45.2 49.4 61.5 93.0 83.5 69.6 ×6.0

Table 7: Performance (%) of LLaMA3-8B (Touvron et al., 2023) and Qwen2-0.5B, 1.5B and 7B (Yang et al., 2024)
with different methods across seven selected datasets. Bold indicates the best in each setting. Relative FLOPs cost
is calculated relative to the TinyLLaMA with Zero-shot. We calculate the FLOPs required on BBH-test for each
method.

3218

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Symbolic Knowledge Output
Teacher - The discount price of one glass is 60/100 * 5 =

$«60/100*5=3»3. If every second glass is cheaper,
that means Kylar is going to buy 16 / 2 = «16/2=8»8
cheaper glasses. So for the cheaper glasses, Kylar
is going to pay 8 * 3 = $«8*3=24»24. And for
the regular-priced glasses, Kylar will pay 8 * 5 =
$«8*5=40»40. So in total Kylar needs to pay 24 +
40 = $«24+40=64»64 for the glasses he wants to buy.
Therefore, the answer is 64. ✓

Std-CoT - 3.0 times a year means Pauline goes to the museum
3.0 * 5.0 = 15.0 times in 5.0 years. The cost of one
visit is $2.00, but in the last 5.0 years, it has increased
by 1.5 times, so the new cost is $2.00 * 1.5 = $3.00.
So, Pauline spent 15.0 * 3.0 = $45.00 on all visits to
the museum in dollars. Therefore, the answer is 45.
✗

KARD 1. Conversely, deadweight loss can come from con-
sumers if they buy a product even if it costs more
than it benefits them. To describe this, if the same
nail market had the government giving a $0.03 sub-
sidy to every nail produced, the subsidy would push
the market price of each nail down to $0.07(...) 2.
Several glasses are utilized in transparent armor, such
as normal plate glass (soda-lime-silica), borosilicate
glasses, and fused silica. Plate glass has been the
most common glass used due to its low cost(...) 3.
To be eligible for the program, applicants must be
in financial need, have had a recent eye exam, and
have no other resources available to them to pay for
glasses, including federal or state programs or assis-
tance from local charitable organizations(...)

The cost of one glass is $5. Kylar wants to buy 16
glasses, so he needs to pay for 16 glasses + 1 glass
= 17 glasses. Since every second glass costs 60% of
the price, the cost of every second glass is 60% of $5
= $3. So, the total cost of the 17 glasses is $5 x 17 +
$3 x (17/2) = $85 + $10. Therefore, Kylar needs to
pay $85 + $10 = $95 for the glasses. Therefore, the
answer is 95. ✗

SKIntern - 16 glasses is an even number, so every second glass
will cost 60% of the price. Kylar wants to buy 16
glasses, and every second glass costs 60% of the
price, so he needs to buy 16/2 = 8 glasses at the full
price of $5/glass. He also needs to buy 8 glasses at
the reduced price of 60% of $5/glass, which is 60/100
* $5 = $3/glass. So in total, Kylar needs to pay 8 * $5
+ 8 * $3 = $40 + $24 = $64 for the glasses. Therefore,
the answer is 64. ✓

Table 8: A inference case from GSM8K.

3219

Question: If you follow these instructions, do you return to the starting point?
Take 7 steps. Take 9 steps. Turn around. Turn right.
Options:
- Yes
- No
Symbolic Knowledge
Learning Summary: When solving logical reasoning problems involving directions and movements,
it’s essential to follow the steps methodically and visualize the movements if necessary. 1. Question
Comprehension: Begin by understanding the sequence of movements and turns. Identify the starting point
and note the instructions given, such as steps taken and direction changes. 2. Thought Steps: - Start by
taking note of the initial position and direction. - Follow the movement instructions step by step: - Take 7
steps in the initial direction. - Take 9 steps in the same direction. - Turn around (180-degree turn) which
reverses your direction. - Turn right, which changes your direction perpendicularly. - After executing
these steps, assess whether you return to the original position or direction. 3. Visualization: Drawing a
simple diagram or using a grid can help track the positions and directions. This visualization helps verify
whether the initial and final positions match. 4. Summative Experience: For similar questions, always
track each movement and turn carefully. Be aware of the effects of each instruction, particularly turns,
which change direction.
Supplementary Knowledge: 1. Understanding Directions: - Familiarize yourself with basic directions
(e.g., north, south, east, west) and understand relative turns (left, right, and turn around). - A 180-
degree turn changes direction to the opposite, while a 90-degree right or left turn changes the direction
perpendicularly. 2. Visualization Techniques: - Use diagrams, sketches, or grids to map directions and
movements to see the path clearly. - Visual aids can help prevent confusion, especially when multiple
turns are involved. 3. Logical Sequencing: - Carefully follow each step in the sequence as instructed.
Misinterpreting a step or turn can lead to incorrect conclusions. - Practice breaking down instructions
into smaller parts to manage them more effectively. 4. Definitions: - Turn Around: A 180-degree turn
where you face the opposite direction from where you started. - Right Turn: A 90-degree turn to the right,
changing the direction perpendicular to the current path. By practicing these steps and understanding the
underlying concepts, students can improve their ability to solve similar direction-based logical reasoning
problems.

Table 9: A symbolic knowledge generation case from BBH-test.

3220

Generate Learning Summary

As an excellent educational teacher, your goal is to help students enhance their question-solving
abilities.
Based on an understanding and explanation of the question, along with relevant background
knowledge, fundamental concepts, and empirical conclusions, please generate a learning summary
in a numbered list format that will help students complete the same task in the future.

Requirements:
1. Learning summary should outline the thought processes and precautions for addressing student
mistakes, including, but not limited to, question comprehension, thought steps and mathematical
calculations. It should also provide a summative experience to help students solve similar questions
in the future.
2. Ensure that the content is understandable and usable by students, while also being concise and
effective.
3. The obtained learning summary should be general and generalized, not aimed at specific
questions.
4. Keep these requirements in mind while generating the learning summary and supplementary
knowledge.

Return Format:
Return in the following format:
Learning Summary: [Learning Summary]

Question: {QUESTION}
Answer: {ANSWER}
Please follow the requirements and provide the learning summary.

3221

Generate Learning Summary and Supplementary Knowledge

As an excellent educational teacher, your goal is to help students enhance their question-solving
abilities and to aid students in completing the same task in the future.
You should generate targeted, detailed thought processes and relevant background knowledge for
solving similar questions in the future.
Your role involves creating learning summaries and supplementary knowledge, specifically identi-
fying the steps needed to solve the question and providing additional general knowledge in the
supplementary knowledge.

Requirements:
1. Learning summary should outline the thought processes including, but is not limited to, question
comprehension, thought steps and mathematical calculations. It should also provide a summative
experience to help students solve similar questions in the future.
2. Supplementary knowledge should include a list of essential background information that
students need to solve the question. This should encompass, but is not limited to, mathematical
formulas, definitions, relevant world knowledge, and specific techniques.
3. Ensure that the content is understandable and usable by students, while also being concise and
effective.
4. The obtained learning summary should be general and generalized, not aimed at specific
problems, and the supplementary knowledge should also be general knowledge of the problem
without involving specific analysis.
5. Keep these requirements in mind while generating the learning summary and supplementary
knowledge.

Return Format:
Return in the following format:
Learning Summary: [Learning Summary]
Supplementary Knowledge: [Supplementary Knowledge]

Question: {QUESTION}
Answer: {ANSWER}
Please follow the requirements and provide the learning summary and supplementary knowledge.

	Introduction
	Related Work
	Methodology
	Rationale and Knowledge Generation
	Progressive Internalization
	SKIntern Pipeline

	Experiment
	Datasets
	Baselines
	Implementations
	Main Results
	Efficiency on Dataset and Model Sizes
	Analysis on Schedule
	Ablation Studies

	Conclusion
	Experimantal Settings
	Datasets
	Hyperparameter
	Implementations
	Symbolic Knowledge Collection

	Extended Results
	Case Study
	Instruction Details
	Prompt for Generating CoTs
	Prompt for Specialized Knowledge Collection

