@inproceedings{cho-etal-2025-hermit,
title = "Hermit Kingdom Through the Lens of Multiple Perspectives: A Case Study of {LLM} Hallucination on {N}orth {K}orea",
author = "Cho, Eunjung and
Cho, Won Ik and
Seo, Soomin",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.226/",
pages = "3353--3371",
abstract = "Hallucination in large language models (LLMs) remains a significant challenge for their safe deployment, particularly due to its potential to spread misinformation. Most existing solutions address this challenge by focusing on aligning the models with credible sources or by improving how models communicate their confidence (or lack thereof) in their outputs. While these measures may be effective in most contexts, they may fall short in scenarios requiring more nuanced approaches, especially in situations where access to accurate data is limited or determining credible sources is challenging. In this study, we take North Korea - a country characterised by an extreme lack of reliable sources and the prevalence of sensationalist falsehoods - as a case study. We explore and evaluate how some of the best-performing multilingual LLMs and specific language-based models generate information about North Korea in three languages spoken in countries with significant geo-political interests: English (United States, United Kingdom), Korean (South Korea), and Mandarin Chinese (China). Our findings reveal significant differences, suggesting that the choice of model and language can lead to vastly different understandings of North Korea, which has important implications given the global security challenges the country poses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cho-etal-2025-hermit">
<titleInfo>
<title>Hermit Kingdom Through the Lens of Multiple Perspectives: A Case Study of LLM Hallucination on North Korea</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eunjung</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Won</namePart>
<namePart type="given">Ik</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soomin</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hallucination in large language models (LLMs) remains a significant challenge for their safe deployment, particularly due to its potential to spread misinformation. Most existing solutions address this challenge by focusing on aligning the models with credible sources or by improving how models communicate their confidence (or lack thereof) in their outputs. While these measures may be effective in most contexts, they may fall short in scenarios requiring more nuanced approaches, especially in situations where access to accurate data is limited or determining credible sources is challenging. In this study, we take North Korea - a country characterised by an extreme lack of reliable sources and the prevalence of sensationalist falsehoods - as a case study. We explore and evaluate how some of the best-performing multilingual LLMs and specific language-based models generate information about North Korea in three languages spoken in countries with significant geo-political interests: English (United States, United Kingdom), Korean (South Korea), and Mandarin Chinese (China). Our findings reveal significant differences, suggesting that the choice of model and language can lead to vastly different understandings of North Korea, which has important implications given the global security challenges the country poses.</abstract>
<identifier type="citekey">cho-etal-2025-hermit</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.226/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>3353</start>
<end>3371</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hermit Kingdom Through the Lens of Multiple Perspectives: A Case Study of LLM Hallucination on North Korea
%A Cho, Eunjung
%A Cho, Won Ik
%A Seo, Soomin
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F cho-etal-2025-hermit
%X Hallucination in large language models (LLMs) remains a significant challenge for their safe deployment, particularly due to its potential to spread misinformation. Most existing solutions address this challenge by focusing on aligning the models with credible sources or by improving how models communicate their confidence (or lack thereof) in their outputs. While these measures may be effective in most contexts, they may fall short in scenarios requiring more nuanced approaches, especially in situations where access to accurate data is limited or determining credible sources is challenging. In this study, we take North Korea - a country characterised by an extreme lack of reliable sources and the prevalence of sensationalist falsehoods - as a case study. We explore and evaluate how some of the best-performing multilingual LLMs and specific language-based models generate information about North Korea in three languages spoken in countries with significant geo-political interests: English (United States, United Kingdom), Korean (South Korea), and Mandarin Chinese (China). Our findings reveal significant differences, suggesting that the choice of model and language can lead to vastly different understandings of North Korea, which has important implications given the global security challenges the country poses.
%U https://aclanthology.org/2025.coling-main.226/
%P 3353-3371
Markdown (Informal)
[Hermit Kingdom Through the Lens of Multiple Perspectives: A Case Study of LLM Hallucination on North Korea](https://aclanthology.org/2025.coling-main.226/) (Cho et al., COLING 2025)
ACL