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Abstract

Sequential recommendation systems play a key
role in modern information retrieval. However,
existing intent-related work fails to adequately
capture long-term dependencies in user behav-
ior, i.e., the influence of early user behavior
on current behavior, and also fails to effec-
tively utilize item relevance. To this end, we
propose a novel sequential recommendation
framework to overcome the above limitations,
called ICMA. Specifically, we combine tempo-
ral variability with position encoding that has
extrapolation properties to encode sequences,
thereby expanding the model’s view of user be-
havior and capturing long-term user dependen-
cies more effectively. Additionally, we design
a multi-view data augmentation method, i.e.,
based on random data augmentation methods
(e.g., crop, mask, and reorder), and further in-
troduce insertion and substitution operations
to augment the sequence data from different
views by utilizing item relevance. Within this
framework, clustering is performed to learn in-
tent distributions, and these learned intents are
integrated into the sequential recommendation
model via contrastive SSL, which maximizes
consistency between sequence views and their
corresponding intents. The training process al-
ternates between the Expectation (E) step and
the Maximization (M) step. Experiments on
three real datasets show that our approach im-
proves by 0.8% to 14.7% compared to most
baselines.

1 Introduction

Recommendation systems are widely applied in
various scenarios to accurately predict users’ in-
terests in a large number of items based on their
historical interactions. With the development of
recommendation system, sequential recommenda-
tion (Qin et al., 2023; Fan et al., 2023; Wang et al.,
2024) has gradually become a research hotspot, and
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Figure 1: Examples of crop and reorder, they fail to take
full advantage of the relevance between items.

the dynamic interest of users can be captured more
accurately by analyzing user interaction sequence
(Zhu et al., 2024; Lee et al., 2023; Fan et al., 2021).

Users’ purchasing behavior is largely influenced
by intent. However, the accurate use of intent has
not been fully explored. Most existing user intent
modeling methods (Cai et al., 2021; Zhang et al.,
2023) rely on auxiliary information. For example,
CoCoRec (Cai et al., 2021) makes use of item cat-
egory information, but categorical features alone
are not sufficient to accurately represent user intent,
e.g., an intent such as ”buy clothes” may relate to
several different categories of items rather than be-
ing limited to a single category. DSSRec (Ma et al.,
2020) proposes a seq2seq training strategy to opti-
mize intent in potential space. However, DSSRec
only deduces intents based on individual sequence
representations, ignoring the potential correlation
of different user intents.

Although the above methods achieve some suc-
cess in capturing user intent, they typically treat
items in a user’s sequence as independent entities,
ignoring the relevance between them. Fig 1 shows
the items a user purchases over a month. Random
augmentation methods like cropping or reordering
treat these items as independent, potentially over-
looking their relevance. For instance, cropping may
retain only eggs and toothpaste, losing relevance
information, while reordering may disrupt the se-
quence, such as bread, laundry detergent, and eggs.
However, these items may be relevant, for example,
milk, bread, and eggs are usually breakfast com-



3301

ponents, and laundry detergent and toothpaste are
household essentials. Additionally, early behaviors
may influence user intent, such as repeatedly pur-
chasing electronics, which indicates a continuing
interest in those items. Therefore, capturing long-
term dependencies is crucial for modeling user in-
tent, considering the impact of early behaviors.

To address the above problems, we propose
ICMA. Specifically, unlike traditional positional
embedding, we use extrapolated position encod-
ing, which enables the model to better handle se-
quences of different lengths. This is accomplished
by extrapolating the encoded positions, which is
essential to capture the long-term dependencies of
users. To effectively utilize item relevance, we
design a multi-view data augmentation method,
which further introduces two kinds of augmenta-
tion operators, insertion and substitution, based on
the random data augmentation method. The inser-
tion operator adds relevant items to sequences to
simulate the expansion of users’ interests and en-
hance the model’s ability to adapt to the new items,
and the substitution operator replaces the relevant
items to strengthen the model’s ability to sense the
changes in users’ interests. These two operators not
only expand the user interaction record, but also
better capture the complex intentions and dynamic
interests of users through diversified interaction
modes. Sequences are clustered in the framework
and the learned intents are applied to the SR model
by comparing Self-Supervised Learning (SSL) to
maximize the consistency between sequence views
and their corresponding intents. The main contribu-
tions of this paper can be summarized as follows:

• We propose ICMA, which makes a wider field
of view available to the model by extrapo-
lating the position encoding, enhancing the
understanding of the user’s intention.

• We design a multi-view data augmentation
method to enhance the model’s utilization of
item relevance by introducing two operators.

• Extensive experiments on three datasets vali-
date the effectiveness of our method, with per-
formance improvements ranging from 0.8%
to 14.7% compared to most baselines.

2 Related Work

2.1 Sequential Recommendation
Sequential recommendation predicts users’ future
interests based on historical behavior data (Chen

et al., 2022a; Li et al., 2023a). Early work used
Markov chains (Rendle, 2010; He and McAuley,
2016) to model item transition relationships. The
success of Transformer (Vaswani, 2017) has driven
the development of SR models based on it, such as
SASRec (Kang and McAuley, 2018), which uses
Transformer layers to learn item dependencies in se-
quences. Research shows that existing models per-
form poorly on short sequences (Liu et al., 2021b),
making short sequence augmentation necessary. S3

-Rec (Zhou et al., 2020) and CLS4Rec (Xie et al.,
2022) explore contrastive learning with weak self-
supervision signals but fail to address item rele-
vance, and their performance in capturing long-
term dependencies is limited. In contrast, ICMA
introduces insertion and substitution operations to
leverage item correlation by adding related items
to the sequence, increasing the number of user in-
teractions, enhancing the model’s ability to capture
users’ dynamic interests, and using extrapolated
position encoding to effectively capture long-term
user dependencies.

2.2 Contrastive Self-Supervised Learning

Contrastive self-supervised learning has shown re-
markable success in computer vision (CV) (He
et al., 2020; Du et al., 2023), natural language pro-
cessing (NLP) (Gunel et al., 2020; Du et al., 2024),
and recommendation (Zhou et al., 2020; Xie et al.,
2022). The basic goal of contrast SSL is to learn
useful feature representations by bringing different
enhanced views of the same data close together
in the presentation space and keeping representa-
tions of different data apart. CL4SRec (Xie et al.,
2022) uses a multi-task training framework with
contrasting objectives to enhance user representa-
tions, but it adopts a random augmentation method
and ignores the item relevance in the sequence.

Inspired by the above methods, ICMA utilizes
contrastive learning and is aware of the key factor
of user intent, which enables it to more accurately
predict users’ future interests and needs.

3 Methodology

In this section, we introduce ICMA, the overall
framework is shown in Fig 2. First, we introduce
extrapolated positional encoding in the embedding
layer, which differs from traditional positional en-
coding and effectively captures users’ long-term
dependencies. Next, we design a multi-view data
augmentation method that introduces two augmen-
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Figure 2: Overall Architecture of ICMA.

tation operators to enrich users’ interaction records
by utilizing item relevance. These improvements
enable a more accurate reflection of user intent.

3.1 Problem Definition
Assume that the set of users and the set of
items are denoted as U and V , where u ∈ U ,
v ∈ V . For each user u, there is a sequence
Su =

[
v1, · · · , vt, · · · , v|Su|

]
in chronological or-

der, where vt ∈ V denotes the interacting item at
position t of user u in the sequence, and —Su—
denotes the total number of items. Represent Su as
the embedding representation of Su and vt is the d-
dimensional embedding of the item vt. In practice,
the sequence is truncated to the maximum length
T. If the sequence length is greater than T, the lat-
est T items in the sequence are considered. If the
sequence length is less than T, add a padding item
at the beginning of the sequence until the length
is T. Given the sequence Su, the goal of SR is to
recommend the items in the set V that the user u
might interact with in the —Su—+1 step.

3.2 Embedding Layer
The embedding layer contains an item embed-
ding layer and a position embedding layer. The
item embedding layer maps each item to a high-
dimensional vector space to capture the semantic
information and features of the item. The position
embedding layer, on the other hand, captures the
positional information of each item in the sequence
to help the model understand the relative positions
and order relationships of the items.

Extrapolated position encoding Conventional
positional encoding methods perform well when
dealing with fixed-length sequences, but are often
overwhelmed when dealing with long sequences
and are unable to accurately represent positional

information beyond the encoding range. In order to
overcome the limitations of traditional positional
encoding, we propose a new encoding method, i.e.,
extrapolated position encoding, which provides
more information dimensions and a rich represen-
tation of positional information by expanding the
frequencies of the sine and cosine functions, so
that the positional encoding is still expressive in a
wider range, and thus is able to efficiently capture
the user’s long-term dependency relationships. The
specific formula(Vaswani, 2017) is:

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
PE(pos, 2i+ 1) = cos

( pos

100002i/dmodel

)
,

(1)

where pos is the position and i is the dimension. For
any fixed offset k, PE(pos+k) can be represented as
a linear function of PEpos. PEpos is the position
encoding vector for position pos. Based on the
above equation we construct a position encoding
matrix Ep =

{
p1,p2, . . . ,p|Su|

}
, where Ep ∈

R|Su|×d.
Item embedding We map each item vt in

the input sequence to an embedding vector
vt, forming the item embedding matrix V ={
v1, . . . ,vt, . . .v|Su|

}
of the user’s history se-

quence, where V ∈ R|Su|×d. The initial vector
is obtained by summing the item embedding and
the item position encoding:

a|Su| = v|Su| + p|Su|, (2)

the initial input matrix corresponding to the item se-
quence is Su = [a1,a2, ...,a|Su|], and the position
encoding and item embedding are output separately
to avoid noise interference.
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Figure 3: Substitution and insertion combine relevance
between items

3.3 Multi-view Data Augmentation
Multi-view data augmentation is based on random
data augmentation methods (e.g., crop, mask, re-
order) and further introduces insertion and substi-
tution operators, aiming to exploit item relevance
more efficiently, to enrich the user’s record of inter-
actions, and to model the expansion of user inter-
ests.

3.3.1 Insertion and substitution
We introduce substitution and insertion operations
to enhance data using item relevance. Figure 3
illustrates these two operations with a sequence
Su = [v1, v2, . . . , vt], where t = 4. In the substitu-
tion operation, item v3 is replaced by its relevant
item v′3, maintaining the original sequence order
while enhancing data diversity and the model’s un-
derstanding of item relevance. In the insertion op-
eration, the relevant item v′3 is inserted between
v2 and v3, extending the user interaction sequence
and improving the model’s ability to capture item
relevance.

Substitute(S). Randomly choose k different in-
dexes {x1, x2, . . . , xk} in the sequence Su, where
k = ⌈αt⌉ and each index xi satisfies xi ∈
[1, 2, . . . , t]. α ∈ [0, 1] is the substitution rate.
Where v′xi

is the item relevant to vxi . Replace
each item in these indices with the relevant item.
The order of substitution is:

Su
S =

[
v1, v2, . . . , v

′
xi
, . . . , vt

]
. (3)

Insert(I). The positions in the sequence Su are ran-
domly chosen to insert items, and the number of
inserted items is controlled by the ratio ω ∈ [0, 1].
We first choose k different index {x1, x2, . . . , xk}
in the sequence Su, where k = ⌈ωt⌉ and each in-
dex xi satisfies xi ∈ [1, 2, . . . , t]. Where v′xi

is the
most relevant item to vxi . We insert the relevant
items at these indices. The order after insertion is:

SI
S =

[
v1, v2, . . . , v

′
xi
, vxi , . . . , vt

]
. (4)

3.3.2 Augmentation based on sequence length
Substitution and insertion are used for data aug-
mentation based on item relevance. There are two

ways to calculate item relevance, one is to calcu-
late item relevance based on collaborative filtering
of items (ItemCFIUF (Breese et al., 2013)). The
relevance scores of items vxi and v′xi

are defined
as:

Relo(vxi , v
′
xi
) =

1√
|N (vxi)| · |N (v′xi

)|

·
∑

u∈N (vxi )∩N (v′xi )

1

log (1 + |N (u)|)
,

(5)
where u represents the user, N (vxi) and N (v′xi

)
denote the number of users who have interacted
with items vxi and v′xi

, respectively. Another uses
dot product as a similarity measure. Given the
representations of items vxi and v′xi

as evxi and
ev′xi

, the relevance score is defined as:

Rele(vxi , v
′
xi
) = evxi · ev′xi . (6)

We combine these two methods and take the highest
value of both methods to calculate the relevance
score(Liu et al., 2021a):

Relh(vxi , v
′
xi
) = max(Relo(vxi , v

′
xi
),Rele(vxi , v

′
xi
)),

(7)
where Relo and Rele are the normalized scores of
the above two methods, respectively.

Since short sequences may result in sparse data
or insufficient information, we use different sets of
augmentation operators for sequences depending
on their length. The hyperparameter W determines
whether the sequence is short or long and then the
data augmentation is applied as follows:

Su
a =

{
a(Su), a ∼ {S, I,M}, |Su| ≤ W
a(Su), a ∼ {S, I,M,C,R}, |Su| > W

(8)
where a is the augmentation operator selected from
the corresponding augmentation set. Although M
produces fewer items when dealing with short se-
quences, we include it in the augmentation set of
short sequences because it is able to preserve and re-
veal more complex and deeper relationships within
the sequences to some extent.

3.4 Intent Representation Learning
We represent the Transformer encoder as fθ(·),
and apply extrapolated position encoding to the
sequence to capture the positional information of
each item in the sequence. Subsequently, the se-
quence embedding Su is encoded to output the user
interest representation on all positional steps as:

hu = fθ(S
u). (9)
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By maximizing the log-likelihood function
L (θ), the optimal model parameter θ can be found:

L (θ) =
N∑

u=1

T∑
t=1

lnPθ (vt) , (10)

where Pθ represents the probability distribution
function with parameter θ. This is equivalent to
minimizing the prediction loss for sequential rec-
ommendation using the cross-entropy function:

LNext =
N∑

u=1

T∑
t=1

− log
(
σ
(
hu
t−1 · vt

))
−
∑
neg

log
(
1− σ

(
hu
t−1 · vneg

))
,

(11)

hu
t−1 denotes the user’s interest in the position t−1,

where vt and vneg denote embedding of the target
term vt and all items not interacted with by u. σ
is a nonlinear activation function. N refers to the
number of sequences in a small batch. Suppose
there are K different user intentions, forming the
intention variable c = {ci}Ki=1, the probability that
a user interacts with an item is:

Pθ(v) =
K∑
i=1

Pθ(v | ci)P (ci). (12)

Since user intent is latent, we cannot know the
value of the variable ci directly. Without ci, the
current parameter θ cannot be estimated, and with-
out θ, there is no way to infer what the value of
ci might be. We use EM algorithm to solve the
above problem. First guessing the value of θ and
estimating the value of the missing variable ci is
the E-step. The M-step is to maximize the expected
log-likelihood function and update the model pa-
rameter θ after obtaining the value of ci. This pro-
cess repeats until the log-likelihood converges.

Suppose there are K latent intent prototypes
{ci}Ki=1 influencing the user to interact with the
item, then based on Eq.(10) and Eq.(12), we can
reformulate the maximum likelihood function as:

L(θ) =
∑N

u=1

∑T
t=1 ln

(∑K
i=1 Pθ(vt | ci)P (ci)

)
.

(13)
To facilitate the optimization of Eq.(13), we in-

troduce the distribution Q(ci) of the hidden vari-
able and rerepresent the sum within the logarithm:

L(θ) =
N∑

u=1

T∑
t=1

ln

(
K∑
i=1

Pθ(vt, ci)

)

=

N∑
u=1

T∑
t=1

ln

K∑
i=1

Q(ci)
Pθ(vt, ci)

Q(ci)
.

(14)

Based on Jensen’s inequality, Eq.(14) is

≥
N∑

u=1

T∑
t=1

K∑
i=1

Q(ci) ln
Pθ(vt, ci)

Q(ci)

≥
N∑

u=1

K∑
i=1

Q(ci) (lnPθ(S
u, ci)− lnQ(ci)) .

(15)
Here, we use Pθ(S

u, ci) for
∏T

t=1Pθ(vt | ci). In
the optimization process, we only care about the
terms related to the parameter θ. Therefore, remov-
ing the terms associated with terms not related to
θ, the final lower bound function takes the form:

N∑
u=1

K∑
i=1

Q(ci) · lnPθ(S
u, ci), (16)

where Q(ci) = Pθ(ci|Su). Since Q(c) is unknown,
we cannot optimize Eq.(16) directly. Therefore, we
use an alternating optimization method between
the E-step and the M-step. In order to learn the
user’s intent distribution function Q(c), we per-
form K-means (Chen et al., 2022b) clustering on
all sequences. Following this, the distribution func-
tion Q(ci) is defined as:

Q(ci) = Pθ(ci|Su) =

{
1, if Su in cluster i
0, else.

(17)

3.5 Intent Contrastive SSL
We utilize contrastive SSL to fuse correlations be-
tween different views of a sequence. With the
multi-view data augmentation method, given the se-
quence Su, two augmentation views can be created
(Zhou et al., 2020; Xie et al., 2022):

S̃u
1 = g1(S

u), S̃u
2 = g2(S

u), s.t.g1, g2 ∼ G,
(18)

where G is the set of predefined data augmentation
functions, and g1 and g2 represent augmentation
functions sampled from G to create different views
for Su. Typically, views created from the same se-
quence are treated as positive pairs, and any views
from different sequences are treated as negative
pairs. Enhanced views are first processed using ex-
trapolated position encoding and then encoded as
vector representations h̃u

1 and h̃u
2 by Transformer

encoder fθ(·). We denote the contrastive loss as:

LSCL =− log
exp(sim(h̃u

1 , h̃
u
2))∑

neg exp(sim(h̃u
1 , h̃neg))

− log
exp(sim(h̃u

2 , h̃
u
1))∑

neg exp(sim(h̃u
2 , h̃neg))

,

(19)
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where sim(·) is the dot product, and h̃neg is the
negative view representation of the sequence Su.
We have estimated the intent distribution function
Q(c), and to maximize Eq.(16), we borrow the
formula proposed by Chen (Chen et al., 2022b) in
order to redefine Pθ (S

u, ci) as follows:

Pθ(S
u, ci) =

1

K
· Pθ (S

u | ci)

∝ 1

K
· exp (hu · ci)∑K

j=1 exp (h
u · cj)

.
(20)

where hu and cu are vector representations of Su

and ci, respectively. Based Eq.(16),(17),(20), max-
imizing Eq.(16) is equivalent to minimizing the
following loss function:

−
N∑
v=1

log
exp(sim(hu, ci))∑K
j=1 exp(sim(hu, cj))

, (21)

this loss function is quoted from (Chen et al.,
2022b), where sim(·) is the dot product. Given
a batch of training sequences {su}Nu=1, we first cre-
ate two positive views of the sequences through
Eq.(18) and then to optimize the following loss
function:

LIntCL =− log
exp(sim(h̃u

1 , cu))∑
neg exp(sim(h̃u

1 , cneg))

− log
exp(sim(h̃u

2 , cu))∑
neg exp(sim(h̃u

2 , cneg))
.

(22)
where cneg are all the intents in the given batch.

Datasets Beauty Sports Toys
#Users 22,363 35,598 19,412
#Items 12,101 18,357 11,924
#Actions 198,502 296,337 167,597
Avg.length 8.9 8.3 8.6
Sparsity 99.95% 99.95% 99.93%

Table 1: Statistics of the experimented datasets.

3.6 Joint loss
We use joint loss to train the SR model, where the
main next-item prediction, IntCL, and contrastive
SSL are jointly optimized. It is shown as follows:

L = LNext + λ · LIntCL + β · LSCL, (23)

where λ and β control the intensity of the IntCL
task and sequence-level SSL task, respectively.

4 Experiments

In this section, we conduct experiments on three
datasets to evaluate our model ICMA and remove
modules from the model to conduct experiments to
verify the validity of the modules and also analyze
the effect of hyperparameters.

4.1 Datasets

We conduct experiments on three public data sets.
Sports, Beauty and Toys are the three subcategories
of Amazon review data introduced in (McAuley
et al., 2015). We follow (Xie et al., 2022) to pre-
pare the datasets, and only keep the ”5 core” dataset
where all users and items have at least 5 interac-
tions. Table ?? lists the detailed statistics for the
three datasets.

4.2 Evaluation Metrics and parameter setup

We rank the entire item set and evaluate perfor-
mance using HR and NDCG. We optimize using
the Adam optimizer. The learning rate is 0.001. Set
the self-attention block and attention head to 2, and
the dimension of the embedding as 128. The batch
size is 256.

4.3 Baseline Models

We compare ICMA with the following representa-
tive SR models:

• SASRec (Kang and McAuley, 2018): This
model utilizes an attention network for recom-
mendation, which greatly improves the perfor-
mance of SR.

• BERT4Rec (Sun et al., 2019): This model
replaces the next prediction with a comple-
tion task to fuse information between items
(views) in a sequence of user behaviors and
their contextual information.

• S3-Rec (Zhou et al., 2020): It introduces
SSL to capture correlations between items in
a given sequence.

• CL4SRec (Xie et al., 2022): The model com-
bines data augmentation with contrastive SSL
using a random data augmentation method.

• DSSRec (Ma et al., 2020): It introduces the
seq2seq training strategy and the intent un-
wrapping layer for SR.
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Dataset Metric SASRec DSSRec BERT4Rec S3-Rec CL4SRec ICLRec IOCRec S4Rec ICMA impr.

Sports

HR@5 0.0206 0.0214 0.0217 0.0121 0.0217 0.0290 0.0284 0.0293 0.0306 4.4%
HR@20 0.0497 0.0495 0.0604 0.0344 0.0540 0.0646 0.0684 0.0656 0.0663 -

NDCG@5 0.0135 0.0142 0.0143 0.0084 0.0137 0.0191 0.0169 0.0181 0.0208 8.9%
NDCG@20 0.0216 0.0220 0.0251 0.0146 0.0227 0.0291 0.0279 0.0292 0.0308 5.5%

Beauty

HR@5 0.0374 0.0410 0.0360 0.0189 0.0423 0.0500 0.0511 0.0519 0.0568 9.4%
HR@20 0.0901 0.0914 0.0984 0.0487 0.0994 0.1058 0.1146 0.1071 0.1155 0.8%

NDCG@5 0.0241 0.0261 0.0216 0.0115 0.0281 0.0326 0.0311 0.0348 0.0386 10.9%
NDCG@20 0.0387 0.0403 0.0391 0.0198 0.0441 0.0483 0.0490 0.0505 0.0551 9.1%

Toys

HR@5 0.0463 0.0502 0.0274 0.0143 0.0526 0.0598 0.0542 0.0586 0.0683 14.2%
HR@20 0.0941 0.0975 0.0688 0.0235 0.1038 0.1138 0.1132 0.1148 0.1242 8.2%

NDCG@5 0.0306 0.0337 0.0174 0.0123 0.0362 0.0404 0.0297 0.0407 0.0467 14.7%
NDCG@20 0.0441 0.0471 0.0291 0.0162 0.0506 0.0557 0.0464 0.0565 0.0625 10.6%

Table 2: Performance comparison of different methods. The best score in each row is in bold, and the second score
is underlined. The last two columns are relative improvements compared to the best baseline results.
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Figure 4: Performance comparison on ICMA different embedding dimension.

• ICLRec (Chen et al., 2022b): The model
learns users’ potential intentions from se-
quences through clustering and integrates the
learned intentions into the model through as-
sisted contrast loss.

• IOCRec (Li et al., 2023b): The model uses in-
tent contrastive learning to solve the denoising
problem in sequence recommendation tasks

• S4Rec (Wei et al., 2024): The model uses
online clustering to expertly group users ac-
cording to their different potential intentions.

4.4 Performance Comparison
Table 2 shows the results of different methods on
all datasets. We have the following observations.
First, our model ICMA outperforms all baselines
on all three datasets. The performance improve-
ment ranges from 0.8% to 14.7%. In particular,
ICLRec and IOCRec utilize the contrastive SSL
task to learn the intention representation of SR, ac-
curately modeling the user’s preferences, which
significantly improves performance. However, they
are not as effective as ICMA, and one possible
reason is that they use random data augmentation
methods and do not use the substitute and insert

Model
Dataset

Sports Beauty Toys
HR NDCG HR NDCG HR NDCG

(A) ICMA 0.0663 0.0308 0.1155 0.0551 0.1242 0.0625
(B) w/o S 0.0661 0.0306 0.1150 0.0546 0.1219 0.0624
(C) w/o I 0.0659 0.0305 0.1099 0.0529 0.1204 0.0614
(D) w/o Pos 0.0659 0.0303 0.1098 0.0541 0.1211 0.0599

Table 3: Ablation study of ICMA (HR@20 and
NDCG@20).

augmentation operators that we introduce. These
two operators can make better use of the relevance
between items, enhance the diversity of data and
the adaptability of the model. Among all the com-
pared models, S4Rec shows better performance
than the other models, a possible reason is that on-
line clustering is an important factor in improving
the learning of user intent for sequential recom-
mendation models. However, it is still less effective
than our model, and a plausible explanation may be
that it does not employ extrapolated position encod-
ing, thus failing to adequately capture long-term
dependencies in user behavior.

4.5 Ablation Study

We conduct ablation studies to verify the validity
of the modules in our model and record our ex-
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Figure 5: Comparison of ICMA performance with different cluster number K.
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Figure 6: Performance comparison of ICMA w.r.t. different β.

perimental results in Table 3. From the table, we
can see that by comparing (A) with (B) and (C),
the performance of the model decreases in the ab-
sence of the ” substitute” and ”insert” operations,
which illustrates the importance of utilizing item
relevance. These operations introduce more item-
relevant information and increase the diversity of
the data, thus enabling the model to better capture
user preferences. Comparing (A) and (D), We find
that using extrapolated position encoding can effec-
tively capture the long-term dependency of users
and thus obtain further position information.

4.6 Hyper-parameter Analysis

We conduct experiments by tuning the embedding
dimension, contrastive learning strength β, and the
number of clusters K to identify the optimal hy-
perparameters for the ICMA model, using HR@20
and NDCG@20 as evaluation metrics.

As shown in Figure 4, the model performance
improves with increasing embedding dimensions,
reaching the best performance at 128 dimensions,
after which it gradually declines. This suggests
that excessively large embedding dimensions may
introduce redundant information, increasing model
complexity and leading to overfitting. Figure 5
shows that the optimal performance is achieved
with a cluster number K of 256 on the Sports and
Beauty datasets, with performance decreasing be-
yond 256. On the Toys dataset, the best perfor-

mance is observed at K = 512, but further increas-
ing K leads to a decline, likely due to excessive
clustering making the data sparse and affecting the
model’s generalization ability. As seen in Figure
6, model performance significantly improves as β
increases to 0.1, particularly between β = 1e− 4
and 0.1. When β > 0.1, performance declines,
possibly because the positive and negative sam-
ples become too dispersed, affecting the model’s
generalization.

5 Conclusion

In this paper, we propose ICMA, a framework that
improves traditional position encoding by extrap-
olating position encoding to more effectively cap-
ture long-term dependencies in user behavior. In
addition, the model’s adaptability and accuracy are
enhanced by the design of a multi-view augmen-
tation method, which fully utilizes item relevance
and accurately reflects the user’s intention. The
experimental results on the three datasets show that
ICMA has significant advantages over most base-
lines. Future work can further explore more aug-
mentation operators based on item relevance to
utilize more accurate and relevant information.

6 Limitations

Although ICMA shows performance improvements
over most baseline methods, it is not without limita-
tions. In some cases, item relevance may be weak,
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or the relationship between user behavior and items
may change frequently. In these situations, the op-
erators may select inappropriate items, resulting
in augmented data that does not match the actual
context and introduces noisy data. Additionally,
while ICMA effectively models long-term depen-
dencies through extrapolated position encoding, it
may overemphasize distant user behavior when the
sequence length becomes too long, reducing atten-
tion to recent interactions.

Acknowledgments

This work was supported in part by the “20 New
Universities” Project of Jinan City (202333023)
and Shandong Provincial Natural Science Founda-
tion (ZR2023QF006).

References
John S Breese, David Heckerman, and Carl Kadie. 2013.

Empirical analysis of predictive algorithms for col-
laborative filtering. arXiv preprint arXiv:1301.7363.

Renqin Cai, Jibang Wu, Aidan San, Chong Wang, and
Hongning Wang. 2021. Category-aware collabora-
tive sequential recommendation. In Proceedings of
the 44th international ACM SIGIR conference on
research and development in information retrieval,
pages 388–397.

Lei Chen, Jingtao Ding, Min Yang, Chengming Li,
Chonggang Song, and Lingling Yi. 2022a. Item-
provider co-learning for sequential recommendation.
In Proceedings of the 45th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 1817–1822.

Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley, and
Caiming Xiong. 2022b. Intent contrastive learning
for sequential recommendation. In Proceedings of
the ACM Web Conference 2022, pages 2172–2182.

Hanwen Du, Huanhuan Yuan, Pengpeng Zhao, Fuzhen
Zhuang, Guanfeng Liu, Lei Zhao, Yanchi Liu, and
Victor S Sheng. 2023. Ensemble modeling with con-
trastive knowledge distillation for sequential recom-
mendation. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 58–67.

Yingpeng Du, Ziyan Wang, Zhu Sun, Yining Ma,
Hongzhi Liu, and Jie Zhang. 2024. Disentangled
multi-interest representation learning for sequential
recommendation. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 677–688.

Ziwei Fan, Zhiwei Liu, Hao Peng, and Philip S Yu.
2023. Mutual wasserstein discrepancy minimization
for sequential recommendation. In Proceedings of
the ACM Web Conference 2023, pages 1375–1385.

Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei
Zheng, and Philip S Yu. 2021. Continuous-time se-
quential recommendation with temporal graph collab-
orative transformer. In Proceedings of the 30th ACM
international conference on information & knowl-
edge management, pages 433–442.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2020. Supervised contrastive learning for pre-
trained language model fine-tuning. arXiv preprint
arXiv:2011.01403.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Ruining He and Julian McAuley. 2016. Fusing similar-
ity models with markov chains for sparse sequential
recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM), pages 191–200.
IEEE.

Wang-Cheng Kang and Julian McAuley. 2018. Self-
attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM),
pages 197–206. IEEE.

Dongjun Lee, Donggeun Ko, and Jaekwang Kim. 2023.
Hierarchical contrastive learning with multiple aug-
mentation for sequential recommendation. arXiv
preprint arXiv:2308.03400.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen,
Jingbo Shang, and Julian McAuley. 2023a. Text
is all you need: Learning language representations
for sequential recommendation. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1258–1267.

Xuewei Li, Aitong Sun, Mankun Zhao, Jian Yu, Kun
Zhu, Di Jin, Mei Yu, and Ruiguo Yu. 2023b. Multi-
intention oriented contrastive learning for sequential
recommendation. In Proceedings of the sixteenth
ACM international conference on web search and
data mining, pages 411–419.

Zhiwei Liu, Yongjun Chen, Jia Li, Philip S Yu, Ju-
lian McAuley, and Caiming Xiong. 2021a. Con-
trastive self-supervised sequential recommendation
with robust augmentation. arxiv 2021. arXiv preprint
arXiv:2108.06479.

Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S Yu.
2021b. Augmenting sequential recommendation
with pseudo-prior items via reversely pre-training
transformer. In Proceedings of the 44th international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 1608–1612.

Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui,
Xin Wang, and Wenwu Zhu. 2020. Disentangled
self-supervision in sequential recommenders. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 483–491.



3309

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on
research and development in information retrieval,
pages 43–52.

Xiuyuan Qin, Huanhuan Yuan, Pengpeng Zhao, Jun-
hua Fang, Fuzhen Zhuang, Guanfeng Liu, Yanchi
Liu, and Victor Sheng. 2023. Meta-optimized con-
trastive learning for sequential recommendation. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 89–98.

Steffen Rendle. 2010. Factorization machines. In 2010
IEEE International conference on data mining, pages
995–1000. IEEE.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441–1450.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Shuhan Wang, Bin Shen, Xu Min, Yong He, Xiaolu
Zhang, Liang Zhang, Jun Zhou, and Linjian Mo.
2024. Aligned side information fusion method for
sequential recommendation. In Companion Proceed-
ings of the ACM on Web Conference 2024, pages
112–120.

Shaowei Wei, Zhengwei Wu, Xin Li, Qintong Wu,
Zhiqiang Zhang, Jun Zhou, Lihong Gu, and Jinjie Gu.
2024. Leave no one behind: Online self-supervised
self-distillation for sequential recommendation. In
Proceedings of the ACM on Web Conference 2024,
pages 3767–3776.

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang
Gao, Jiandong Zhang, Bolin Ding, and Bin Cui. 2022.
Contrastive learning for sequential recommendation.
In 2022 IEEE 38th international conference on data
engineering (ICDE), pages 1259–1273. IEEE.

Yipeng Zhang, Xin Wang, Hong Chen, and Wenwu Zhu.
2023. Adaptive disentangled transformer for sequen-
tial recommendation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3434–3445.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual informa-
tion maximization. In Proceedings of the 29th ACM
international conference on information & knowl-
edge management, pages 1893–1902.

Tianyu Zhu, Yansong Shi, Yuan Zhang, Yihong Wu,
Fengran Mo, and Jian-Yun Nie. 2024. Collabora-
tion and transition: Distilling item transitions into

multi-query self-attention for sequential recommen-
dation. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pages
1003–1011.


	Introduction
	Related Work
	Sequential Recommendation
	Contrastive Self-Supervised Learning

	Methodology
	Problem Definition
	Embedding Layer
	Multi-view Data Augmentation
	Insertion and substitution
	Augmentation based on sequence length

	Intent Representation Learning
	Intent Contrastive SSL
	Joint loss

	Experiments
	Datasets
	Evaluation Metrics and parameter setup
	Baseline Models
	Performance Comparison
	Ablation Study
	Hyper-parameter Analysis

	Conclusion
	Limitations

