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Abstract

Comparative Opinion Quintuple Extraction
(COQE) aims to extract all comparative senti-
ment quintuples from product review text. Each
quintuple comprises five elements: subject, ob-
ject, aspect, opinion and preference. With the
rise of Large Language Models (LLMs), exist-
ing work primarily focuses on enhancing the
performance of COQE task through data aug-
mentation, supervised fine-tuning and instruc-
tion tuning. Instead of the above pre-modeling
and in-modeling design techniques, we focus
on innovation in the post-processing. We in-
troduce a model-unaware adaptive chain-of-
feedback (COF) method from the perspective
of inference feedback and extraction revision.
This method comprises three core modules: dy-
namic example selection, self-critique and self-
revision. By integrating LLMs, COF enables
dynamic iterative self-optimization, making it
applicable across different baselines. To vali-
date the effectiveness of our approach, we uti-
lize the outputs of two distinct baselines as in-
puts for COF: frozen parameters few-shot learn-
ing and the SOTA supervised fine-tuned model.
We evaluate our approach on three benchmarks:
Camera, Car and Ele. Experimental results
show that, compared to the few-shot learning
method, our approach achieves F1 score im-
provements of 3.51%, 2.65% and 5.28% for
exact matching on the respective dataset. Even
more impressively, our method further boosts
performance, surpassing the current SOTA re-
sults, with additional gains of 0.76%, 6.54%,
and 2.36% across the three datasets.

1 Introduction

COQE is a crucial subtask in affective computing
(Ma et al., 2020; Liu, 2012; Schouten and Frasin-
car, 2015; Kumar et al., 2020; Zhang et al., 2022a).
COQE extracts all quintuples from each sentence-
level text, where each quintuple consists of a sub-
ject, an object, an aspect, an opinion, and a pref-

*Corresponding author.

Figure 1: Results of a COQE example obtained from
three perspectives.

erence. In these quintuples, the subject and object
refer to two comparative entities, the aspect de-
notes the comparative attribute of the entities, and
the opinion is a word or phrase expressing compar-
ative sentiment. All these four elements originate
from the given text. The preference is a four-class
classification, categorized into Better, Equal, Dif-
ferent and Worse. See the example in Figure 1,
given the input text, the correct quintuple result is
(It, Rebel XT, picture, better, Better).

Optimization of the COQE task can be ap-
proached from three different stages or perspec-
tives: as shown in Figure 1(a) for data processing
(e.g., data augmentation), Figure 1(b) for model
training (e.g., pre-trained language models and
prompting), and Figure 1(c) for post-processing
feedback and optimization. Xu et al. (2023b) lever-
age the powerful generative capabilities of LLMs
to enhance COQE from a data augmentation per-
spective. To mitigate error propagation in pipeline-
based method (Liu et al., 2021), Yang et al. (2023)
and Xu et al. (2023a) both propose an end-to-end
model from the model training perspective, further
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Figure 2: An overview of our adaptive chain of feedback method. In this paper, we utilize GPT-4 for direct few-shot
learning and the current SOTA T5-based results as the initial input for COF, respectively.

improving COQE performance.
Unlike existing work focuses on the stages be-

fore and during modeling, this paper introduces a
model-unaware adaptive chain-of-feedback method
(COF) from the perspective of feedback and re-
vision. This method consists of three core com-
ponents, namely dynamic example selection, self-
critique and self-revision. It’s worth noting that this
method can be applicable to various baseline mod-
els. Specifically, the dynamic example selection
module uses the cosine similarity of dependency
relations to select reference demonstrations for the
current input text dynamically. Following this, the
self-critique module assesses the initial quintuple
result. If the score falls below the predefined thresh-
old, the self-revision process is triggered to regen-
erate the quintuple. Otherwise, the initial output
remains unchanged. We select the quintuple re-
sults from different baseline models as the initial
input for COF and validate the effectiveness of our
method. Experimental results demonstrate signifi-
cant performance improvements on three datasets.

The core contributions of this paper are summa-
rized as follows:
• We propose an innovative adaptive chain

of feedback method tailored for the comparative
opinion quintuple extraction task, which is post-
processing, model-unware and can be applied to
various baseline models.

• We design a method for dynamically select-
ing reference demonstrations based on syntax and
semantics, avoiding manual intervention.

• We conduct experiments on three datasets, and
the results demonstrate that our method signifi-
cantly outperforms various baseline models.

2 Related Work

Comparative Sentence Analysis. Jindal and Liu
(2006) first propose the task of comparative sen-
tence mining. Park and Blake (2012) integrate both
syntactic and semantic features, leveraging three
diverse classifier to accurately identify compara-
tive sentences. Arora et al. (2017) first pioneer to
incorporate neural networks into the analysis of
multi-constituent extraction in comparative review.
Panchenko et al. (2019) build a new dataset called
CompSent-19, which is specifically designed for
the extraction of triplets: subject, object and pref-
erence. Ma et al. (2020) introduce a novel model,
ED-GAT, which is an entity-aware dependency-
based network. This model utilizes a multi-hop
graph attention mechanism to analy the dependency
graph representation of sentences. Recently, Liu
et al. (2021) introduce the new task of comparative
opinion quintuple extraction, aiming to extract all
quintuples from each product review. Addition-
ally, they propose a pipeline baseline for this task.
To avoid error propagation, (Xu et al., 2023a) and
(Yang et al., 2023) separately employ an end-to-
end model and a generative model to address this
issue. Furthermore, (Xu et al., 2023b) enhance
the performance of COQE through a data-centric
augmentation method.

Large Language Models. Since the release of
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Comparative Sentence:
The Canon 30D can have the BG-E2 battery grip like the
20D.
Elements:
Subject: Canon 30D
Object: 20D
Aspect: BG-E2 battery grip
Opinion: like
Preference: Equal
Quintuples:
{(Canon 30D, 20D, BG-E2 battery grip, like, Equal)}

Table 1: An example of COQE task.

GPT-3 (Brown et al., 2020), LLMs have advanced
rapidly (Zhao et al., 2023; Hadi et al., 2023; Chang
et al., 2024). LLMs are notable not only for their
massive model sizes but also for their powerful
reasoning and generation capabilities (Zhao et al.,
2023; Chang et al., 2024). However, few-shot learn-
ing based on LLMs still exhibits shortcomings in
extraction tasks , as confirmed by recent studies
(Wang et al., 2023; Han et al., 2023; Ma et al.,
2023; Yuan et al., 2023; Wu et al., 2024). Directly
fine-tuning an LLM requires substantial computa-
tional resources. Moreover, supervised fine-tuning
on the LLM can also result in a decrease in its gen-
eral capabilities. It is essential to make effective
use of LLMs to serve specific tasks.

Chain-Of-Thought Prompting. Chain-Of-
Thought (COT) prompting (Wei et al., 2022) im-
proves the reasoning capabilities of LLMs by in-
corporating prompts or reference demonstrations.
Firstly, Kojima et al. (2022) demonstrate that per-
formance on six NLP tasks could be improved by
simply adding the “let’s think step by step” prompt.
Subsequently, Zhang et al. (2022b) sample k ex-
amples and then integrate these examples and their
reasoning processes into the prompt as in-context
learning. Zhou et al. (2023) propose INFORM,
which selects reference demonstrations based on
information entropy.

3 Approach

In this section, we first define the task of COQE and
then provide the implementation details of COF,
as shown in Figure 2. Specifically, the core of
COF consists of three main components: dynamic
example selection, self-critique, and self-revision.

3.1 Task Definition

Given a sentiment expression sentence X, the
COQE task extracts all quadruples {subject, ob-
ject, aspect, opinion} and classifies them into four

categories: Better, Equal, Different and Worse. The
subject and object are the entities compared, the as-
pect is their comparison attribute, and the opinion
expresses the sentiment toward this attribute. The
opinion must be explicit, while the subject, object,
and aspect can be implicit. If implicit, they are
labeled as “unknown”. Table 1 shows an example
from the camera domain.

3.2 Baselines
In this paper, we introduce a versatile optimization
method (COF), which is applicable across various
models. To demonstrate its effectiveness, we em-
ploy the SOTA model and utilize few-shot learn-
ing with GPT-4 as baseline, respectively. The out-
put quintuple results from these models are subse-
quently fed into COF as initial inputs.
• T5-based Model

Following the work of Liu et al. (2021), we select
T5 (Raffel et al., 2020; Xue et al., 2021) as our base-
line model. T5 model, a transformers-based model,
is composed of an encoder and a decoder. For
each given sentences X = {x1, ..., xn}, we adopt
T5-encoder as the text encoder to obtain hidden
representation:

He = T5-Encoder(X) (1)

where He ∈ Rn×d represents the output hidden
representation of T5-Encoder, n is the maximum
length of X, while d is the hidden dimension.

Subsequently, T5-decoder takes the encoder out-
put He and previous decoder outputs Y<t to obtain
the last hidden state:

hdt = T5-Decoder(He, Y<t) (2)

where, hdt ∈ Rd. Given the hdt , we employ a nonlin-
ear feed-forward network to predict the conditional
probability:

Pt = Softmax(hdtW + b) (3)

where, W and b are all trainable parameters.
• Few-shot Learning for COQE Acquiring anno-
tated data typically demands significant resources
and time. Few-shot learning, on the other hand, is
designed to tackle this issue, with its primary aim
being the creation of models that can effectively
learn from a small number of training examples.

To achieve few-shot learning COQE, we use
prompts P to generate quintuple results Y . The
prompt designed in this paper consists of three
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Camera Car Ele
Subject 1,649 1,520 950
Object 1,316 2,121 1,980
Aspect 1,368 1,917 1,602
Opinion 2,163 2,171 2,089
Preference 2,442 2,695 2,289
#Comsen 1,705 1,747 1,800
Non-#Comsen 1,599 1,800 1,800
Multi-#Comsen 500 550 361

Table 2: Statistics of three datasets, “#Comsen” indi-
cates the number of comparative sentences.

main elements: task definition (T), demonstration
examples (D) and the input text.

Y = M(T ⊕D ⊕X) (4)

where, P = T ⊕D⊕X , the symbol ⊕ denotes the
concatenation operation. M represents the GPT-4
model. In this paper, if not particularly pointed out,
M stands for GPT-4 model.

To mitigate the impact of dialogue history, we
independently generate responses for each test sam-
ple. In this paper, we select m (m=5) demonstration
examples for few-shot learning COQE. The quintu-
ple output generated from the few-shot learning of
GPT-4 serves as our initial input for COF.

3.3 Dynamic Example Selection

In few-shot learning, the quality and quantity of
demonstration selection can significantly affect the
quality of inference results (Song et al., 2023; Liu
et al., 2024). This is because many complex infer-
ences necessitate the intervention of expert knowl-
edge and careful consideration of data distribu-
tion. Although some researchers (Zhou et al., 2023;
Zhang et al., 2022b) have given a selection of ref-
erence demonstrations, they are not directly appli-
cable to the COQE tasks. Static demonstration
selection requires strong expert knowledge and has
certain limitations. Therefore, we propose an auto-
matic dynamic reference demonstrations selection
method that does not require the introduction of
additional labeled data. The details of the dynamic
example selection are as follows:
• Exampular set construction We propose a cross-
validation based hard-sample selection method.
Specifically, we consolidate the original training
and development sets from the COQE dataset
thereby creating a new dataset named dataset_N.
Then, we randomly divide dataset_N into training

I love the solid feel of this camera versus the D70

nsubj amod det detdet
dobj

prep pobj
prep pobj

We appreciate the sleek design of the G20 than that phone
nsubj amod det det

det
dobj

prep pobj
prep pobj

Figure 3: The result of dependency analysis of two
sentences with different words and meanings.

(train_N), development (dev_N), and test (test_N)
subsets at a ratio of 7:1:2. We undertake supervised
fine-tuning on dataset_N utilizing current SOTA
model (Liu et al., 2021), subsequently identifying
and retaining the poorly performing cases from the
test_N. We repeat this operation K times to amass
a significant collection of underperforming case
samples, which is called dataset_S. For our experi-
ments, we set K to 4. According to our experiments,
the final statistics of incorrect examples from the
three datasets are shown in Table 4.
• Candidate demonstration scoring Upon com-
pleting the collection of all incorrect instances,
we leverage GPT-4 1 to achieve automatic scor-
ing for these instances by constructing appropriate
prompts. Details regarding the prompts can be
found in the Appendix A. For a given sentence,
if there are multiple different erroneous quintuple
outputs, we merge them into a single erroneous
sample. Ultimately, for each erroneous sample in
Table 4, we provide a corresponding error reason.
• Demonstration selection For COQE tasks, ex-
traction accuracy relies heavily on syntactic struc-
ture, not solely on lexical meaning. Current demon-
stration selection methods overlook syntactic pat-
terns, focusing solely on semantics. Thus, we pro-
pose a dynamic selection method based on depen-
dency relations. We utilize the spaCy2 toolkit to
parse sentences and obtain each word along with
its dependency relations. For example in Figure 3,
the two sentences have different words, but they
have almost the same dependency parsing results.
Simply calculating word similarity is not enough
to select the most suitable reference demonstra-
tion. To identify the most relevant sentences, we
compute the cosine similarity between the cur-
rent sentence and all sentences in the error can-
didate set dataset_S. This comprehensive analysis
incorporates both word-level meaning and depen-
dency parsing results, ensuring a sophisticated un-

1https://openai.com/blog/chatgpt
2https://spacy.io/

https://openai.com/blog/chatgpt
https://spacy.io/
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Models Camera Car Ele
EM PM BM EM PM BM EM PM BM

MS (LSTM) (Liu et al., 2021) 9.05 - - 10.28 - - 14.90 - -
MS (BERT) (Liu et al., 2021) 13.36 23.26 25.25 29.75 38.46 39.62 30.73 40.83 41.87
Span-graph (Fei et al., 2020) 14.53 27.13 30.15 32.08 42.78 42.05 34.86 44.92 46.72
OneEE (Cao et al., 2022) 14.10 26.09 29.06 32.46 41.14 42.53 33.51 43.62 45.27
UniCOQE (Yang et al., 2023) 31.95 42.39 44.44 36.55 51.60 53.80 35.46 51.47 54.05
UniCOQE* 31.16 41.01 43.12 36.45 57.36 61.05 35.76 52.27 57.17
UniCOQE* + COF (static) 28.33 37.13 38.76 40.38 58.47 65.16 37.51 52.87 57.71
UniCOQE* + COF (dynamic) 31.92 43.55 45.67 42.99 59.36 66.10 38.12 53.55 60.76

Table 3: Three different matching F1-score for various COQE methods, with the best results highlighted in bold. The
first four lines of experimental results are sourced from Liu et al. (2021). The symbol ‘-’ indicates that performance
is not reported in the paper, whereas the mark ‘*’ denotes the performance we reproduced.

Camera Car Ele
#Err 2,148 1,886 1,830
#Sent 1,016 906 912
#Aver 2.11 2.08 2.01

Table 4: Statistics of error sample for three datasets.
“#Err” denotes the total number of incorrect samples
collected in each dataset, “#Sent” represents the count
of incorrect sentences, and “Aver” shows the average
number of incorrect samples per sentence.

derstanding of semantic and structural relations.
Subsequently, we rank the sentences and return the
top m most similar ones, along with their respec-
tive scores. Finally, we use these m samples as
reference demonstrations.

3.4 Adaptive Auto-Refinement

As illustrated in Figure 2, adaptive auto-refinement
is fundamentally composed of two key components:
self-critique and self-revision. The self-critique
module is responsible for scoring the initial quin-
tuple results of the current input text. If the score
falls below a predefined threshold, the self-revision
module is invoked to regenerate the correct quintu-
ple outcome for the current text.
Self-Critique The self-critique module is designed
to evaluate the given input text along with its corre-
sponding quintuple results. To accomplish this, we
utilize GPT-4 and a specially crafted prompt Pc to
score the quintuple. Pc includes task definition T,
scoring mechanism S and few-shot demonstration
examples D.

Yc = M(T ⊕ S ⊕D ⊕X) (5)

The scoring results include the reason and score,
which is called feedback. Each element within the

quintuple carries a value of one point, summing up
to a full score of five points for a complete quintu-
ple (for Table 1 COQE result, the total score is five
points). Given that a text comprises q quintuples,
the threshold is set to q*5. If the score equals the
threshold, it signifies the correctness of the current
quintuples, thereby eliminating the need for further
optimization. However, if the score falls below the
threshold, the self-revision module is invoked to
improve the results.
Self-Revision The self-revision module enhances
the COQE results of the input text. Contrasting
with the self-critique module, the prompt Pr in
the self-revision module incorporates additional
feedback F generated during the first stage.

Yr = M(T ⊕ S ⊕D ⊕ F ⊕X) (6)

Auto Iterative Optimization The adaptive auto-
refinement method enables continuous self-
iteration. In our experiments, we set a maximum
number k of iterations. When the score gener-
ated by the self-critique module equals the current
threshold, or the current iteration number exceeds
the set maximum number, we stop the iterative
optimization and output the optimized result.

4 Experimentation

4.1 Datasets and Evaluation Metrics
Datasets We conduct various experiments on three
datasets: Camera, Car and Ele. The statistics
overview of these datasets are shown in Table 2.
• Camera is a English dataset. Kessler and Kuhn
(2014) annotate quintuple (subject, object, aspect,
scale, predicate) from the camera domain comment
text. On this basis, Liu et al. (2021) retain the first
three elements and annotate comparative opinion
and preference, forming a new COQE dataset.
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• Car is a Chinese COQE dataset. Based on the
newly released COAE dataset from the car domain
by Tan et al. (2013), Liu et al. (2021) further en-
riches it by adding annotations for comparative
opinion and comparative preference.
• Ele is also a Chinese dataset. This dataset shares
the same source and annotation rules as dataset Car.
The only difference is the domain, which comes
from the field of electronic products.
Evaluation Metrics We utilize Precision (P), Re-
call (R) and F1-scores (F1) to evaluate the perfor-
mance of our method. To provide a more com-
prehensive assessment for the COQE task, follow
Liu et al. (2021)’s work, we employ three different
matching strategies: Exact Match (EM), Propor-
tional Match (PM), and Binary Match (BM).

EM checks if the predicted results align perfectly
with the gold standard across all prediction ele-
ments. PM adopts a more relaxed approach, grant-
ing some flexibility in the comparison by assessing
proportional similarities between the predicted and
the desired quintuples. BM simplifies the assess-
ment to a straightforward binary outcome: if there’s
any overlap between the predicted and the expected
quintuple, the score is 1, else it’s considered a mis-
match, the score is 0. The formulas of these three
matching strategies are as follows:

EM =

{
0 ∃ (pi ̸= gi)

1 otherwise
(7)

PM =

{
0 ∃ (pi ∩ gi = ∅)∑

i len(pi∩gi)∑
i len(gi)

otherwise
(8)

BM =

{
0 ∃ (pi ∩ gi = ∅)

1 otherwise
(9)

where, gi and pi represent the i-th element in each
gold and predicted quintuple, respectively. The
variable i ranges from 1 to 5.

4.2 Hyperparameter Settings
The self-critique and self-revision modules both
utilize GPT-4. We set the maximum number of
iterations to 5 for both modules. Additionally, we
adjust the temperature parameter to 0.5 and set the
maximum number of tokens per generation to 500
for GPT-4. For the three datasets, we set m = 5
for static example selection, m = 3 and K = 4 for
dynamic example selection. We run all fine-tuning
experiments in a single Tesla V100.

4.3 Compared Models

For comparative evaluation, we consider the fol-
lowing models:
• MS (LSTM) utilizes LSTM (Schuster and Pali-
wal, 1997) as the text encoder and CRF to extract
possible properties in a sentence. (Liu et al., 2021)
generate possible quadruples via Cartesian prod-
uct, choose valid ones, and classify them into four
preference categories.
• MS (BERT) adopts BERT (Devlin et al., 2019)
as text encoder, which is the only difference from
MS (LSTM) (Liu et al., 2021).
• Span-graph treats entity relation extraction task
as a quintuple prediction problem and design an
end-to-end model to solve it (Fei et al., 2020).
• OneEE is a one-stage model that efficiently iden-
tifies relations among trigger or argument words
through an adaptive event fusion module and a
distance-aware predictor (Cao et al., 2022).
• UniCOQE is a generative extraction model de-
signed to address the error propagation problem
in the pipeline-based model, achieving the current
state-of-the-art performance Yang et al. (2023).

4.4 Main Results

We propose an adaptive chain of feedback method
through the dynamic selection of reference demon-
strations (dynamic). Additionally, we validate the
approach of adaptive optimization using a few
fixed, manually selected reference demonstrations
(static). We conduct experiments on three distinct
datasets, and the results are presented in Table 3.

It can be concluded that our COF approach
achieves significant improvements on all three
datasets compared to the baseline. Specifically, on
the two Chinese datasets, both static and dynamic
reference demonstration selection methods demon-
strate substantial improvements. The most notable
improvement is observed on the Car dataset, where
the EM, PM and BM F1 scores increase by 6.54%,
2.0%, 5.05%, respectively. It is worth noting that
the selection of static reference demonstrations re-
lies heavily on expert knowledge and a deep un-
derstanding of the task. This selection holds a
significant influence over the experimental results.

4.5 COF for Few-shot Learning COQE

There is undoubtedly a concern that the improve-
ments observed with our COF method may be at-
tributed to the inherent capabilities of the GPT-4
model itself. To address this concern, we first em-
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Dataset Model EM PM BM
P R F1 P R F1 P R F1

Camera
Few-shot 10.42 10.29 10.35 19.22 18.98 19.1 21.04 20.78 20.91
Few-shot + COF (static) 12.94 12.94 12.85 23.98 23.64 23.81 25.68 25.31 25.49
Few-shot + COF (dynamic) 13.96 13.76 13.86 24.35 24.00 24.17 26.25 25.87 26.06

Car
Few-shot 22.96 24.00 23.47 43.82 45.81 44.79 50.08 52.35 51.19
Few-shot + COF (static) 25.04 25.91 25.47 46.44 48.05 47.23 52.94 54.78 53.85
Few-shot + COF (dynamic) 25.81 26.43 26.12 47.73 48.89 48.30 54.50 55.83 55.15

Ele
Few-shot 18.26 21.96 19.94 32.27 38.79 35.23 35.62 42.83 38.89
Few-shot + COF (static) 19.78 23.91 21.65 35.23 42.58 38.56 39.57 47.83 43.31
Few-shot + COF (dynamic) 21.09 25.22 22.97 36.24 43.33 39.47 40.91 48.91 44.55

Table 5: Three distinct matching strategies for precision, recall and F1-score for few-shot examples COQE.

Figure 4: Effect of maximum iteration on three matching strategies for the Car dataset.

ploy GPT-4 to achieve few-shot learning for the
COQE task. Subsequently, we use the generated
outputs as the initial input for our COF method.

Table 5 shows the test results. The few-shot
learning performance of GPT-4 on COQE task on
three datasets is significantly lower than the per-
formance of most existing SFT models. This also
demonstrates that the improvements achieved by
our COF method are not due to the inherent capabil-
ities of GPT-4, but rather to the effectiveness of our
approach itself. Furthermore, it can be observed
that when the initial input for COF is suboptimal,
our adaptive optimization method with dynamic
reference demonstration selection is more effec-
tive compared to static reference demonstration
selection. Besides, our dynamic approach requires
no manual intervention and demonstrates greater
adaptability.

4.6 Impact of Maximum Number of Iterations

We verify the influence of different iterations on the
final optimization results on the Car dataset, aiming
to gain a deeper understanding of the optimization
process. The experimental results are shown in Fig-

ure 4. It can be observed that the best performance
is achieved for three matching strategies when the
maximum number of iterations is 4.

When the number of iterations is less than or
equal to 2, the performance is lower than the ini-
tial baseline model. As the number of iterations
increases (more than 2), the performance gradually
improves and reaches the optimal level. Subse-
quently, with further increases in iterations, the per-
formance improvement becomes less significant.
Therefore, selecting an appropriate number of iter-
ations is crucial for achieving optimal performance
of the COQE task on the Car dataset, as both too
few and too many iterations hinder reaching the
best optimization results.

4.7 Efficient Fine-tuning Directly Based on
Various LLMs

To verify the performance of large language models
on the COQE task, we conduct a series of rigor-
ous experiments. Specially, we choose LLaMA2
(Touvron et al., 2023), LLaMA3 3 and Qwen 4 as

3https://llama.meta.com/llama3/
4https://tongyi.aliyun.com/
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Dataset Model EM PM BM
P R F1 P R F1 P R F1

Camera
LLaMA2-7B 23.33 20.78 21.98 33.88 30.19 31.93 35.80 31.89 33.73
LLaMA3-8B 28.19 28.13 28.16 39.89 39.81 39.85 41.77 41.68 41.73

Car
LLaMA2-7B 34.49 31.29 32.81 50.51 45.83 48.05 53.76 48.78 51.15
Qwen-7B 41.25 35.84 38.35 57.88 50.29 53.82 65.79 57.17 61.18

Ele
LLaMA2-7B 34.05 31.09 32.50 51.15 46.71 48.83 54.05 49.35 51.59
Qwen-7B 35.39 36.09 35.74 53.62 54.67 54.14 61.41 62.61 62.00

Table 6: The performance of directly fine-tuning various LLMs on three datasets.

Figure 5: Influence of different error candidate sets on
final COQE experiment results.

benchmark models for various datasets. We uti-
lize LORA 5 (Hu et al., 2021) for fine-tuning and
prediction. For their typical configurations, we uni-
formly set the rank value to 8, the alpha value to
16, and the dropout ratio is 0.05. We report the
experimental results in Table 6.

As depicted in Table 6, when examining the ex-
perimental performance of two different baselines
(LLaMA2-7B and LLaMA3-8B) for the same En-
glish dataset, we can observe that: with the same
model architecture, an increase in model parame-
ters (from 7B to 8B) directly leads to a significant
improvement. This strongly suggests that a larger
model capacity tends to yield better comprehen-
sion and processing capabilities. Further analysis
of the Chinese datasets indicates that models with
the same amount of parameters do much better on
Chinese tasks when trained on more Chinese data,
compared to English data. This shows how impor-

5Implemented with LLaMA-Facotry: https://github.
com/hiyouga/LLaMA-Factory/

Sentence Realistically there will be no difference in your photos.
Gold (photos, photos, unknown, no difference, equal)
Few-shot (unknown, unknown, photos, no difference, equal)
Few-shot* (photos, photos, unknown, no difference, equal)
T5-based (unknown, unknown, unknown, unknown, unknown)
T5-based* (photos, photos, unknown, no difference, equal)

Table 7: Case study for Camera dataset. The mark
‘*’ represents the corresponding COF-enhanced COQE
result for each initial model.

tant it is to use language-specific data to improve
performance and how training should be tailored
to the unique features of each language.

4.8 Effect of Error Candidate Set Size

To explore how the size of the error candidate set ul-
timately impacts the experimental results of COQE,
we conduct an analysis experiment utilizing the
Chinese Car dataset. The results of the experiment
are shown in Figure 5.

As illustrated in Figure 5, the optimal value of
COQE is achieved when the iteration number K is
set to 4. If the iteration number is too low, there
are not enough reference demonstrations for the
refine module to learn from, leading to poor per-
formance. Conversely, even though it might seem
that increasing the iteration count could further
enhance performance, in reality, exceeding a cer-
tain threshold does not bring about positive effects.
Furthermore, an unnecessary high iteration count
wastes valuable computational resources.

4.9 Case Study

Table 7 presents a case study for the Camera
dataset’s COQE results. The sentence serves as
the input for the COQE models. The “Gold” in-
dicates the expected COQE output for the given
input. As shown in Table 7, few-shot learning only
correctly identify comparative opinion and prefer-
ence, while the T5-based model fails to identify
any entities correctly, outputting “unknown” for all

https://github.com/hiyouga/LLaMA-Factory/
https://github.com/hiyouga/LLaMA-Factory/
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elements. After applying the COF method, both
models’ outputs improved significantly, matching
the ground truth exactly. This case study demon-
strates that the COF method effectively enhances
the COQE results for both few-shot and T5-based
models, aligning the outputs with the ground truth.

5 Conclusion

We propose an adaptive chain of feedback method
for the COQE task, which can be applied to
any baseline model. Our method includes a dy-
namic example selection technique that outper-
forms static methods requiring excessive manual
intervention. Additionally, we devise a continu-
ously self-iterative adaptive optimization method.
We select two distinct baseline models and validate
them on the test sets of three datasets. The exper-
imental results demonstrate the effectiveness and
generalization of our approach.

Limitations

The COF method proposed in this paper can ef-
fectively improve the performance of COQE tasks,
but it still has certain limitations. First, in this pa-
per, we only explore the refinement capability of
using GPT4. The ability of our refine module to
perform on other LLMs remains to be further ex-
plored. Second, although refining with the LLM
does not require additional training steps, this pro-
cess inevitably introduces higher computational
resource consumption. To address the limitations,
a deeper exploration is warranted.
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A Dynamic Example Selection Prompt

"Scoring Guideline for Comparative Opinion Quin-
tuple Extraction Task
Task Overview: Extract all (subject, object, aspect,
opinion, preference) quintuples from the given text
and score each predicted quintuples based on the
gold answers.
Scoring Rules:
1. Score each quintuple item by item: Compare the
predicted quintuples with gold quintuples one by
one.
- If the number of predicted quintuples does not
match the gold, the missing or extra elements will
be scored as 0 point, with the reason noted.
- Score each element in each quintuple, strictly
based on the gold quintuple.
2. Scoring Criteria for Each Element:
Subject:
- If the subject is explicitly mentioned in the given
text and the predicted subject matches the gold
subject, score 1 point.
- If the subject is not explicitly mentioned in the
given text, and both predicted and gold subject are
‘unknown’, score 1 point.
- If the subject is not explicitly mentioned in the
given text, but the predicted subject is wrongly
extracted from the given text, score 0 point.
- If the subject is explicitly mentioned in the given
text, but the predicted subject does not match the
gold subject, score 0 point.
Object:
- If the object is explicitly mentioned in the given
text and the predicted object matches the gold ob-
ject, score 1 point.
- If the object is not explicitly mentioned in the
given text, and both predicted and gold object are
‘unknown’, score 1 point.
- If the object is not explicitly mentioned in the
given text, but the predicted object is wrongly ex-
tracted from the given text, score 0 point.
- If the object is explicitly mentioned in the given
text, but the predicted object does not match the
gold object, score 0 point.
Aspect:
- If the aspect is explicitly mentioned in the given
text and the predicted aspect matches the gold as-
pect, score 1 point.
- If the aspect is not explicitly mentioned in the
given text, and both predicted and gold aspect are
‘unknown’, score 1 point.

- If the aspect is not explicitly mentioned in the
given text, but the predicted aspect is wrongly ex-
tracted from the given text, score 0 point.
- If the aspect is explicitly mentioned in the given
text, but the predicted aspect does not match the
gold aspect, score 0 point.
Opinion:
- Must be extracted from the given text, cannot
use ‘unknown’. If the prediction matches the gold,
score 1 point.
- If the predicted opinion is from the given text, but
does not match the gold one, score 0 point.
Preference:
- The predicted preference must accurately match
one of the predefined categories (‘better’, ‘worse’,
‘equal’, ‘different’) and be fully consistent with the
gold, score 1 point.
- If the predicted preference is not among the pre-
defined categories, score 0 point.
- If the predicted preference is not consistent with
the gold one, score 0 point.
Next, please directly give the score and reason of
each predicted quintuple based on the given input
text and gold quintuples.
When scoring each quintuple, please provide the
score and reason in the following format:
Quintuple X: Subject: score, reason (with reference
to the gold quintuple)
Object: score, reason (with reference to the gold
quintuple)
Aspect: score, reason (with reference to the gold
quintuple)
Opinion: score, reason (with reference to the gold
quintuple)
Preference: score, reason (with reference to the
gold quintuple)
Quintuple X total score: Total score of Quintuple
X
...(repeat until all quintuples are scored)
Total score sum: Sum of scores for all quintuples"
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