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Abstract

While large language models (LLMs) have
achieved remarkable success in various natural
language processing tasks, their strengths have
yet to be fully demonstrated in grammatical er-
ror correction (GEC). This is partly due to the
misalignment between their pre-training objec-
tives and the GEC principle of making minimal
edits. In this work, we aim to bridge this gap
by introducing a novel method called Edit-wise
Preference Optimization (EPO). By distinguish-
ing the importance of different tokens and as-
signing higher reward weights to edit tokens
during preference optimization, our method
captures fine-grained distinctions in GEC that
traditional preference learning often overlooks.
Extensive experiments on both English and Chi-
nese datasets show that our framework consis-
tently outperforms strong baselines, achieving
state-of-the-art performance and demonstrating
the advantages of LLMs in GEC.

1 Introduction

Grammatical error correction (GEC) is a task
aimed at detecting and correcting potential gram-
matical errors in given sentences with minimal
edits (Bryant et al., 2023). GEC models have
widespread applications in areas such as automatic
speech recognition (Liao et al., 2023), writing as-
sistants (Knill et al., 2019), and search engines
(Ye et al., 2023a). Traditional GEC methods can
be divided into two categories: Sequence-to-Edit
(Seq2Edit) and Sequence-to-Sequence (Seq2Seq).
The Seq2Edit approach frames GEC as a sequence
labeling task by predicting the appropriate edit op-
eration for each token (Omelianchuk et al., 2020;
Stahlberg and Kumar, 2020), while the Seq2Seq
approach treats GEC as a monolingual machine
translation task using an encoder-decoder architec-
ture (Zhang et al., 2022b; Zhou et al., 2023b).

*Corresponding author.

Src. He might be wanted to guard the national image.

Pos. He might want to guard the national image. !

Neg. He could be wanted to guard the national image. %

Src. On the other side, she don’t likes cats at all.

Pos. On the other side, she doesn’t like cats at all. !

Neg. On the one hand, she didn’t likes cats at all. %

Table 1: Two examples of GEC. “Src./Pos./Neg.” denote
source, positive, and negative sentences. Underlined
texts show edit spans, while red highlights pivot tokens.

Recently, decoder-only large language models
(LLMs)1, such as GPT series (Achiam et al., 2023)
and LLaMA series (Touvron et al., 2023), have
demonstrated remarkable performance and poten-
tial across various NLP tasks. However, initial
studies suggest that these LLMs struggle to surpass
traditional Seq2Seq models on the GEC task (Qu
and Wu, 2023; Zhang et al., 2023; Yang and Quan,
2024). Moreover, LLMs often lead to overcorrec-
tion due to their pre-training objective of maximiz-
ing the likelihood of the next token, which conflicts
with the GEC principle of making minimal edits
(Omelianchuk et al., 2024; Davis et al., 2024).

Essentially, the above issue arises from the mis-
alignment between LLMs and human expectations
in the GEC task. In this work, we aim to enhance
the GEC capabilities of LLMs by leveraging es-
tablished LLM alignment techniques (Wang et al.,
2024). Among these techniques, Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)
is widely used due to its effectiveness and simplic-
ity in aligning LLMs with human intentions. DPO
treats policy LLMs as reward models and optimizes
them by maximizing the reward gap between posi-
tive (preferred) and negative (dispreferred) samples.
In the GEC task, where differences between posi-
tive and negative samples typically involve only a

1From here on, we will use “LLMs” to refer to decoder-
only large language models (LLMs).
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Figure 1: Results of our simulation experiment on BEA-
19 dev set and CoNLL-14 test set using LLaMA2-7B.
The pivot tokens in edit spans of negative samples were
replaced with corrected ones, followed by the model
regenerating the subsequent tokens. These results high-
light the specific importance of pivot tokens.

few tokens due to the minimal edit principle, these
subtle distinctions are crucial for model learning.
However, DPO assumes that all tokens contribute
equally during preference learning and fails to ac-
count for token-specific importance in GEC. Hence,
directly applying DPO is unable to capture these
fine-grained variations, which leads to suboptimal
performance in GEC, as demonstrated in Table 2.

Therefore, we argue that alignment techniques
should focus on increasing the reward gap between
positive and negative samples specifically at the
positions where edits are needed. Building on this
premise, we propose Edit-wise Preference Opti-
mization (EPO). Our approach begins with a warm-
up training phase to develop an initial model with
basic grammatical error correction capabilities. We
then sample several candidate sentences from this
model for each training input. The sentence with
the largest edit distance from the ground truth is
selected as the negative sample, while the ground
truth itself serves as the positive sample. This sam-
pling method does not require human annotations
or external reward models, making it both cost-
effective and easy to implement.

After collecting the preference pairs, we employ
a GEC parsing tool (Bryant et al., 2017) to identify
the differences between the sample pairs, referred
to as edit spans, as shown in Table 1. To encourage
the model to pay more attention to these edit spans
during preference optimization, we assign higher
reward weights to these edit tokens than other to-
kens. Moreover, to mitigate the risk of error ac-
cumulation during decoding, we assume that the
first token of each edit span, referred to as the pivot
token, is crucial for guiding the model in correcting
subsequent edit tokens. For this reason, we further

increase the reward weights of pivot tokens. To
demonstrate the role of pivot tokens, we conducted
a simulation experiment in which we manually cor-
rected the pivot tokens in the negative samples and
asked the model to regenerate the subsequent to-
kens. As shown in Figure 1, this correction and
subsequent token regeneration resulted in a 6.7 and
5.2 point increase in F0.5 score, respectively, com-
pared to simple token replacement. These findings
emphasize the critical role of pivot tokens.

To validate the effectiveness of EPO, we con-
duct experiments on two English and two Chi-
nese GEC datasets. Our results show that EPO
consistently outperforms baseline models, improv-
ing LLMs capabilities in grammatical error cor-
rection and achieving state-of-the-art performance
among single-model approaches. Moreover, our
method offers insights for tasks that require a focus
on token-wise preference learning. Source code
and scripts are available at https://github.com/
liangjh2001/EPO-GEC.

2 Related Work

2.1 Traditional GEC Methods

Traditional GEC methods mainly fall into two cate-
gories: Seq2Edit and Seq2Seq.

Seq2Edit typically treats GEC as a sequence
labeling task. Given an input sentence, Seq2Edit
models predict the corresponding edit operation for
each token, such as insertion, deletion, and replace-
ment (Awasthi et al., 2019; Stahlberg and Kumar,
2020; Li et al., 2022; Yakovlev et al., 2023). As
a milestone work, GECToR (Omelianchuk et al.,
2020) further introduces task-specific token trans-
formations on top of basic token-level edit opera-
tions, achieving high-precision results.

Seq2Seq treats GEC as a monolingual machine
translation task solved with encoder-decoder ar-
chitectures (Zhao and Wang, 2020; Rothe et al.,
2021; Ye et al., 2023b; Zhou et al., 2023b). Un-
like Seq2Edit which performs localized corrections,
Seq2Seq aims to generate the entire corrected sen-
tence. More advanced Seq2Seq approaches (Zhang
et al., 2022b; Li et al., 2023; Fang et al., 2023a)
further enhance performance by incorporating ad-
ditional information, such as syntactic features or
error detection signals.

2.2 LLMs for GEC

While decoder-only LLMs have achieved notable
success in many NLP tasks, they face challenges

https://github.com/liangjh2001/EPO-GEC
https://github.com/liangjh2001/EPO-GEC
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in GEC, primarily due to the conflict between their
generative nature and the minimal edit principle of
GEC (Coyne et al., 2023; Qu and Wu, 2023; Fang
et al., 2023b; Katinskaia and Yangarber, 2024).
Several studies attempt to address this challenge
from two perspectives. First, Fan et al. (2023) and
Zhang et al. (2023) apply supervised fine-tuning
to open-source LLMs on GEC datasets to enhance
task-specific performance. Second, Davis et al.
(2024) and Tang et al. (2024) improve the GEC per-
formance of closed-source models through prompt
engineering. Besides, Alirector (Yang and Quan,
2024) attempts to address the overcorrection issue
in LLMs by training an alignment model that takes
the source sentence and the initially corrected sen-
tence as input to produce the final target sentence.
However, these LLM-based methods have yet to
achieve the impressive performance in GEC seen
in other NLP tasks.

In another line, some research have explored
other roles of LLMs in the GEC task, such as gen-
erating explanations for corrections (Li et al., 2024;
Song et al., 2024) and assessing the quality of gram-
matical edits (Kobayashi et al., 2024).

2.3 LLM Alignment

LLM alignment techniques can be roughly classi-
fied into three categories: supervised fine-tuning
(SFT), reinforcement learning from human feed-
back (RLHF), and offline RLHF (Wang et al.,
2024). Although simple, the performance of SFT
is limited by the quality of fine-tuning data (Zhou
et al., 2023a) and is also vulnerable to out-of-
distribution samples (Kirk et al., 2024). Online
RLHF methods face challenges like training in-
stability and high resource demands (Yuan et al.,
2023; Ethayarajh et al., 2024). Direct Preference
Optimization (DPO) (Rafailov et al., 2023), a key
offline RLHF method, eliminates the need for a re-
ward model and avoids the complexities of RLHF.

Despite DPO achieving excellent results on vari-
ous chat benchmarks (Tunstall et al., 2023; Dubey
et al., 2024), our experiments show that it performs
poorly on the GEC task. In contrast, our Edit-wise
Preference Optimization (EPO) approach, designed
specifically for GEC, focuses on edit-specific to-
kens and has shown promising results.

3 Methodology

As illustrated in Figure 2, our proposed frame-
work consists of three main phases: supervised

fine-tuning (SFT), preference pair sampling, and
Edit-wise Preference Optimization (EPO). In this
section, we first introduce the preliminaries of DPO
(§3.1). Then, we provide a detailed explanation of
the proposed EPO (§3.2). Finally, we describe the
complete training pipeline (§3.3).

3.1 Preliminaries

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) seeks to address the instability and
complexity of RLHF by directly utilizing pairwise
preference data for model optimization. Given a
set of source sentences

{
xi
}N

i=1
which may con-

tain grammatical errors, along with corresponding
correct (positive) sentences

{
yiw

}N

i=1
and incorrect

(negative) sentences
{
yil
}N

i=1
, we construct a pref-

erence dataset denoted as D =
{
xi, yiw, y

i
l

}N

i=1
.

The objective of DPO is to maximize the reward
gap between positive and negative samples:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (1)

where πθ denotes the policy model to be optimized,
πref is the reference model, σ is the sigmoid func-
tion, and β is a hyperparameter. The log-likelihood
log π(y|x) of a sentence y given x is computed as:

log π(y|x) =
K∑
k=1

log π (yk|y<k, x) . (2)

3.2 Edit-wise Preference Optimization

As shown in Equation 2, DPO assumes all tokens
contribute equally to preference optimization by
assigning each a uniform reward weight of 1. How-
ever, the differences between preference pairs in
GEC are often subtle, making it difficult for the
model to capture these nuances. To address this
issue, our EPO introduces a dynamic token weight-
ing mechanism, which assigns varying weights
based on the importance of each token. EPO helps
the model capture subtle differences during pref-
erence optimization by assigning higher reward
weights to tokens involved in necessary edits.

Specifically, we first employ a GEC parsing tool
(Bryant et al., 2017) to identify the differences be-
tween positive and negative samples, referred to as
edit spans. To encourage the model to focus more
on these edit spans during preference optimization,
we assign a higher reward weight γ (γ > 1) to
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Figure 2: An overview of our proposed framework, which consists of three main phases: (1) supervised fine-tuning
(SFT) to train an initial GEC model, (2) sampling from the GEC model to construct preference pairs, and (3)
optimizing the GEC model on these preference pairs using the EPO method.

tokens within the edit spans, while setting the re-
ward weights of other tokens to 1. Furthermore,
to mitigate the risk of error accumulation during
decoding, we treat the first token of each edit span,
called the pivot token, as crucial for guiding the
correction of subsequent tokens. To emphasize its
importance, we set its reward weight to α (α > γ).

By incorporating the above dynamic weight into
Equation 2, the log-likelihood of the sentence y
with edit information can be reformulated as:

log πe(y|x) =
K∑
k=1

wk log π (yk|y<k, x) . (3)

Here, wk represents the reward weight of the k-th
token and is defined as:

wk =


α, if yk is a pivot token,
γ, if yk is an ordinary edit token,
1, otherwise.

(4)

To further enhance the model’s generalization
and robustness, we introduce a margin λ to ensure
the reward of the positive sample exceeds that of
the negative sample by at least λ, similar to SimPO
(Meng et al., 2024). Combining Equations 1 and 3,
the EPO objective is defined as:

LEPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πe
θ(yw|x)

πe
ref(yw|x)

− β log
πe
θ(yl|x)

πe
ref(yl|x)

− λ
)]

. (5)

3.3 Training Pipeline

In this subsection, we provide a detailed introduc-
tion to the EPO training pipeline. The training
process is also described in Algorithm 1.
SFT Given a base modelM and a training dataset
D̂ =

{
x(i), y(i)

}M

i=1
, we first train an initial GEC

modelMSFT as follows:

LSFT(πθ) = −E(x,y)∼D̂ log πθ(y|x), (6)

where θ denotes the trainable parameters in M.
Through SFT, the model acquires basic grammati-
cal error correction capabilities, laying the founda-
tion for subsequent sampling and optimization.
Preference Pair Construction We construct the
preference pairs as follows: For each data pair
(x, y) from the training dataset D̂, where x is the
source sentence and y is the target, we treat y as
the positive sample yw. For the negative sample yl,
we sample k predicted sentences fromMSFT using
beam search with x as input and choose the one
with the largest edit distance from yw.

This strategy maximizes the differences between
positive and negative samples, which facilitates
preference optimization. More importantly, it does
not require additional human annotations or exter-
nal reward models, making it cost-effective and
high-quality. Alternative preference pair construc-
tion strategies are discussed in Section 5.2.
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Algorithm 1 Training pipeline

Input: Base modelM, training dataset D̂, number
of samples per sentence k.

Output: Final modelM∗, preference dataset D.
1: Fine-tuneM on dataset D̂ according to Eq. 6

to obtain the initial GEC modelMSFT;
2: for (x, y) in D̂ do
3: Sample k predictions P = {pi}ki=1 from

MSFT with x as input;
4: Initialize m← −∞, neg ← ∅, pos← y;
5: for i = 1 to k do
6: Compute distance d between pi and pos;
7: if d > m then
8: m← d, neg ← pi;
9: end if

10: end for
11: Match pos and neg using GEC parsing tools

to get edit information;
12: Add (x, pos, neg) to the dataset D;
13: end for
14: Run EPO to updateMSFT on datasetD accord-

ing to Eq. 5 to obtain the final modelM∗.

EPO Training After obtaining the preference
pairs, we employ a GEC parsing tool, ERRANT2

(Bryant et al., 2017), to extract edit spans and pivot
tokens. We then apply EPO to optimize the SFT
model using these preference pairs, as described in
Section 3.2, to obtain the final GEC model.

4 Experiments

4.1 Datasets and Evaluation

We conduct experiments on both English and
Chinese GEC datasets. For English, following
Omelianchuk et al. (2020) and Zhang et al. (2022b),
we use three training datasets: the FCE train set
(Yannakoudakis et al., 2011), the NUCLE dataset
(Dahlmeier et al., 2013), and the W&I+LOCNESS
train set (Bryant et al., 2019). The BEA dev set is
used for validation. For evaluation, we assess the
model on the CoNLL-14 test set (Ng et al., 2014)
using the M2 Scorer (Dahlmeier and Ng, 2012),
and on the BEA-19 test set (Bryant et al., 2019)
with the ERRANT scorer (Bryant et al., 2017).

For the Chinese GEC experiments, we compile
the training data from the Chinese Lang8 dataset
(Zhao et al., 2018), the HSK dataset (Zhang, 2009),

2For Chinese data, we use the ChERRANT tool from
https://github.com/HillZhang1999/MuCGEC/tree/
main/scorers/ChERRANT

and the FCGEC train set (Xu et al., 2022), follow-
ing previous work (Yang and Quan, 2024). The
FCGEC dev set is used for validation, while perfor-
mance is evaluated on both the FCGEC test set (Xu
et al., 2022) and the NaCGEC test set (Ma et al.,
2022) using the ChERRANT scorer (Zhang et al.,
2022a). We report precision, recall, and F0.5 scores
for all experiments. Further details regarding these
datasets are provided in Appendix A.

4.2 Base Models and Baselines
Base Models For the English GEC task, we use
LLaMA2 (Touvron et al., 2023) and Mistral-v0.1
(Jiang et al., 2023) as the base models, while for the
Chinese GEC task, Baichuan2 (Yang et al., 2023)
and Qwen2 (Yang et al., 2024) are selected. Due to
resource limitations, we opt for 7B-sized models
and apply LoRA fine-tuning, which updates only a
small subset of the parameters. Further experimen-
tal details can be found in Appendix B.
Baselines We compare our approach with the fol-
lowing baselines. Supervised Fine-tuning (SFT)
means directly fine-tuning the base models on the
training data. We also implement Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)
using the SFT model on our constructed preference
dataset, as EPO is an evolution of DPO. Alirector
(Yang and Quan, 2024) trains an alignment model
to tackle the overcorrection issue in LLMs. Since
their experiments are limited to Chinese datasets,
we reproduce their results on the English datasets.

Besides, we also employ the following tradi-
tional GEC baselines. GECToR (Omelianchuk
et al., 2020) is a representative model of the
Seq2Edit methods, while BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) are SOTA back-
bones of Seq2Seq GEC methods. The results of T5
and BART on the English dataset are cited from
Rothe et al. (2021) and Zhang et al. (2022b), re-
spectively. SynGEC (Zhang et al., 2022b) incorpo-
rates syntactic information into the BART model.
We reproduce the results for BART and SynGEC
on the Chinese datasets using our configuration.
TemplateGEC (Li et al., 2023) uses detection sig-
nals from Seq2Edit models as supplementary input
for Seq2Seq models, while DeCoGLM (Li and
Wang, 2024) combines detection and correction
tasks within a single GLM model (Du et al., 2022).

4.3 Main Results
The main results for English GEC are presented in
Table 2. Our method consistently outperforms all

https://github.com/HillZhang1999/MuCGEC/tree/main/scorers/ChERRANT
https://github.com/HillZhang1999/MuCGEC/tree/main/scorers/ChERRANT
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CoNLL-14-test BEA-19-test
Method Parameters Data Size P R F0.5 P R F0.5

Traditional GEC Baselines
GECToR 110M 10.1M 77.5 40.1 65.3 79.2 53.9 72.4
T5-XL 3B 2.4M - - 67.75 - - 73.92
T5-XXL 11B 2.4M - - 68.87 - - 75.88
BART 400M 2.5M 73.6 48.6 66.7 74.0 64.9 72.0
SynGEC 110M+400M 2.5M 74.7 49.0 67.6 75.1 65.5 72.9
TemplateGEC 125M+770M 2.4M 74.8 50.0 68.1 76.8 64.8 74.1
DeCoGLM 335M 186.3M 75.1 49.4 68.0 77.4 64.6 74.4
DeGLM-CoGLM 335M+10B 0.1M 70.6 52.7 66.1 72.8 67.6 71.7

LLaMA2-7B
+SFT† 7B 0.1M 73.86 50.61 67.64 73.53 67.60 72.26
+Alirector† 7B 0.1M 73.06 53.03 67.93 74.88 68.15 73.43
+DPO† 7B 0.1M 73.45 50.80 67.44 73.73 68.19 72.55
+EPO (ours) 7B 0.1M 75.63 50.94 68.95 77.35 65.87 74.75

Mistral-7B-v0.1
+SFT† 7B 0.1M 74.10 53.69 68.86 74.55 69.01 73.37
+Alirector† 7B 0.1M 75.20 53.93 69.70 76.20 68.47 74.52
+DPO† 7B 0.1M 74.50 54.04 69.26 74.47 69.97 73.53
+EPO (ours) 7B 0.1M 76.71 52.56 70.26 78.16 68.07 75.91

Table 2: Results on English GEC Benchmarks. Results marked with † indicate those implemented by us; other
results are taken from the original papers. The best results are highlighted in bold. Note that ensemble-based
methods were excluded to ensure a fair comparison, as our approach involves only a single model.

NaCGEC-test FCGEC-test
Method P R F0.5 P R F0.5

Traditional GEC Baselines
BART† 62.04 45.84 57.94 63.07 39.95 56.53
SynGEC† 62.42 47.41 58.71 63.75 39.78 56.89
DeCoGLM - - - 55.75 37.91 50.96
DeGLM-CoGLM - - - 56.09 38.02 51.22
BART-Alirector 68.11 43.87 61.33 69.44 36.60 58.88

Baichuan2-7B
+SFT† 63.65 47.73 59.67 61.97 37.25 54.71
+Alirector 66.04 45.91 60.71 64.49 36.22 55.78
+DPO† 63.21 48.29 59.53 58.54 39.21 53.29
+EPO (ours) 66.94 48.37 62.16 65.19 39.49 57.68

Qwen2-7B
+SFT† 64.27 49.07 60.52 62.18 42.70 56.98
+Alirector† 66.93 46.59 61.55 65.76 39.52 58.05
+DPO† 64.89 50.15 61.28 63.53 42.89 57.95
+EPO (ours) 67.09 49.97 62.79 66.67 41.93 59.63

Table 3: Results on Chinese GEC benchmarks. Results
marked with † are implemented by us.

the baselines in F0.5 score across all benchmarks,
demonstrating its effectiveness and superior perfor-
mance. For instance, when using Mistral-7B-v0.1
as the backbone, our EPO method improves the
F0.5 score by an average of 2.0 points across two
benchmarks compared to SFT, reaching state-of-
the-art performance. In contrast, DPO achieves
comparable or even worse performance than SFT,
which underscores the limitations of DPO in the
GEC task and demonstrates the effectiveness of our
approach. Besides, our method also shows superior
performance compared to traditional GEC models.

Nonetheless, LLaMA2-7B with EPO still lags be-
hind T5-XXL on the BEA test set. This lag may be
due not only to T5-XXL’s larger parameter size and
extensive training data but also to its pre-training
task being better aligned with GEC.

Moreover, our results reveal several interest-
ing observations. First, compared to most tradi-
tional GEC methods that update all parameters and
rely on large amounts of training data, our EPO
achieves superior performance by updating only a
small subset of parameters3 and using a smaller-
scale training set. This underscores the significant
potential of LLMs in the GEC task. Second, the
improvement of EPO is primarily driven by an in-
crease in precision, with some recall values show-
ing a decline. This is encouraged in GEC since
ignoring an error is less detrimental than proposing
an incorrect correction (Ng et al., 2014). In other
words, our EPO method can effectively mitigate
the overcorrection issue of LLMs when applied to
the GEC task. Third, although the performance
varies across different base LLMs, the improve-
ments achieved with EPO remain consistently sim-
ilar. This suggests that more powerful LLMs could
be enhanced with EPO in the GEC task.

3In our experiments, the LoRA rank is 32 and it updates
approximately 1.1% of the parameters (around 80M for a 7B
model).
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CoNLL-14-test BEA-19-test
Method P R F0.5 P R F0.5

LLaMA2-7B
EPO 75.63 50.94 68.95 77.35 65.87 74.75

w/o PTE 75.25 50.13 68.39 77.13 65.17 74.40
w/o PTE&ESW 73.47 52.10 67.90 74.39 68.13 73.05
w/o MT 74.23 51.89 68.34 76.61 66.02 74.23
w/o PTE&ESW&MT 73.45 50.80 67.44 73.73 68.19 72.55

Mistral-7B-v0.1
EPO 76.71 52.56 70.26 78.16 68.07 75.91

w/o PTE 76.54 51.36 69.70 77.91 66.85 75.41
w/o PTE&ESW 74.42 54.54 69.36 75.23 69.51 74.01
w/o MT 75.68 54.46 70.21 76.55 68.73 74.84
w/o PTE&ESW&MT 74.50 54.04 69.26 74.47 69.97 73.53

Table 4: Results of ablation study, where “PTE/ESW/
MT” are short for pivot token emphasis/edit span weight-
ing/margin term, respectively.

The main results for Chinese GEC are presented
in Table 3, from which we can draw conclusions
similar to those for English GEC. Our EPO method
outperforms most baselines in terms of the F0.5

metric, indicating its effectiveness across different
languages. However, Baichuan2-7B with EPO un-
derperforms compared to the BART-based Alirec-
tor model on the FCGEC test set, suggesting that
LLMs for GEC still require further improvement.

5 Analysis

5.1 Ablation Study
Our EPO method comprises three key components:
(1) edit span weighting, which assigns a higher
reward weight γ (γ > 1) to tokens within the edit
spans, (2) pivot token emphasis, which assigns an
even higher reward weight α (α > γ) to the first
token in the edit span, and (3) reward margin λ,
which is designed to widen the reward gap between
preference pairs. To assess the effectiveness of
these components, we remove them one by one and
analyze the resulting performance.

As shown in Table 4, removing the entire edit
span weighting module (i.e., w/o PTE&ESW) by
setting α = γ = 1 leads to a significant perfor-
mance drop, while removing pivot token emphasis
(i.e. α = γ) or the reward margin (i.e., λ = 0) re-
sults in moderate performance degradation. These
results not only validate the motivation behind our
approach that the model should capture and focus
on the subtle difference between sample pairs dur-
ing GEC preference optimization, but also demon-
strate the effectiveness of each component of EPO.

5.2 Impact of Pairwise Sample Selection
In our primary experiments, we use the target sen-
tence (tgt) as the positive sample and select the can-
didate sentence with the largest edit distance from

CoNLL-14-test BEA-19-test
Method P R F0.5 P R F0.5

EPO 75.63 50.94 68.95 77.35 65.87 74.75
(min, max) 75.58 49.80 68.49 77.00 65.05 74.27
(tgt, rand) 73.56 51.44 67.74 75.77 66.65 73.75
(tgt, src) 41.83 61.77 44.71 33.77 69.85 37.67
(min, src) 47.48 64.25 50.10 39.82 70.71 43.64

Table 5: Results of pairwise sample selection, where the
first element in parentheses indicates positive samples
and the second element denotes negative samples.
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Figure 3: F0.5 scores of SFT, DPO, and EPO on Bea-
19 test set for different error categories: missing (M),
replacement (R), and unnecessary (U).

the target sentence (max) as the negative sample.
We employ the LLaMA2-7B model to explore how
variations in the pairwise sample selection strategy
affect model’s performance. For clarity, we define
the candidate sentence with the smallest edit dis-
tance from the target sentence as min, the original
erroneous sentence as src, and a randomly selected
sentence from the sampling results as rand.

As shown in Table 5, any deviation from our
current setup leads to a decline in performance.
Specifically, substituting min as the positive sample
or rand as the negative sample results in a modest
decrease in model performance. Moreover, using
src as the negative sample causes a significant drop
in precision, although recall increases. This sug-
gests that such a sample selection approach may
induce the model to blindly correct input sentences,
leading to severe overcorrection issues.

5.3 Model Robustness

Error Robustness To verify the robustness of our
method across different grammatical error types,
we use LLaMA2-7B as the backbone and present
the fine-grained results across three error cate-
gories: missing (M), replacement (R), and unneces-
sary (U). As shown in Figure 3, EPO consistently
improves the overall F0.5 scores across all error
types compared to both SFT and DPO, with no-
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Type #Overcorrections/#Undercorrections
SFT DPO EPO

M 363/446 421/421 322/418
R 929/1269 880/1272 672/1312
U 149/203 149/206 117/215

All 1441/1918 1450/1899 1111/1945

Table 6: The number of overcorrections and undercor-
rections for different error types on BEA-19 test set.

CoNLL-14-test BEA-19-test
Objective P R F0.5 P R F0.5

SFT 73.86 50.61 67.64 73.53 67.60 72.26
IPO 75.29 48.03 67.62 73.52 68.28 72.41

w/ PTE&ESW 75.37 49.91 68.39 77.29 65.47 74.59
KTO 75.26 48.36 67.72 74.80 68.62 73.48

w/ PTE&ESW 75.47 50.15 68.55 76.82 66.30 74.46
SimPO 74.72 49.06 67.65 73.81 68.15 72.60

w/ PTE&ESW 75.52 50.49 68.71 77.53 65.30 74.73
EPO 75.63 50.94 68.95 77.35 65.87 74.75

Table 7: Results of EPO on different preference opti-
mization objectives using LLaMA2-7B.

table gains in the missing and replacement cate-
gories, highlighting EPO’s robustness.
Overcorrection Mitigation As mentioned in pre-
vious sections, LLMs tend to exhibit overcorrec-
tion when applied to the GEC task. To investigate
whether our method can alleviate this issue, we
record the performance of LLaMA2-7B on differ-
ent error types in the BEA-19 test set. As shown
in Table 6, our method results in fewer overcorrec-
tions across all error categories compared to both
SFT and DPO, while displaying a modest increase
in undercorrections. These results suggest that the
EPO method effectively mitigates the overcorrec-
tion problem in LLMs, confirming the effectiveness
of edit-wise preference optimization for this task.

5.4 Variants of Preference Optimization

Theoretically, EPO can be applied to any con-
trastive preference optimization method. Therefore,
to demonstrate the extensibility of our approach,
we conduct additional experiments by applying
the edit span weighting and pivot token empha-
sis modules to the following DPO variants: IPO
(Gheshlaghi Azar et al., 2024), KTO (Ethayarajh
et al., 2024), and SimPO (Meng et al., 2024)4. As
shown in Table 7, our method consistently yields
substantial performance improvements across all
three objectives, demonstrating its effectiveness
across various DPO variants.

4See Appendix C for a brief introduction to the different
DPO variants.
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Figure 4: Results of our method on Bea-19 dev set with
different values of pivot token weight and margin.

5.5 Impact of Reward Weights and Margin

The training objective of EPO involves three key
hyperparameters: γ, which controls the reward
weights of edit tokens; α, which controls the re-
ward weights of pivot tokens; and λ, which repre-
sents the reward margin. To investigate their impact
on model performance, we use LLaMA2-7B as the
backbone and present the results of different values
of α and λ on the Bea-19 dev set in Figure 4, where
we change one while fixing the other5. As shown
in the first subfigure, the F0.5 score generally in-
creases as the pivot token weight α rises, peaking
at approximately 8. The second subfigure shows
that as the margin λ increases, the F0.5 score ini-
tially rises and then declines, reaching its peak at
λ = 1. These results indicate that for LLaMA2-7B,
the optimal hyperparameter configuration is α = 8,
γ = 4, and λ = 1. The optimal configurations for
other models are provided in Table 10.

6 Conclusion

In this paper, we propose Edit-wise Preference Op-
timization (EPO), a method specifically designed
to enhance the grammatical error correction (GEC)
capabilities of large language models (LLMs). Un-
like Direct Preference Optimization (DPO), which
treats all tokens equally, EPO focuses on improv-
ing the reward gap of edit tokens between positive
and negative samples to better capture their subtle
differences. Moreover, to mitigate the risk of error
accumulation in autoregressive models including
LLMs, we assign higher reward weights to pivot
tokens. We also incorporate a margin term in the

5For simplicity, we set γ to α/2 as α varies.
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training objective to improve generalization. Fi-
nally, we develop a simple yet effective method
for constructing preference datasets. Experimental
results on widely-used English and Chinese bench-
marks show that EPO not only outperforms tra-
ditional GEC models but also surpasses standard
LLM alignment techniques. Extensive analysis
confirms that the strategies for implementing our
token-wise preference optimization are critical.

Limitations

While EPO demonstrates promising results, it has
certain limitations. First, our experiments are con-
ducted using LoRA fine-tuning on 7B-scale models.
Due to computational resource constraints, we did
not explore larger-scale LLMs or full-parameter
fine-tuning, which might yield better performance.
Second, our method may require additional effort
to tune four hyperparameters: β, α, γ and λ. Lastly,
we focus on enhancing the grammatical error cor-
rection capabilities of LLMs, which could poten-
tially lead to a decline in their general abilities.

Ethics Statement

Our work aims to propose a technical method to
enhance the grammar error correction capabilities
of LLMs, which does not raise ethical concerns.
All datasets and models used in this work are pub-
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research in an ethical and responsible manner.
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A Datasets

The statistics of the datasets used in our English
and Chinese GEC experiments are listed in Table 8.
Each dataset consists of a parallel corpus contain-
ing pairs of erroneous and corrected sentences.

Dataset Language #Sentences %Error Usage
FCE-train English 28350 62.5 SFT Stage I
NUCLE English 57151 37.4 SFT Stage I

W&I+LOCNESS English 34308 66.3
SFT Stage II &
EPO Training

Lang8 Chinese 1,220,906 89.5 SFT Stage I
HSK Chinese 15,6870 60.8 SFT Stage I

FCGEC Chinese 36,341 54.3
SFT Stage II &
EPO Training

BEA-19-dev English 4384 64.3 Validation
FCGEC-dev Chinese 2,000 55.1 Validation
CoNLL-14-test English 1312 71.9 Testing
BEA-19-test English 4477 - Testing
FCGEC-test Chinese 3,000 - Testing
NaCGEC-test Chinese 5,869 95.6 Testing

Table 8: Statistics of the used datasets. #Sentences
denotes the number of the sentences and %Error denotes
the percentage of the erroneous sentences.

B Experimental Details

B.1 Training Details
Similar to previous works (Zhang et al., 2022b;
Yang and Quan, 2024), we divide the SFT process
into two stages, with the training data presented in
Table 8. For English GEC, we first perform SFT-
stage 1 using the FCE+NUCLE dataset, followed
by SFT-stage 2 on the smaller but higher-quality
W&I+LOCNESS dataset. Finally, we construct
the pairwise dataset based on the W&I+LOCNESS
dataset and conduct EPO training.

For Chinese GEC, we use the same training set
preparation as Zhang et al. (2022a) for SFT-stage 1.
Specifically, we discard all error-free samples from
the Lang8 and HSK datasets, replicate the HSK
dataset five times, and combine it with the Lang8
dataset, resulting in a total of 1,568,885 sentence
pairs. For SFT-stage 2 and EPO training, we utilize
the FCGEC training set.

B.2 Instruction Templates
Table 9 presents the instruction templates used for
English and Chinese GEC during the instruction
fine-tuning of LLMs. Each template consists of
an input field, providing the source text, and a re-
sponse field, specifying the target text.

B.3 Implementation Details
Our code implementation is primarily based on
the LLaMA-Factory project (Zheng et al., 2024)
and Huggingface Transformers (Wolf et al., 2020).

As in most studies, we do not calculate the loss
for the prompt portion. For preference data con-
struction, the number of samplings per training
sample is set to k = 10. Considering the time
and computational resources, we applied LoRA
for efficient fine-tuning instead of full-parameter
fine-tuning, updating only a small portion of the
parameters. We used the Adam optimizer (Kingma
and Ba, 2014) with cosine learning rate decay. We
searched for the optimal value of α in {2, 4, 6,
8, 10}, γ in {1, 2, 3, 4, 5} and the margin λ in
{0.5, 1.0, 1.5, 2.0} on the validation set. The hy-
perparameter settings are presented in Table 10.
All experiments are carried out on 4 GeForce RTX
3090 24GB GPUs.

C Different DPO Variants

Besides DPO, we also apply our method to other
DPO variants: IPO (Gheshlaghi Azar et al., 2024),
KTO (Ethayarajh et al., 2024), and SimPO (Meng
et al., 2024). Identity Preference Optimization
(IPO) aims to mitigate overfitting to the preference
dataset by regressing the gap between pairwise log-
likelihood ratios to 1

2β :

LIPO(πθ;πref) = −E(x,yw,yl)∼D

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

− 1

2β

)2
. (7)

Kahneman-Tversky Optimization (KTO) en-
hances the DPO method by incorporating Kahne-
man and Tversky’s prospect theory (Tversky and
Kahneman, 1992) that losses outweigh equivalent
gains:

LKTO(πθ, πref) = E(x,yw,yl)∼D

[
λwσ(zref − β

log
πθ(yw|x)
πref(yw|x)

)+λlσ(zref−β log
πθ(yl|x)
πref(yl|x)

)
]
,

(8)

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))].
Simple Preference Optimization (SimPO) re-

places the reference policy reward in DPO with
a length-normalized reward to reduce the discrep-
ancy between training and inference:

LSimPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− λ

)]
.

(9)
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Language Instruction Template
English Rewrite the input text into grammatically correct text. ### input:\n{Source}\n\n ### response:\n{Target}

Chinese
纠正输入句子中的语法错误，并输出正确的句子。### input:\n{Source}\n\n ### response:\n{Target}

(Trans.: Correct grammatical errors in the input sentence and output the correct sentence.)

Table 9: Instruction templates for English and Chinese GEC, where “Trans.” denotes the translation of the
instruction.

Hyperparameter English Chinese
Backbone LLaMA2-7B Mistral-7B-v0.1 Baichuan2-7B Qwen2-7B
Batch size (SFT I) 256 256 128 128
Batch size (SFT II) 128 128 64 64
Batch size (EPO) 128 128 64 64
Max Epochs (SFT I) 5 5 3 3
Max Epochs (SFT II) 1 1 1 1
Max Epochs (EPO) 3 3 3 3
Max Length 200 200 200 200
Learning Rate (SFT I) 3× 10−5 3× 10−5 3× 10−5 3× 10−5

Learning Rate (SFT II) 3× 10−5 3× 10−5 3× 10−4 3× 10−4

Learning Rate (EPO) 5× 10−7 5× 10−7 5× 10−7 5× 10−7

Learning Rate Scheduler Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
Weight Decay 0.0 0.0 0.0 0.0
Warmup Ratio 0.1 0.1 0.1 0.1
LoRA target modules = all linears; lora rank = 32; lora alpha = 64
β 0.5 0.5 0.5 0.5
α 8 10 8 6
γ 4 5 4 3
λ 1 1.5 1 1
Beam Size 10 10 10 10

Table 10: Hyperparameter settings in our experiments.
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