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Abstract
Textual data augmentation (DA) is a prolific
field of study where novel techniques to create
artificial data are regularly proposed, and that
has demonstrated great efficiency on small data
settings, at least for text classification tasks. In
this paper, we challenge those results, showing
that classical data augmentation (which modify
sentences) is simply a way of performing better
fine-tuning, and that spending more time doing
so before applying data augmentation negates
its effect. This is a significant contribution as it
answers several questions that were left open
in recent years, namely : which DA technique
performs best (all of them as long as they gen-
erate data close enough to the training set, as
to not impair training) and why did DA show
positive results (facilitates training of network).
We further show that zero- and few-shot DA
via LLMs such as ChatGPT or LLama2 can in-
crease performances, confirming that this form
of data augmentation is preferable to classical
methods.

1 Introduction

Data augmentation (DA) consists in generating ar-
tificial data points with the hope of improving the
training of a model. In this paper, we focus on in-
terpretable textual DA (methods that generate new
sentences) for text classification in a limited data
scenario, a practical setting of interest (Chen et al.,
2021). Research generally finds that DA provides
a great increase on small data settings (Chen et al.,
2021; Kumar et al., 2021), a small increase in clas-
sification with medium datasets (up to 1000 exam-
ples) (Karimi et al., 2021; Liesting et al., 2021), and
almost no increase on large datasets (Kobayashi,
2018; Yang et al., 2020; Okimura et al., 2022).

In this paper, we show that existing experimen-
tal protocols in DA studies are misleading. In
particular, inadequate fine-tuning of the baseline
(model trained without DA) from previous stud-
ies lead to an overestimation of the impact of tex-

tual DA, and training the models for longer results
in an absence of gains with classical DA meth-
ods. We also consider more realistic protocols
for DA evaluation, where we either don’t have ac-
cess to clean validation data, or where we adjust
the training/validation split to better reflect real-
world conditions. Lastly, we compare newer DA
methods using ChatGPT (Ouyang et al., 2022) and
Llama2 (Touvron et al., 2023) and show that the
only thing that can consistently increase classifica-
tion performance is generating data akin to external
data (with zero or few-shot data generation), rather
than generating new data from the current training
distribution (by paraphrasing or modifying training
sentences), as classical DA approaches do.

Overall, this paper covers several important con-
tributions. The first and most important of them lies
in showing that classical data augmentation (DA
methods from before the advent of very Large Lan-
guage Models, or LLMs) does not work on textual
classification, and we also answer why previous
studies showed positive results. These positive re-
sults have been a big question in recent years, as
nobody could explain with satisfaction why gen-
erated sentences helped transformers learn better,
the best hypothesis being that it brought some kind
of regularization to the network (Feng et al., 2021;
Queiroz Abonizio and Barbon Junior, 2020).

Our second contribution is a questioning of the
use of the validation data in data augmentation for
small data settings. DA research generally assumes
the availability of clean validation samples, an of-
ten unrealistic setting. With the splits used in those
studies, one finds themself with a few tens of data
points for training the model and a few hundreds for
validation. We consider better splitting and more
realistic uses of data, showing that it is often more
advantageous to use all available data as training
data and to fine-tune for a longer time.

The third contribution is showing that by us-
ing LLMs to generate novel sentences (and not
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just paraphrasing existing ones), the performance
increases, but that this is still not as efficient as
manually collecting and annotating novel data. We
furthermore analyze two strategies for generating
novel data, namely zero-shot data generation (us-
ing the task description) and 3-shot data generation
(giving three examples to the LLM), showing that
in most cases the 3-shot strategy largely outper-
forms zero-shot generation.

The last contribution joins a small but growing
literature comparing LLMs in showing that Chat-
GPT outperforms Llama2 (Liu et al., 2023; Plátek
et al., 2023; Guo et al., 2023). To our knowledge,
we are the first to study this in the context of DA.

The paper is organized as such. Section 2 goes
over the literature on interpretable textual DA. Sec-
tions 3 and 4 explain respectively the datasets and
the DA methods we compare. Section 5 describes
our evaluation protocols, then Section 6 presents
our results. We discuss our work in Section 7.

2 Related Work

We may categorize DA techniques in three broad
families : word-level operations, paraphrasing, and
generative DA. We note that this is not an absolute
categorization, and each of these families regroup
several types of techniques. We also refer to tech-
niques that were developed before LLMs as classi-
cal DA. Methods of this family modify the starting
sentences in some ways, bringing variations to the
dataset.

The first family does so by affecting individual
words. The most seminal technique of this cate-
gory is EDA (Easy Data Augmentation), which
considers four operations : word substitution, word
deletion, word swapping, and insertion of related
vocabulary (Wei and Zou, 2019; Liesting et al.,
2021). For insertion and substitution, EDA uses
WordNet (Miller, 1998) to find synonyms of words
from the input sentence. Another simple word-level
technique is AEDA (An easier data augmentation
technique) (Karimi et al., 2021), where random
punctuation is inserted in between words of the
sentence.

Other ways of replacing words have also been
considered, such as the use of a pre-trained neu-
ral network to predict masked words (Kobayashi,
2018), using pre-trained embeddings to find words
close in the embedded space (Marivate and Sefara,
2020), or using BERT/BART conditioned on the
class to predict masked words or spans (Wu et al.,

2019; Kumar et al., 2021) (named CBERT and
CBART in this paper, conditional- BERT/BART).
While easy to implement, those techniques tend to
bring little diversity.

The second family of techniques acts at the sen-
tence level, by considering the whole sentence
for creating paraphrases. The seminal technique
representing this family is Back-Translation (BT),
in which a sentence is translated to another lan-
guage and then back into English (Hayashi et al.,
2018; Yu et al., 2018; Corbeil and Ghadivel, 2020;
Edunov et al., 2018). The use of generative mod-
els for paraphrasing has also been considered, for
example by encoding and decoding a sentence
through a VAE (Variational Auto-encoder) (Mes-
bah et al., 2019; Yerukola et al., 2021; Nishizaki,
2017). Some other strategies that have been con-
sidered are modifying syntactic trees (Coulombe,
2018), fine-tuning BART on an in-domain corpus
of paraphrases (Okur et al., 2022), using an off-the-
shelf T5 model for paraphrasing (T5-Tapaco) (Pied-
boeuf and Langlais, 2023), or an LLM. such as
ChatGPT. for paraphrasing (Fang et al., 2023).

Finally, generative methods aim to generate
novel sentences from the same distribution as the
training data. With an ideal generative strategy, this
is equivalent to collecting new data, without the an-
notation cost associated to the collection process.
Early studies of these techniques used GPT-2 (Ku-
mar et al., 2020; Liu et al., 2020; Yang et al., 2020;
Bayer et al., 2023) or VAEs (Qiu et al., 2020; Pied-
boeuf and Langlais, 2022), but recently focus has
shifted to the use of LLMs, first with GPT3 (Yoo
et al., 2021; Sahu et al., 2022), and then with Chat-
GPT for zero or small data generation (Møller et al.,
2023; Ubani et al., 2023; Shushkevich and Cardiff,
2023; Sharma and Feldman, 2023).

Some recent works pertinent to this paper
are the research of Kim et al. (2022); Zhu
et al. (2023). Kim et al. (2022) question the
training-validation splitting methodology in semi-
supervised learning, showing that it is more effi-
cient to fine-tune on augmented samples (created
with DA) and use the original training sentences as
validation data, instead of using a classical train-
ing/validation split. In Zhu et al. (2023), the authors
note that weakly supervised learning approaches
are evaluated by assuming the availability of clean
validation samples, which is not often the case
when working with small data. They notably de-
velop novel methods for testing training under more
realistic small data learning settings. In Section 5,
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we take inspiration of those studies to define our
new protocols.

3 Datasets

We use five popular datasets to test the various data
augmentation strategies : SST-2, Irony, IronyB,
TREC6, and SNIPS. SST-2 (Socher et al., 2013)
is a dataset of movie review classification with the
binary classes of positive or negative. Irony and
IronyB (Van Hee et al., 2018) are the binary and
multiclass version of an Irony detection dataset. In
the binary task (Irony), one must detect if tweets
are ironic or not, and in the multiclass version one
must as well determine which type of irony the
tweet represents, if the tweet is ironic (between
polarity clash, situational irony, and other irony).
TREC6 (Li and Roth, 2002) is a task of question
classification, where questions must be separated
into six classes (abbreviation, description, entities,
human beings, locations, and numeric values). Fi-
nally, SNIPS (Coucke et al., 2018) is a dataset of
intent classification, where short commands have
to be classified into different intents such as Play-
Music or GetWeather. Some characteristics of the
datasets are available in Table 1.

Name SST2 Irony IronyB TREC6 SNIPS

|classes| 2 2 4 6 7
sent. len. 19.3 13.7 13.7 10.2 9.3

|train| 6920 2683 2681 5452 13084
|val| 872 460 460 500 700
|test| 1821 3834 3832 492 700

Table 1: Characteristics of the classification tasks tack-
led in this study. The length of the sentences is defined
by the number of white-space separated tokens.

Due to lack of computing budget1 we leave the
investigations of other tasks such as those consid-
ered in Chen et al. (2021) to future work.

4 Data augmentation methods

While DA methods are continuously being pro-
posed, objective evaluation is difficult due to the
lack of extensive comparison studies. We point the
reader to Chen et al. (2021) for a literature review
on DA methods, and Ding et al. (2024) for one
specific to generative approaches. Here, we com-
pare LLM based methods to classical approaches.

1As we carefully fine-tune every baseline and run every ex-
periment 15 times, this demands a significant time investment.

All strategies are illustrated in Figure 1. Code and
all hyperparameters are available in the additional
material.

4.1 Classical methods

Kumar et al. (2021); Piedboeuf and Langlais (2023)
compared several “classical” DA methods, from
which we select three families of strategies that
have been shown to be efficient. Concretely, we
test word-manipulation methods (EDA, AEDA),
conditional contextual based methods (CBERT,
CBART), and paraphrase based methods (T5, BT).

EDA (multiple operations on words) and AEDA
(insertion of punctuation) can be implemented sim-
ply and are resource efficient. Following experi-
ments and results from the literature, we affect 10%
of the words of a sentence in EDA, and use the for-
mula given in Karimi et al. (2021) to calculate the
number of punctuation signs to insert for AEDA.2

CBERT and CBART are more involved meth-
ods that leverage the masked words prediction task
to generate new words conditionally on the class.
Concretely, we mask words, prepend the class to
the sentence (with a separation token), and fine-
tune the model to predict the masked words. Gen-
eration of sentences follow the same process. The
difference between CBERT and CBART is that the
latter can predict spans of words, allowing it more
flexibility in the generated sentences.

BT and T5-Tapaco aim to produce paraphrases
of the original sentences to bring diversity to the
training set. In BT, paraphrases are generated by
translating the sentence into a second language and
then back into English, and we use WMT3 with
German as a pivot language, which has shown good
performances in the past (Edunov et al., 2018). T5-
Tapaco makes use of T5-small-Tapaco4, which is
a T5 model fine-tuned on the TaPaCo paraphrase
corpus (Scherrer, 2020), allowing us to directly
generate paraphrases of sentences.

4.2 Large Language Models

LLMs are ubiquitous in NLP, and have rapidly
gained traction in data augmentation. Here, we

2EDA works by randomly selecting one of four operations
(insertion of related words, word swapping, word deletion, and
word substitution) and applying it to a percentage of the words
of the sentence. AEDA works by simply inserting random
punctuations (among "?", ".", ";", ":", "!", and ",") into the
sentence.

3https://huggingface.co/facebook/wmt19-De-en
4https://huggingface.co/hetpandya/

t5-small-tapaco

https://huggingface.co/facebook/wmt19-De-en
https://huggingface.co/hetpandya/t5-small-tapaco
https://huggingface.co/hetpandya/t5-small-tapaco
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Figure 1: Strategies tested in this paper. Green algo-
rithms are contextual unmasking methods, yellow are
paraphrasing methods, red are word-manipulation meth-
ods, and purple are methods using LLMs.

test three standard strategies : paraphrasing sen-
tences (P), zero-shot generation (ZS) by giving the
LLMs a description of the task, and a 3-shot (3S)
generation strategy where we give examples of the
given class in addition to the description. Exact
prompts used are provided in appendix B. We test
two models, ChatGPT (GPT 3.5) and Llama2 (us-
ing LLama-2-13B-Chat) with the same prompts.

Note that we only use LLMs to generate new
data with which we train a classifier, as with any
other method we compare. Using LLMs directly to
label examples may lead to better classification for
some tasks, but we leave this for future investiga-
tions. In any case, training a classifier is a practical
solution for many problems of interest, as well as a
cheaper option to deploy.

4.3 Baselines

Finally, we implement three simple baselines. The
first one consists in training the network without the
use of DA (denoted “Baseline”). The second one is
an idealized strategy (denoted “Perfect”) where we
fetch additional unused data from the training set
to act as generated data. This gives an idea of the
results obtainable should one collect and annotate

data instead of using DA.
The last baseline is a strategy which we denote

“Copy”, and which artificially inflates the size of
the training set by copying multiple times (accord-
ing to a ratio parameter) the original data, without
modification. If the only effect of DA is — as we
suspect — to help fine-tune the network better, and
the modifications brought by DA are not helpful
for that, then the Copy strategy should be just as
efficient as all other classical DA methods.

5 Experimental setups

In this section we describe the experimental setups
for our two main experiments, that is to say the test-
ing of DA methods with better fine-tuning, and the
development of better experimental protocols for
DA. Our focus in this paper is data augmentation
for small data, for which we use starting size of 10
and 20, but we also report results for medium train-
ing sizes (500 and 1000) in Appendix C, a setting
commonly explored in the literature. When sub-
sampling to create the training set, we make sure
to choose an equal number of data points for each
class, by sampling more data if needed (e.g. the
actual dataset size for TREC6 and starting size of
10 is 12; two sentences per class). There is no con-
sensus regarding the ratio of generated-to-genuine
examples, but we found in both the literature and
experiments that smaller datasets benefited more
from larger ratios, while for larger datasets, we did
not observe improvements with ratios greater than
one. Thus, we use a ratio of 10 for the small data
settings and of one for the larger dataset sizes.5

Finally, we use BERT as our classifier, fine-tuning
it on our training set.

5.1 Better fine-tuning

To define our training protocol, we look at the liter-
ature to understand what is usually done. Piedboeuf
and Langlais (2023) use variable patience6 for
fine-tuning, depending on the dataset and dataset
size, between 5 and 20 epochs, and Kumar et al.
(2021) use 100 epochs of warmup followed by 8
epochs of fine-tuning from which they select the

5Based on our main results, we can hypothesize that this
is simply due to pretrained models needing more time to be
fine-tuned correctly on smaller datasets than medium or large
ones, and the larger ratio leads to a larger number of batches,
meaning more training time.

6The number of epochs during which the validation perfor-
mance doesn’t increase before we stop the training process,
and we then select the best model from previous epochs.
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best model. Wei and Zou (2019) use early stopping
with patience of 3 epochs on CNN and RNNs.

In contrast, we use a patience parameter of 50,
using the validation set to find when to stop, and
we fine-tune the learning rate and use label smooth-
ing (Szegedy et al., 2015) (a mean of introducing
noise to the labels for regularization) before ap-
plying data augmentation, using grid search.7 We
report accuracy for binary tasks and the macro-F1
for multiclass tasks.

5.2 More realistic uses of data

In academic papers, DA is often evaluated with the
assumption that we have access to clean validation
data, often in larger quantity than what is available
for the training set. This validation data is used to
fine-tune both the DA algorithm and the classifier,
resulting in unrealistic settings for practitioners,
who may not have access to validation data or want
to use their data in better ways.

We aim to test more realistic settings with the val-
idation data, inspired by Kim et al. (2022); Zhu et al.
(2023), who study the same problem but in differ-
ent settings (semi-supervised learning and weakly
supervised learning) and then discuss the signif-
icance of the results for textual DA. While Kim
et al. (2022); Zhu et al. (2023) findings are relevant
to ours, our interest in the results differ. In both
papers, the authors attempt to find the best way to
use the available data. In our case, we test several
settings we think are more realistic, but our interest
is to know if DA is useful when there is little or
no validation data for fine-tuning the augmentation
method and the classifier.

Figure 2: Graphical representation of the four settings
we test for data augmentation on small data learning.
Blue represent the original training set, purple the vali-
dation set, and yellow, the test set.

7While label smoothing was introduced in this paper as a
mean of helping better learning of multiclass tasks, prelimi-
nary ablations experiments point that it raises the performance
of both augmented and non-augmented dataset equally, and
that the conclusions of this paper would be the same with only
changing the number of epochs and hyper-parameter tuning.

We redefine the training/validation split, using
different strategies illustrated in Figure 2. Firstly,
we assume the validation data is not available (no-
Val), and we only have training data. In this setting,
we train for a random number of epochs between
50 and 150, which is the range for which our mod-
els performed best in small data learning. This
is inspired by the protocol of Zhu et al. (2023),
where they randomly select a set of hyperparame-
ters when no validation data is available. Secondly,
we assume the presence of validation data but rede-
fine the train/val. split, by either 1- using it all as
training data and training for a random number of
epochs between 4 and 8 (valAsTrain), or 2- keeping
some of it as validation data (10, 250) to fine-tune
both DA algorithms and the classifier (10 val/250
val).

6 Experiments

In what follows, we add the augmented material to
the (small) training set and fine-tune a BERT-Base
model8 in a supervised way for each classification
task, a solution which has been demonstrated effi-
cient (Devlin et al., 2019).

6.1 On the need to better fine-tuning

We first show the inefficiency of the fine-tuning
protocol used in past DA studies by reporting the
results they obtain without DA and comparing it
to our results (without DA as well). We attempt
to replicate the starting sizes, changing only the
fine-tuning protocol to see the difference a longer
patience, label smoothing, and better fine-tuning
does. Table 2 presents the results of our experi-
ments compared to those from the literature. Since
the use of label smoothing depends on the dataset,
we integrate its use as a hyperparameter.

As we can see, carefully fine-tuning the classi-
fier increases its performance significantly, gaining
between 0 and 18.2 percentage pointsred. Those
gains are actually larger than the ones reported by
authors while deploying DA. This aligns well with
our hypothesis that the gains observed in previous
studies stem only from giving more time for the
model to learn. Further, if the DA strategies in-
volve simple transformations of the sentences, it is
likely that BERT is not learning new information
from these transformations, and that the same re-
sult will be achieved with the Copy strategy, which
we analyze in the next section.

8We leave the study of other classifiers for future work.
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Reported Ours Diff

Kumar+Ubani SST-2 52.9 60.6 7.7
Kumar+Ubani SNIPS 48.6 66.8 18.2
Kumar+Ubani TREC6 79.4 91.6 12.2
Piedboeuf SST-2 87.7 87.7 0
Piedboeuf Irony 65.6 67.0 1.4
Piedboeuf IronyB 42.4 43.9 1.5
Piedboeuf TREC6 81.0 84.5 3.5

Table 2: Fine-tuning comparison from the literature
and in this paper. All results are from training BERT
without data augmentation, showing the difference made
by using a longer patience as well as label smoothing.

6.2 On the inefficiency of classical DA

We now turn to DA algorithms, showing that better
fine-tuning leads to essentially useless (classical)
DA algorithms. Indeed we argue that alleged gains
from DA that were shown in the literature can be
explained by inadequate training of the (initial)
classifier. Results are presented in Table 3.

For the small data setting, we notice that, on
average, only two strategies really outperform the
baseline : zero-shot and 3-shot generation (both us-
ing LLMs), 3-shot generation outperforming zero-
shot, but not on all datasets. We explore this phe-
nomenon in Section 6.4. The results for medium
sizes (500 and 1000) are presented in Appendix C,
and are concordant with more recent literature
showing a lack of improvement on such a setting.

An important thing to note is that while some
algorithms perform statistically better than the base-
line at times, so does the “Copy” strategy. As the
duplication of data should bring no new informa-
tion, this suggests that the training protocol in pre-
vious studies was suboptimal and that the gains
observed are not due to data augmentation.

One avenue that could be explored to bridge the
gap would be to use sampling with replacement
while fine-tuning BERT, which should be equiva-
lent to duplication of data.9

Figure 3 provides the results of the statistical
tests we conducted. To simplify reading, we group
together all tests between the same algorithms,
meaning all tests between algorithm A and algo-
rithm B are compiled together. Each entry in the
heatmap is therefore composed of 10 t-tests (5
datasets times 2 starting sizes), and we report the

9There would still be minor differences as sampling with
replacement would not represent each sample equally, but this
difference should reasonably not have a large impact.
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Baseline 0 20 10 10 10 30 10 10 10 20 20 40 10 30 30
Perfect 70 0 70 70 70 70 70 70 70 70 70 80 80 80 80
Copy 20 10 0 0 10 20 10 0 0 30 10 40 20 20 30
EDA 20 10 20 0 10 20 0 0 0 10 20 40 20 10 20
AEDA 10 10 0 0 0 20 0 0 0 10 0 30 20 0 0
BT 20 10 0 0 10 0 10 10 0 10 10 30 10 10 20
CBERT 20 10 10 0 10 10 0 10 0 10 0 20 10 0 20
CBART 10 10 0 0 0 10 0 0 0 10 0 30 10 10 10
T5 20 10 0 0 0 20 10 0 0 10 0 40 10 10 20
GPT3.5-P 30 10 10 20 10 40 20 20 10 0 10 30 10 20 20
GPT3.5-ZS 70 10 60 50 50 50 60 50 50 60 0 40 60 50 30
GPT3.5-3S 60 10 60 60 60 60 60 60 60 60 40 0 60 60 50
Llama2-P 20 10 10 0 10 20 20 10 0 0 0 30 0 0 10
Llama2-ZS 30 10 20 20 20 30 20 20 20 30 0 20 40 0 30
Llama2-3S 40 0 40 40 40 40 40 40 40 40 20 20 40 40 0

Figure 3: Percent of times the row algorithm performs
statistically better than the column algorithm, with a
p-value threshold of 0.05 and using a two-tails paired
t-test, and across the two small data settings (10/20).

percentage of t-tests for which distributions were
found to be statistically different, counting only the
entries for which the row algorithm performs better
than the column algorithm. This gives, for each
row, the measure of how many times it beats the al-
gorithm in the column by a statistically significant
margin.10

From the statistical tests, we note that only three
methods outperform the others by a significant and
consistent margin : the perfect strategy, in which
we simulate collecting and annotating external data,
and the zero/k-shot generation with LLMs. All oth-
ers perform equivalently and do not beat the base-
line most of the time, or at least not by a significant
margin. This suggests that the slight random vari-
ations we observe, which could be taken as a sign
that some algorithms perform better than others,
are due to randomness of the network and not a
superior performance.

6.3 On more realistic uses of data

As mentioned, the second point of interest is to
evaluate DA in a more realistic setting with regard
to the use of validation data. We select the follow-
ing algorithms : Copy, Perfect, EDA, AEDA, BT,
CBERT, BART, T5, GPT3.5-ZS, and GPT3.5-3S.
We use this limited selection for efficiency rea-
sons, but also because our goal here is to establish
whether DA helps at all, rather than knowing which
DA technique works best. Finally, to keep in line
with other DA studies, we use a ratio of 10 when
the final training size is small (noVal) and of 1 for
the other settings. Results are presented in table 4,

10We provide the code along with the full saved results
for all experiments, as well as the code necessary to run all
statistical tests. See Figure 4 in Appendix for medium data
settings (500/1000).
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SST2 Irony IronyB Trec6 SNIPS Average

Baseline 62.4/67.5 54.1/61.9 25.8/29.8 34.4/43.3 78.5/80.4 51.1/56.6
Perfect 82.3/85.8 62.4/58.7 19.3/33.7 72.5/80.6 94.0/94.9 66.1/70.7

Copy 61.0/68.1 54.4/57.1 25.5/30.3 36.4/49.3 77.7/83.4 51.0/57.6

EDA 63.4/69.0 54.9/58.9 23.8/30.1 35.8/48.0 76.6/83.2 50.9/57.8
AEDA 62.4/67.1 55.4/56.9 23.4/27.4 33.2/45.7 78.0/84.0 50.5/56.2
BT 60.2/66.8 55.1/58.0 24.7/27.9 29.1/51.5 75.0/82.6 48.8/57.4
CBERT 62.5/65.4 56.3/58.5 23.2/28.3 36.4/44.5 76.3/83.4 50.9/56.0
CBART 62.5/65.6 54.5/57.7 23.6/29.0 36.9/47.2 77.0/84.5 50.9/56.8
T5 64.1/67.4 56.3/58.3 24.1/28.1 34.3/48.5 76.7/84.1 51.1/57.2

GPT3.5-P 65.0/68.3 56.6/57.5 22.7/28.3 34.0/40.5 80.2/84.7 51.7/55.9
GPT3.5-ZS 82.0/78.7 56.4/56.1 23.5/24.6 40.0/48.1 84.8/88.7 57.3/59.2
GPT3.5-3S 87.7/76.1 49.2/53.6 20.9/24.6 58.4/63.9 87.2/89.6 60.7/61.5
Llama2-P 66.3/68.6 55.3/57.1 24.6/24.6 33.4/41.6 78.1/82.8 51.6/55.0
Llama2-ZS 74.8/74.0 54.3/57.2 22.2/24.1 37.3/47.3 78.1/84.1 53.4/57.3
Llama2-3S 63.3/64.4 54.1/54.8 21.0/27.2 48.6/55.8 83.3/88.2 54.0/58.1

Table 3: Average metric over 15 runs for the training set sizes of 10 (left) and 20 (right) with a ratio of 10. We report
accuracy for binary tasks and macro-f1 for multiclass ones. STDs are between 0.6 and 3.0, depending on the dataset.
Results for which the difference with the baseline was found to be statistically significant according to a t-test are
underlined.

and several important observations can be made.

noVal valAsTrain 10 val 250 val

Baseline 47.9 75.8 64.6 64.7
Perfect 68.8 82.4 69.4 69.9

Copy 49.6 78.6 66.3 65.8

EDA 49.1 77.8 66.0 64.9
AEDA 49.4 77.6 66.0 66.3
BT 44.8 75.9 64.6 65.0
CBERT 49.7 76.8 65.3 63.9
BART 50.6 76.6 65.3 63.9
T5Par 49.4 77.2 65.3 64.6

GPT3.5-ZS 55.9 76.9 65.6 64.4
GPT3.5-3S 57.2 71.6 67.2 64.8

Table 4: Average metrics over the five datasets for dif-
ferent settings and DA strategies. The best result for
each setting is in bold.

First, in almost all cases and contrary to the main
results of this paper, data augmentation reveals it-
self to be useful. However, the fact that the “Copy”
strategy often outperforms the other strategies rein-
forces our belief that the use of data augmentation
is simply to facilitate fine-tuning the network.

Second, there is no difference in performance be-
tween having 10 and 250 data points as validation
data, with the rest as training set. This could be re-
lated to diminished increase in model performance
as dataset size augments, or point to a trade-off in
validation/training size and that a validation set of
10 data points is too small to be of use.

Third, we confirm here that methods adding
something akin to external data (GPT3.5-ZS and
GPT3.5-3S) are the most useful techniques, but
only on small training sizes. On larger ones, those
methods do not bring any improvement whatso-
ever, most likely due to the general inefficiency
of data augmentation in this setting.11 We also
note that while the performance of GPT3.5-ZS is
higher than GPT3.5-3S for two settings, this is due
exclusively to its poor performance on the Irony
datasets, which we discuss in Section 6.4. For the
other datasets, GPT3.5-3S outperforms GPT3.5-ZS
by a large margin.

Finally, it seems that the best strategy overall
when the total amount of available data is only a
few hundred is to use all of them as training data,
with the Copy strategy.12 This outperforms by a

11This is consistent with the literature and our own experi-
ments.

12Or, we can assume, a larger number of epoch.
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large margin the strategies where we keep some
data as validation data, most likely because these
strategies overfit. As mentioned, however, there
is a large gap between 10 and 250 data and it is
possible that some amount of data in the middle
would perform better. We leave this investigation
for future work.

6.4 Analysis of DA with LLMs
Our main results show that in a small data setting, 3-
shot generation was often more efficient than zero-
shot generation, by as much as 18 percentage points
in some cases. However, this does not hold for the
two irony datasets, for which zero-shot outperforms
3-shot. In this section, we analyze the output of
the algorithms, in the hope of understanding better
why some prompt mechanisms work well on some
datasets but not on others.

We first show examples of generated sentences
in Table 5 and in Appendix A. For the sake of
space, we only show generated sentences for the
tasks of SST-2 and Irony, but we give all sentences
generated by ChatGPT in the associated Github.

Couldn’t have asked for a better night.

-P Could not have hoped for a more per-
fect evening.

N
on

-I
ro

ni
c -ZS Wow, I absolutely love it when my

phone battery dies in the middle of an
important call. Just what I needed!

-3S Enjoying a relaxing day at the beach
with clear skies and warm sunshine.
#PerfectDay

Work should be fun today :unamused_face:

-P Today at work is expected to be unen-
joyable :unamused_face:

Ir
on

ic

-ZS Oh, how wonderful! Another day
of unexpected surprises and setbacks.
It’s like the universe’s way of keeping
me on my toes!

-3S Declared I’d be more organized and
lost my keys for the umpteenth time.
I’m the queen of tidiness! :key::mag:
#OrganizationQueen

Table 5: Generated sentences by the GPT3.5-based DA
methods for the Irony dataset for one ironic and one
non-ironic example.

.
By observing generated sentences, we see that

ChatGPT has difficulty understanding the concept
of Irony, as well as sticking to the more familiar lan-
guage of Twitter. As such, adding more sentences
doesn’t help because the new sentences are too far
from the training distribution to bring valuable in-
formation. Nevertheless, the 3-shot strategy does
seem to bring the generated sentences closer to the
training distribution, as we can at least observe that
the new sentences contain hashtags and emojis. It
is likely that by further fine-tuning the prompts, we
would reduce the gap between the data distribution
and the generated sentences.

7 Conclusion

In this paper, we test DA for sentence classification
and show that in both medium and small data learn-
ing, performances of DA had been overestimated
by the use of inadequate training protocols. Fur-
thermore, while we have shown that classical DA
methods are inefficient, we have also demonstrated
that simulating external data collection with LLMs
does improve performance, and future work should
therefore focus on this rather than techniques mod-
ifying genuine sentences.

We want to emphasize that our results are only
looking at balanced classification tasks, and fur-
thermore only at short text classification using
BERT as a classifier. While this seems a small field
of study, it is one of the most popular in textual DA
literature, making our findings significant.

Future work should also evaluate whether the
protocols are adapted for fields close to inter-
pretable DA. Notably non-interpretable DA, or DA
for unbalanced data, might still be an efficient
mean of increasing performances. Other textual
tasks might also still benefit from DA, due to dif-
ferent goals. As an example, data augmentation for
the task of keyphrase generation (Ray Chowdhury
et al., 2022; Garg et al., 2023) aims to encourage
the network to generate more keyphrases that are
absent from the input. It is very plausible that data
augmentation may be useful here.

Our findings are important as they answer many
questions in textual DA which have been standing
for years, namely which data augmentation algo-
rithms is best (they all perform similarly except
for data generation methods), why does it help
(gives more time to the network to learn), and what
makes a generated sentence informative (they don’t
bring contradictory information to the network). As
noted, data generation remains one of the best way
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to perform data augmentation, if one can get the
LLMs to generate data adequate for the training
distribution.

8 Limitations

As already stated, this study has a specific, although
important, scope. We didn’t look at the impact of
data augmentation on other languages than English,
or other textual tasks, and while we performed fine-
tuning to the best of our knowledge, it is possible
that some combinations of hyperparameters that
were not explored may change some of our con-
clusions. We also omitted an ablation study of the
fine-tuning (patience, label smoothing, grid search)
due to time limitation, but this would provide more
insight into the mechanism of training BERT. Fur-
thermore, our exploration of hyperparameters for
ChatGPT (mainly the temperature) was limited,
and we only used the Llama2-13b-chat model as
a comparison, but a comparison of other sizes and
also other LLMs should be included in future work,
such as Llama3 (Meta, 2024), Gemini (Team et al.,
2024), GPT-4 (OpenAI et al., 2024), and others.
Finally, we only looked at BERT as a classifier,
which is the most common one used in DA stud-
ies, but it would be pertinent to not only look at
other pretrained transformers but also at the impact
of DA on more classical models such as CNNs,
RNNs, or even statistical methods (SVM, NB, etc).

On a broader scope, there is no guarantee our
results hold for other textual tasks (such as question
answering, explainability, or keyphrase generation),
which have different structures. A final point is that
we only compared ourselves to the studies of Ku-
mar et al. (2021); Piedboeuf and Langlais (2023) to
demonstrate the inefficiency of fine-tuning in past
studies. While these are some of the most com-
plete we found, it would be pertinent to repeat the
experience with other papers.
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Dataset
apparently reassembled from the
cutting-room floor of any given
daytime soap.

-P
It appears to have been pieced to-
gether from discarded scenes of
any typical daytime soap opera.

-ZS
The film was a major disappoint-
ment, lacking any coherent plot
or engaging characters.

-3S
It’s a shame that such a promis-
ing concept was wasted on a
poorly executed film.

Po
si

tiv
e

Dataset
béart and berling are both superb
, while huppert ... is magnificent.

-P

Both Béart and Berling deliver
exceptional performances, while
Huppert... she is truly magnifi-
cent.

-ZS
This film is a refreshing breath of
fresh air, offering a unique and
original take on familiar themes.

-3S

This film is a delightful and heart-
warming celebration of friend-
ship, full of laughter and touch-
ing moments.

Table 6: Examples of generated sentences for the SST-2
dataset by GPT3.5.
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You Think: A Critical Look at Weakly Supervised
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A Generated sentences

B Prompts

In this section, we describe the prompts we used
for ChatGPT and LLama2. For the paraphrasing
strategy, we copy Piedboeuf and Langlais (2023),
who simply asks for paraphrases in batch if the
ratio is 1 and for multiple paraphrases if the ratio
is larger than one. We refer to their paper for more
detail on the prompting.

For the zero and three-shot generation, we use
the template shown in Table 7.

We referred to the description given in the orig-
inal papers of each dataset to craft informative
prompts.

C Supplementary Results

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2304.14334
http://arxiv.org/abs/2304.14334
https://doi.org/10.18653/v1/S18-1005
https://doi.org/10.18653/v1/S18-1005
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.1007/978-3-030-22747-0_7
https://doi.org/10.1007/978-3-030-22747-0_7
http://arxiv.org/abs/2004.11546
http://arxiv.org/abs/2004.11546
http://arxiv.org/abs/2104.08268
http://arxiv.org/abs/2104.08268
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/2305.17442
http://arxiv.org/abs/2305.17442
http://arxiv.org/abs/2305.17442


3442

DATASET_DESC CLASS_DESC

movie reviews
negative or somewhat negative
positive or somewhat positive

headline Fake/Real
news classification

Real
Fake

Ironic tweet detec-
tion

Non-Ironic Tweets
Ironic Tweets

Ironic tweet detec-
tion

Tweets that are not ironic
Tweets ironic by polarity con-
trast, where the polarity is in-
verted between the literal and in-
tended evaluation
Tweets ironic by Situational
Irony, where a situation fails to
meet some expectation
Tweets ironic by Other type of
Irony, where the Irony is neither
by Polarity Contrast or by Situa-
tional Irony

Question classifica-
tion

Questions about an abbreviation
Questions about an entity (event,
animal, language, etc)
Question concerning a descrip-
tion (of something, a definition,
a reason, etc)
Questions about a human (de-
scription of someone, an individ-
ual, etc)
Questions about a location
Questions about something nu-
merical (weight, price, any other
number)

Table 7: Prompt patterns for the zero-shot strategies for
ChatGPT and Llama. The prompt is of the form “Here
are some examples of $CLASS_DESC from a dataset
of $DATASET_DESC: $EXAMPLES. Can you create
10 more sentences of that class that would fit the dataset
”.

B
as

el
in

e

Pe
rf

ec
t

C
op

y

E
D

A

A
E

D
A

B
T

C
B

E
R

T

C
B

A
R

T

T
5

G
PT

3.
5-

P

G
PT

3.
5-

Z
S

G
PT

3.
5-

3S

L
la

m
a2

-P

L
la

m
a2

-Z
S

L
la

m
a2
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Baseline 0 0 0 20 10 10 30 20 20 0 40 30 20 30 30
Perfect 80 0 90 70 70 90 100 80 90 80 100 90 90 100 90
Copy 0 0 0 0 0 0 0 30 10 0 40 20 0 10 20
EDA 10 0 0 0 0 0 0 20 20 0 50 20 10 10 10
AEDA 10 0 0 10 0 10 20 20 20 20 40 30 20 20 30
BT 10 0 0 0 0 0 20 20 10 0 20 20 0 20 10
CBERT 0 0 0 0 0 0 0 10 10 0 30 20 10 0 10
CBART 0 0 0 0 0 0 10 0 0 0 20 10 0 0 0
T5 0 0 0 0 0 0 0 10 0 0 20 10 0 10 0
GPT3.5-P 30 0 20 20 10 10 30 40 50 0 60 30 0 40 20
GPT3.5-ZS 0 0 0 0 0 0 0 10 0 0 0 10 0 0 0
GPT3.5-3S 10 0 10 0 0 0 10 10 10 10 30 0 0 0 0
Llama2-P 0 0 0 0 0 0 10 10 0 0 30 20 0 10 10
Llama2-ZS 10 0 10 0 0 0 0 10 10 0 20 10 10 0 20
Llama2-3S 10 0 0 0 0 0 10 10 0 10 20 20 0 10 0

Figure 4: Percentage of times the row algorithm per-
forms statistically better than the column algorithm,
with a p-value threshold of 0.05 and using a two-tails
paired t-test and with the starting sizes of 500/1000.
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SST2 Irony IronyB TREC6 SNIPS Average

Baseline 87.7/88.8 67.0/68.1 43.9/45.9 84.5/87.9 95.6/96.2 75.8/77.4
Perfect 88.9*/89.7* 67.3/71.1* 46.0*/48.5* 87.6*/89.3 96.1*/96.9* 77.2/79.1
Copy 87.7/88.8 66.2/69.2 43.7/46.7 83.8/86.3 95.5/96.4 75.4/77.5

EDA 88.1/88.9 65.9/69.4 43.6/47.2* 82.5/86.1 95.8/96.3 75.2/77.6
AEDA 88.0/89.0 65.1/69.5 42.8/46.7 82.7/87.4 96.1*/96.3 74.9/77.8
BT 88.0/89.2* 64.9/68.4 44.2/45.8 83.1/87.1 95.5/96.3 75.1/77.3
CBERT 87.6/88.6 64.8/69.5 43.6/46.1 82.9/84.7 95.4/96.3 74.9/77.0
CBART 87.7/88.7 66.0/68.8 43.6/45.1 81.2/82.5 95.9/96.2 74.9/76.3
T5 87.5/88.8 64.9/67.7 43.6/45.6 82.9/84.8 95.8/96.3 75.0/76.6
GPT3.5-P 88.2*/89.3* 65.1/69.5* 44.3/47.5 84.5/86.8 95.5/96.1 75.5/77.8
GPT3.5-ZS 87.7/88.8 64.2/67.4 42.0/45.1 81.9/86.0 95.5/95.8 74.3/76.6
GPT3.5-3S 88.1*/88.6 64.9/69.0 40.4/44.4 83.0/86.8 95.9/96.2 74.5/77.0
Llama2-P 87.8/88.9 65.4/68.1 44.1/46.1 83.3/85.9 95.7/96.4 75.3/77.1
Llama2-ZS 88.1*/88.8 65.0/69.2 42.5/45.7 82.2/86.0 95.6/96.0 74.7/77.2
Llama2-3S 87.8/88.4 65.0/67.9 42.8/46.2 83.8/85.3 95.7/96.4* 75.0/76.8

Table 9: Average metric over 15 runs for the training set sizes of 500 (left) and 1000 (right) with a ratio of 1. We
report accuracy for binary tasks and macro-f1 for multiclass ones. STDs are between 0.6 and 3.0, depending on the
dataset. Stars represent results for which the difference with the baseline was found to be statistically significant.
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