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Abstract

Automated assessment in natural language gen-
eration is a challenging task. Instruction-tuned
large language models (LLMs) have shown
promise in reference-free evaluation, particu-
larly through comparative assessment. How-
ever, the quadratic computational complexity
of pairwise comparisons limits its scalability.
To address this, efficient comparative assess-
ment has been explored by applying compara-
tive strategies on zero-shot LLM probabilities.
We propose a framework for finetuning LLMs
for comparative assessment to align the model’s
output with the target distribution of compara-
tive probabilities. By training on soft probabili-
ties, our approach improves state-of-the-art per-
formance while maintaining high performance
with an efficient subset of comparisons.

1 Introduction

Automatically assessing the quality of texts gener-
ated by the natural language generation (NLG) sys-
tem remains a challenging task (Gao et al., 2024).
A recent approach which has gained considerable
popularity is LLM-as-a-judge (Zheng et al., 2023),
where instruction-tuned LLMs are prompted zero-
shot to predict the quality of texts generated by
other systems. In particular, LLM comparative as-
sessment (Liusie et al., 2024a; Qin et al., 2024),
where pairs of texts are compared to determine
which is better, has demonstrated strong corre-
lations with human judgements, typically better
than those from LLM absolute assessment (Liu
et al., 2023; Liusie et al., 2024a). Naive com-
parative assessment, though, scales quadratically
with the number of items, which can be impracti-
cal when deployed to real-world settings. Hence,
more recently, efficient comparative assessment
(Liusie et al., 2024b) was explored where by using
the LLM probabilities within a product-of-experts
(PoE) framework, assessment can be achieved us-
ing a subset of the possible comparisons.

Beyond the zero-shot domain, recent studies
have shown the benefits gained when systems are
fine-tuned for bespoke tasks, including for LLM
absolute assessment (Latif and Zhai, 2024) and
comparative assessment (Park et al., 2024). How-
ever, the various experts proposed within the PoE
fromework (e.g. Bradley-Terry) make strong as-
sumptions about the underlying distribution of the
pairwise probabilities. The differences between the
true and assumed distributions can limit the benefits
of fine-tuning comparative systems using hard deci-
sions. Therefore, here, we tackle this distributional
mismatch by forcibly training the LLM under the
assumed distribution of interest. Specifically, the
pairwise difference in training scores are scaled to
soft training probabilities under the target distribu-
tion. By training the LLM with these soft pairwise
probabilities, the true inference time probabilities
can be expected to match the assumed distribution
in the PoE framework for comparative assessment.
We demonstrate the benefits that finetuning in this
fashion has for LLM comparative assessment, and
our contributions can be summarized as follows:

1. We propose a framework for LLM compara-
tive assessment training.

2. We demonstrate that finetuning with soft com-
parative probabilities under a target distribu-
tion enables higher performance with a highly
efficient number of comparisons than finetun-
ing with hard binary decision training.

2 Related work

LLM Comparative Assessment Recent research
has investigated using LLMs to make pairwise com-
parisons to rank text outputs, as well as the associ-
ated computational efficiency. Qin et al. (2024) use
pairwise comparisons to retrieve relevant sources,
using both the full comparison set and sorting-
based techniques. Liusie et al. (2024a) compute the
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win-ratio using the sets of possible comparisons,
demonstrating that for medium-sized LLMs, pair-
wise comparisons surpass traditional scoring meth-
ods for various NLG assessment benchmarks. They
also show that performance declines significantly
as the number of comparisons falls. Additionally,
Liu et al. (2024) emphasize the limitations of LLM
scoring, advocating for pairwise comparisons and
introducing PAirwise-preference Search (PAIRS),
a merge sort variant that leverages LLM probabili-
ties. Finally, Liusie et al. (2024b) apply a product
of experts framework to zero-shot LLM probabili-
ties for higher performing comparative assessment
with a subset of comparisons. In this work, we
extend existing comparative assessment methods
by exploring the finetuning of such systems.

Finetuning Prompted Assessment Systems
Latif and Zhai (2024) investigate fine-tuning Chat-
GPT for absolute assessment Park et al. (2024).
Ouyang et al. (2022) use human preferences rank-
ings to train the reward model under the Bradley-
Terry model, and Park et al. (2024) use the average
probability across randomly sampled comparisons
as a quality metric and demonstrate performance
improvements by supervised training. However, in
all these methods, only hard decisions are used to
train systems, and they don’t consider the impact it
has on downstream scoring mechanisms, such as
the PoE framework.

3 LLM comparative assessment

3.1 Scoring methods

For the task of NLG assessment, the objective is
to score a set of candidate texts for a selected at-
tribute (e.g. coherency or question complexity).
Let x1:N denote a set of N candidate texts with
corresponding true scores for the attribute of in-
terest, s1:N . Let M be a comparative model that
returns the probability of xi being greater than xj
for the assessed attribute, pij .

By observing the outcome of a set of pairwise
comparisons, C1:K , various methods exist to con-
vert the outcomes to the predicted scores, ŝ1:N . Fol-
lowing Liusie et al. (2024b), we consider several
method methods of mapping a set of comparisons
to assessment scores. When using hard binary deci-
sions, we use the win-ratio (Qin et al., 2024; Raina
and Gales, 2024) and the Bradley-Terry model (BT)
(Bradley and Terry, 1952), while when probabili-
ties are leveraged, we consider equivalent ‘soft’ ap-
proaches such as the average probability (avg-prob)

(Park et al., 2024) and the Bradley-Terry experts
in the PoE framework1 (PoE-BT). In PoE-BT, the
score difference between a pair of items is assumed
to be conditioned on the LLM comparative proba-
bility, with the output probability distribution given
in Equation 1.

p(si − sj |pij) =
1

Zij
σ(si − sj)

pij (1− σ(si − sj))
1−pij

(1)

where Zij is a normalizing constant to ensure a
valid pdf and σ(·) is the sigmoid function. The
predicted scores ŝ1:N are then the scores which
maximise the PoE probability,

ŝ1:N = argmax
s1:N

1

Z

∏
i,j∈C1:K

p(si−sj |pij) (2)

3.2 Finetuning Systems
The product of experts perspective assumes a cer-
tain distribution to the LLM probabilities. For
example, the Bradley-Terry model assumes a sig-
moidal distribution. However, zero-shot compara-
tive prompting of LLM systems does not necessar-
ily match the assumed distribution of probabilities.

If we finetune LLMs for comparative assessment,
we have the flexibility to control the distribution
of probabilities returned by the comparative model.
Hence, we convert a set of training scores to a set
of training pairwise probabilities according to:

pij = f

(
si − sj
γσs

)
(3)

where σs denotes the standard deviation of the set
of training scores; γ is hyperparameter controlling
the spread of the probabilities (see Appendix A
for its impact). Note, γ = 0 is equivalent to bi-
nary decisions, while large values of γ push the
probabilities out of the saturation region. In gen-
eral, we consider f ∈ {σ,Φ}, where σ matches the
sigmoid distribution for Bradley-Terry, while Φ is
the cumulative distribution function of Gaussians
used for Thurstone-Mosteller (Handley, 2001). We
restrict our analysis to just Bradley-Terry (hence
f = σ) as an approximately linear relationship
can be established between Bradley-Terry scores
and Thurstone-Mosteller scores (see Appendix B).
Given the set of pairwise probabilities, we train the
LLM according to a soft binary cross entropy loss:

L(θ) = −(y · log(ŷ) + (1− y) · log(1− ŷ)) (4)
1Liusie et al. (2024b) also consider Gaussian experts for

the PoE framework, but we focus our experiments on the soft
Bradley-Terry expert as it performs marginally better than the
Gaussian experts.
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Comparisons Model Mode USMLE CMCQRD
ρ (↑) r (↑) rmse (↓) ρ (↑) r (↑) rmse (↓)

Full [O(N2)]

GPT4o mini zero-shot 35.5 28.2 30.3 47.9 47.3 8.94
hard 73.3 68.0 23.2 53.8 54.7 8.50

Llama-3.1-8B
zero-shot 26.3 28.1 30.3 12.6 13.7 10.06

hard 69.3 64.4 24.2 41.9 41.2 9.25
soft 69.3 65.5 23.8 47.8 49.1 8.84

Partial [4N ]

GPT4o mini zero-shot 27.8 21.5 30.9 14.5 16.7 10.00
hard 64.8 60.4 25.2 50.9 52.6 8.64

Llama-3.1-8B
zero-shot 22.9 27.4 30.4 12.1 12.9 10.07

hard 59.6 56.4 26.1 41.3 39.1 9.35
soft 61.3 57.4 25.9 48.1 49.3 8.83

Table 1: Results for comparative assessment using PoE-BT as the scoring method.

where y = pij calculated from Equation 3 as the
label while ŷ is the prediction from the model.

4 Experiments

4.1 Data
We consider two datasets: USMLE (Yaneva et al.,
2024) and CMCQRD (Mullooly et al., 2023; Liusie
et al., 2023). USMLE is a medical multiple-choice
reading comprehension (MCRC) dataset where
each item has been annotated with the average re-
sponse time for candidates answering the question.
CMCQRD is an educational MCRC dataset an-
notated with difficulty scores. This work focuses
specifically on multiple-choice reading comprehen-
sion datasets.

Data Train Test Task

USMLE 466 201 response time
CMCQRD 464 194 difficulty

Table 2: Data statistics.

Table 2 summarizes the main statistics. USMLE
consists of 667 items where the standard split has
466 training examples and 201 for testing. All
items have unique contexts. CMCQRD has 658
items. With no standard split, we partition the
dataset into a training set of 464 training and 194
test examples. There are 78 unique contexts across
the whole dataset with no overlap between the train
and test splits. The USMLE dataset additionally
has difficulty scores 2. Note, we selected USMLE
and CMCQRD for our comparative finetuning ex-
periments as these were the only NLG datasets
(to our knowledge in the scope of multiple-choice
reading comprehension) that have human annotated

2We present our experimental results for this task on
USMLE in Appendix E.

attributes and are sufficiently large to warrant train-
ing a comparative system.

4.2 Models

The comparative system M is an instruction-tuned
LLM, configured with an appropriate prompt (e.g.
‘which item from text 1 or text 2 is better according
to the attribute’) - see Appendix C. As is common
for getting continuous outputs from LLMs (Liusie
et al., 2024b), the LLM logits over the label classes
(1 and 2) are taken to calculate pij for Ck using soft-
max. Note, all probabilities from our comparative
systems are directly debiased for position in the
prompt as each comparison involves 2 calls (1 vs 2
and 2 vs 1), where the average of the two calls is
taken to get the final comparative probabilities. We
run our analysis using GPT4o mini 3 as a closed-
source solution and Llama-3.1-8B (Dubey et al.,
2024) as the open-source solution. For Llama-3.1-
8B, we run comparative assessment for zero-shot,
hard finetuning (γ = 0) and soft finetuning 4. The
finetuning is based on Equation 4, where hard fine-
tuning uses 0 or 1 while soft finetuning uses the soft
probabilities from Equation 3 for the labels. For
soft finetuning, we find γ = 5.0 gives us the best re-
sults. Due to the closed-source access, with GPT4o
mini, it is only possible to do hard finetuning. It
is interesting that closed-source access training is
better designed for comparative than absolute train-
ing as the models must be trained to predict an
output class (rather than a continuous score). See
Appendix D for hyperparameter details.

3Available at: https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/

4Code available at: https://github.com/
VatsalRaina/POE.

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://github.com/VatsalRaina/POE
https://github.com/VatsalRaina/POE
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(a) Zero-shot (b) Finetuned hard (c) Finetuned soft

Figure 1: USMLE response time estimation: Efficient comparisons with Llama-3.1.

(a) Zero-shot (b) Finetuned hard (c) Finetuned soft

Figure 2: CMCQRD difficulty estimation: Efficient comparisons with Llama-3.1.

5 Results

Table 1 summarizes the performance of compara-
tive assessment systems. We use Spearman’s cor-
relation coefficient, ρ, Pearson’s correlation coef-
ficient, r, and root mean squared error, rmse, be-
tween the predicted and true scores on each of the
test sets as the performance metrics. Rmse is cal-
culated after linear scaling of the predictions to the
true scores 5. PoE-BT is used for comparative as-
sessment. As expected, hard finetuning of GPT4o
mini substantially boosts performance compared
to the zero-shot numbers. A similar improvement
from zero-shot performance can be observed when
hard finetuning Llama-3.1-8B.

Figures 1 and 2 present the performance evolu-
tion (using Pearson) with an efficient number of
comparisons. Hard finetuning leads to improved
performance for a small number of comparisons
compared to the zero-shot curves. By applying
soft finetuning, there is minimal degradation in the
PoE-BT curve with an extremely small subset of
comparisons. Table 1 further quantifies the benefits

5The absolute score predictions from comparative assess-
ment do not necessarily have any meaning. Hence, metrics
like rmse cannot be calculated directly from them. We scale
these scores to a range of the labels by learning two parameters
(a and b for y = ax+ b) on a validation split.

of soft finetuning by presenting the results with a
partial number of comparisons at an operating point
of 4N , where N is the number of items (N2 is the
order of the maximal comparisons). Selecting a
high γ in soft finetuning pushes the distribution
of the pairwise probabilities outside the saturation
region of the sigmoid. This means that very few
comparisons are needed for each item to deduce
the overall ranking as a comparison between item
A and B as well as a comparison between item A
and C enables the comparison between item A and
C to be somewhat inferred.

Table 3 further shows that our best comparative
system out-competes all the submitted solutions
(Rodrigo et al., 2024; Tack et al., 2024; Gombert
et al., 2024) to the BEA shared task 2024 (Yaneva
et al., 2024) for response time estimation. Rodrigo
et al. (2024) explored the finetuning of BERT-based
models for direct response time estimation. Tack
et al. (2024) submitted a solution based on ran-
dom forest regression by extracting linguistic fea-
tures and clinical embeddings from the question
items. Finally, Gombert et al. (2024) considered
a RoBERTa-based (transformer encoder structure)
model with various adaptations such as a 2-layer
classification head. Hence, our solution was the



3349

only one to explore comparative assessment for
scoring the items.

Approach rmse (↓)

Dummy Regressor Baseline 31.7
UNED - run2 23.9
ITEC - Lasso 24.1
EduTec - roberta 25.6
Ours: comparative 23.2

Table 3: Benchmarking against baselines for USMLE.

6 Conclusions

Here, a framework of finetuning LLMs for compar-
ative assessment tasks is proposed. Due to the
quadratic compute cost in a full-set of compar-
isons, it is of high interest to achieve the same
assessment performance with an efficient subset of
comparisons. We finetune LLMs in comparative
manner using both binary decisions and soft proba-
bilities. The soft probabilities are calculated from
the training items’ scores using a sigmoid func-
tion, enabling the PoE set-up on the Bradley-Terry
method of pairwise comparisons to achieve near
maximal performance with few comparisons.

7 Limitations

We finetune two different LLMs for comparative
assessment: GPT4o mini as a closed-source model
and Llama-3.1-8B as the open-source model. Both
of these models are the smallest in their series of
models. Ideally, it would be useful to replicate the
experiments using larger models, but there isn’t the
computational budget available to run larger scale
models.

8 Ethics statement

There are no ethical concerns with this work.
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A Impact of γ

Equation 3 details the approach used to compute
training pairwise probabilities (for the soft cross-
entropy loss function) from the true score differ-
ence between a pair of items. γ in this equation
controls the distribution of the probabilities. Let
f(·) = σ(·). Then, based on the profile of the sig-
moid function, a larger γ leads to a greater concen-
tration of pairwise probabilities around 0.5. Figure
3 presents the various profiles of the pairwise prob-
abilities computed on the true response time scores
of the training split of USMLE. In general, γ = 0
leads to operating in the saturation region of the
sigmoid and hence only offers binary outcomes for
the pairwise probabilities. By increasing the value
of γ, we begin to operate outside the saturation
region, enabling richer information to be conveyed
in the pairwise probabilities. Note, as γ → ∞,
we approach all probabilities equally a value of
0.5, which is also a loss of information. Hence,
it is important to select a value of γ that pushes
the probabilities outside the saturation region but
avoids all the probabilities concentrating at 0.5.

Figure 3: Impact of distribution of training probabilities
based on choice of γ in sigmoid.

B Relationship between PoE-BT and
Thurstone-Mosteller

We argue that a linear scaling of the scores, γ, en-
ables approximate mapping between the absolute
scores output by various choice of f (for example,
it is empirically observed that scaling the argument
of σ(x) by 1.701 matches Φ(x) when minimizing
rmse between the two functions. See Figure 4 that
shows a linear scaling between sigmoid and the
cumulative normal distribution function.

Hence, applying PoE-BT and Thurstone-
Mosteller for comparative assessment can expect a
linear scaling between their scores. Figure 5 plots

Figure 4: Linear mapping between σ and Φ.

the score prediction from PoE-BT to the score pre-
diction from Thurstone-Mosteller (PoE-TM) where
the comparisons are generated by GPT4o mini for
response time estimation. It is clear that 1.7 is a
reasonable linear scaling between the scores from
each of these methods.

Figure 5: Relationship of scores (from zero-shot GPT-
4o mini) using POE-BT and POE-TM for response time
estimation.

C Prompts

Task Prompt

Response time Which reading comprehension question
can expect a longer candidate response
time, 1 or 2? Return only 1 or 2.

Difficulty Which reading comprehension question
is more difficult, 1 or 2? Return only 1
or 2.

Table 4: Prompts used for comparative training and
assessment for each task type.

In this work, for comparative assessment, we
consider two types of tasks: response time estima-
tion and difficulty estimation. Table 4 summarizes
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the prompts for each task type. Note, our results
always report the magnitude of the correlation co-
efficients (to account for a smaller zero-shot model
flipping the labels when understanding a prompt).

D Hyperparameter tuning

For the Llama-3.1-8B solution, for soft finetun-
ing, we find γ = 5.0 gives us the best re-
sults with hyperparameter finetuning for γ ∈
{0.1, 0.5, 1.0, 2.0, 5.0, 10.0} . We apply parameter
efficient finetuning using quantized low rank adap-
tation (QLoRA) (Dettmers et al., 2023) for both the
hard and soft finetuning involving 1 epoch with a
batch size of 2, 50K pairwise examples, learning
rate 1e-4 and QLoRA α = 16, r = 8. Each model
with 50K examples takes 13 hours to train on an
NVIDIA A100 GPU.

For GPT4o mini hard finetuning, the training
is performed for 1 epoch, 50K paired examples,
learning rate multiplier of 1.8 and batch size 33.

E USMLE difficulty estimation

The USMLE dataset has been additionally anno-
tated with difficulty scores. These annotations ap-
pear to be noisier, so we do not include them in
the main paper results. However, similar trends are
observed from Table 5 as was observed on the main
paper comparative assessment tasks. Table 6 fur-
ther demonstrates that we achieve state-of-the-art
performance for difficulty estimation on this task
when comparing against the solutions submitted to
the BEA shared task 2024 (Tack et al., 2024; Felice
and Karaoz, 2024; Dueñas et al., 2024).

Model Mode ρ (↑) r (↑) rmse (↓)

GPT4o mini zero-shot 7.5 5.8 0.310
hard 32.9 34.7 0.291

Table 5: Results using PoE-BT for USMLE difficulty
estimation task using a full-set of comparisons.

Approach rmse (↓)

Dummy Regressor Baseline 0.311
EduTec: Electra 0.299
UPN-ICC 0.303
EduTec: Roberta 0.304
ITEC: Random Forest 0.305
Ours: comparative 0.291

Table 6: Our best implementation against existing base-
lines for USMLE difficulty estimation.

F Additional details

We additionally trained an absolute (not pairwise)
model with a regression loss function for USMLE
response time estimation. This system achieved an
rmse score of 26.1, which was not competitive with
our equivalent comparative system.

Second, from (Liusie et al., 2024b), product of
experts with Gaussian experts is considered as a
comparative scoring method. Theoretically, it is
possible to finetune comparative LLM systems un-
der the PoE framework applied to Gaussian experts.
This would entail deducing training probabilities
for the set of items in a training batch collectively.
However, practically this was not feasible as our
compute resources limited our training to a batch
size of 2.

G Licenses

For CMCQRD, the license 6 states the licensed
dataset can be used for non-commercial research
and educational purposes only. The USMLE
dataset is distributed through the BEA shared task
2024.

6Available at https://
englishlanguageitutoring.com/datasets/
cambridge-multiple-choice-questions-reading-dataset

https://englishlanguageitutoring.com/datasets/cambridge-multiple-choice-questions-reading-dataset
https://englishlanguageitutoring.com/datasets/cambridge-multiple-choice-questions-reading-dataset
https://englishlanguageitutoring.com/datasets/cambridge-multiple-choice-questions-reading-dataset
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