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Abstract

Extreme Multi-label Text Classification (XMC)
entails selecting the most relevant labels for
an instance from a vast label set. Extreme
Zero-shot XMC (EZ-XMC) extends this chal-
lenge by operating without annotated data, re-
lying only on raw text instances and a prede-
fined label set, making it particularly critical for
addressing cold-start problems in large-scale
recommendation and categorization systems.
State-of-the-art methods, such as MACLR
(Xiong et al., 2022) and RTS (Zhang et al.,
2022), leverage lightweight bi-encoders but
rely on suboptimal pseudo labels for training,
such as document titles (MACLR) or document
segments (RTS), which may not align well with
the intended tagging or categorization tasks.
On the other hand, LLM-based approaches,
like ICXML (Zhu and Zamani, 2024), achieve
better label-instance alignment but are compu-
tationally expensive and impractical for real-
world EZ-XMC applications due to their heavy
inference costs. In this paper, we introduce
LMTX1 (Large language Model as Teacher for
eXtreme classification), a novel framework that
bridges the gap between these two approaches.
LMTX utilizes an LLM to identify high-quality
pseudo labels during training, while employing
a lightweight bi-encoder for efficient inference.
This design eliminates the need for LLMs at in-
ference time, offering the benefits of improved
label alignment without sacrificing computa-
tional efficiency. Our approach achieves supe-
rior performance and efficiency over both LLM
and non-LLM based approaches, establishing a
new state-of-the-art in EZ-XMC.

1 Introduction

Extreme Multi-label Text Classification (XMC) is
the task of assigning relevant labels to documents
from an extensive label space, often comprising
hundreds of thousands to millions of possible labels

1The Github link: https://github.com/xmc-aalto/LMTX

(Bhatia et al., 2016). XMC is widely applied in real-
world scenarios such as product-to-product recom-
mendations, product search (Chang et al., 2021a),
labeling Wikipedia pages (Babbar and Schölkopf,
2017), and categorizing Amazon products (Jiang
et al., 2021). Despite its widespread use, exist-
ing supervised XMC methods depend heavily on
expert-annotated labels or user-annotated labels,
with the label set fixed during both training and in-
ference. Furthermore, supervised XMC faces two
challenges. First, obtaining annotations is difficult
due to the sheer scale of the label space, which
makes it challenging for annotators to select rele-
vant labels, often resulting in incomplete or missing
labels (Qaraei et al., 2021; Schultheis and Bab-
bar, 2021; Schultheis et al., 2022; Wydmuch et al.,
2021; Jain et al., 2016; Schultheis et al., 2024).
Second, the dynamic emergence of new labels, es-
pecially in cold-start scenarios adds further com-
plexity. Conventional XMC methods are poorly
equipped to handle unseen labels during inference,
limiting their capacity to adapt to the evolving and
dynamic nature of the label space.

There are two distinct settings for zero-shot ex-
treme classification: (i) Generalized Zero-Shot Ex-
treme Multi-label Learning (GZXML) (Gupta et al.,
2021), which enables models to predict unseen la-
bels but still relies on annotated training data, mak-
ing it unsuitable for scenarios lacking labeled data,
such as cold-start problems; and (ii) Extreme Zero-
Shot Multi-label Text Classification (EZ-XMC)
(Xiong et al., 2022; Zhang et al., 2022), which han-
dles unseen labels without requiring any annotated
data. In this work, we adopt the EZ-XMC setting
to address cases where labeled data is unavailable,
new labels emerge dynamically, and mainly focus
on tagging application tasks.

Current EZ-XMC methods predominantly fo-
cus on training robust bi-encoders by leveraging
pseudo-positive labels generated from the docu-
ments themselves. This approach enables the en-
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coding of label texts into embeddings via a sen-
tence encoder, facilitating efficient retrieval aligned
with document embeddings. Crucially, this method-
ology eliminates the need for training datasets to
encompass the entire label spectrum. For instance,
MACLR (Xiong et al., 2022) constructs instance-
pseudo label pairs using (content, title) combina-
tions from documents, while RTS (Zhang et al.,
2022) randomly splits documents and selects two
spans to form such pairs (Figure 1). However,
these methods often overlook the direct semantic
alignment between the document and pseudo-label
pairs. For instance, a segment generated by the RTS
might not be relevant to another segment if they
are located too far apart within the same document.
Moreover, the pseudo-labels may not adequately
reflect the domain of the predefined label set, lead-
ing to a mismatch between the target task and the
generated training pairs.

Large Language Models (LLMs) have recently
exhibited remarkable reasoning and zero-shot capa-
bilities across diverse NLP tasks (Bonifacio et al.,
2022; Saad-Falcon et al., 2023; Ma et al., 2023;
Qin et al., 2023; Sun et al., 2023; Dai et al., 2023;
Hou et al., 2023; Sachan et al., 2023, 2022). Nev-
ertheless, only a few notable exceptions (Zhu and
Zamani, 2024; Xu et al., 2023b; Liu et al., 2024)
have been explored in the context of XMC prob-
lems. This limited adoption is primarily due to
the substantial computational overhead associated
with deploying LLMs, especially given the large
search space typical of XMC tasks. Additionally,
the inference phase for XMC problems can become
prohibitively expensive when using heavy LLM
models. To address this limitation, we propose a
novel relevance assessment strategy that leverages
an LLM to judiciously select high-quality pseudo
labels from a curated label set for each document.
This approach enables the training of a lightweight
bi-encoder model that inherits the LLM’s knowl-
edge while avoiding the inference-time computa-
tional burden. Our contributions can be summa-
rized as follows:

• LMTX introduces a novel training approach
for bi-encoders, emphasizing a curriculum-
based method that dynamically adjusts based
on the relevance feedback from an LLM by
leveraging its zero-shot learning abilities.

• The proposed LMTX requires less training
data because there is a higher correlation be-
tween the pseudo-labels and documents, re-

Decription: "Apple's digital optical mouse --
built for speed and with a fluid elliptical
shape for easy handling.  The Apple Mouse
is available as a kit for purchase to
complement your Apple system. It can be
used with all USB-equipped Apple Macs. 
The Apple Mouse has no rollers or tracking
mechanisms to wear out or clog, and no
mouse balls to fish out and clean. Besides
all that, there's no distinguishable mouse
button. Instead, the entire Apple Mouse is in
effect a super-sensitive button - the body
pivots up and down to actuate the click
mechanism. The elliptical shape equally
accommodates right and left-handed users,
and its glass-smooth surface makes it a joy
to use.  The Apple Mouse uniquely
combines simplicity, elegance and precision
to deliver a superior mouse experience.Its
ideal when working with applications like
Photoshop or Illustrator which require
precision cursor movement. Its equally adept
on most any surface and maintains accuracy
even during rapid movement."

Title: "Apple Optical Mouse - White"

LMTX:
(Apple Optical

Mouse-
White \t Apple's

digital optica
... even during

rapid movement, 
computer

accessories)

RTS:
( Apple's digital
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clean ,
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during rapid
movement)

MACLR:
( Apple's digital
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for ...  accuracy even
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movement,

Apple Optical Mouse-
White)

Labels set

LLM

Figure 1: An example of how to construct training pairs
using state-of-the-art methods MACLR (Xiong et al.,
2022) and RTS (Zhang et al., 2022). MACLR utilizes
the ‘Title’ of a document to generate pseudo labels,
while the ‘Description’ serves as the training document.
Conversely, RTS forms its training pairs by selecting
two random segments from the ‘Description’. Differ-
ently, our proposed model, LMTX, adopts a more re-
fined approach. It selects ‘computer accessories’ as a
pseudo positive label from a predefined set, a choice
validated by the LLM model.

sulting in higher-quality training pairs. Conse-
quently, our approach achieves better perfor-
mance while maintaining similar or reduced
training time compared to traditional methods
for some large datasets.

• The proposed LMTX enables the lightweight
deployment by using only the bi-encoder to
generate embeddings for documents and la-
bels during the prediction. LLM models are
not involved in the prediction process. LMTX
significantly outperforms current state-of-the-
art methods for the tagging task, demonstrat-
ing comprehensive advancements in perfor-
mance metrics.

2 Background

Problem Definition: Let’s denote Xi ∈ X as the
text for an instance in a particular domain; i.e., Xi

could be the textual description for a product on
Amazon. Unlike the supervised XMC, the key char-
acteristic of the EZ-XMC setting is that we do not
have the corresponding well-annotated labels Yi for
each training instance Xi. However, besides hav-
ing the original text of instances {Xi}Ni=1, we also
have access to the predetermined labels along with
their texts, i.e., we have {lk}Lk=1. We refer to this
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Figure 2: The process of getting feedback from LLM model for training the bi-encoder. First, for a given document,
the (pre) trained bi-encoder and ANNS are employed to create a short-list of potential labels. Next, the LLM
assesses the relevance between the labels in this shortlist and the document. Finally, the selected labels are utilized
to further train the bi-encoder.

collection of predetermined labels as the “labels
set”. The goal of EZ-XMC, which is the one that
we consider in this paper, is to assign the document
Xi ∈ X to set of labels {lj} ⊆ {lk}Lk=1 that are
relevant to the document. To achieve this objective,
the task requires learning a mapping function from
text to embeddings for both {Xi}Ni=1 and {lk}Lk=1,
so that the {lk}Lk=1 can be retrieved in the same
space as {Xi}Ni=1 by comparing their embedding
similarity. The mapping function is denoted as
Eθ : X → SD−1, where θ represents the train-
ing parameters, E represents the encoder for docu-
ments and labels, and SD−1 is the D-dimensional
unit sphere. The mapping function is typically im-
plemented as a bi-encoder, where both the text of
documents and labels are embedded within SD−1.

Bi-Encoder Model: We employ a bi-encoder ar-
chitecture, Eθ, to generate embeddings for both
document and label text. The model consists of two
encoders with shared weights: one for documents
and another for labels. The document and label
embeddings are represented as Eθ(Xi) and Eθ(lk),
respectively, where Xi is the document and lk is the
label text. The relevance score between document
Xi and label lk is computed via cosine similarity
between their embeddings. The bi-encoder we use
is based on the Distill-BERT transformer (Sanh
et al., 2019) and depicted in Figure 2.

3 Training the Bi-encoder from the
Feedback of LLM

Training Process Overview: Our methodology
adopts an iterative framework, encompassing three
distinct stages within each cycle. Initially, we em-
bed all documents and labels, subsequently con-
structing an Approximate Nearest Neighbor Search
(ANNS (Malkov and Yashunin, 2018)) over the la-
bel embeddings to retrieve a refined set of label can-
didates for each document. In the second stage, the
LLM is deployed to scrutinize these candidates, ef-
fectively identifying pseudo positive labels. The fi-
nal stage involves training the bi-encoder model us-
ing the labels identified in the preceding stage. Fig-
ure 2 illustrates the mechanism through which the
bi-encoder incorporates feedback from the LLM
and progresses through training regimen.
Data Embedding & Shortlist Generation (stage-
I): The LLM model demonstrates zero-shot abil-
ity in determining relevance between two text seg-
ments (Ma et al., 2023). However, this approach
encounters challenges when applied to a vast ar-
ray of labels, as in our context. Specifically, the
computational complexity involved in assessing the
relevance between each document and every label
in a large set becomes formidable, being O(NL)
in complexity. This can be quite prohibitive, even
for a dataset with a moderate number (O(103)) of
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instances and labels. To mitigate this, our strategy
involves condensing the label space presented to
the LLM. We utilize (pre) trained bi-encoder to pro-
cess the document and label text into embeddings
and utilize ANNS to efficiently select the top-j most
relevant labels for each document. These selected
labels, denoted as Si = {li1, li2, ..., lij}, constitute
a focused subset for subsequent processing.
LLM Model as a Teacher (stage-II): Once we
obtain the label shortlist Si for the i-th document,
we can employ the LLM as a teacher to determine
the relevance between the document and the top-
j labels in a shortlist. Let Xi denote a particular
document and lik be its k-th label in the shortlist.
To assess the relevance between Xi and lik, we
instruct the LLM with the question, “document =
{Xi}, is the tag {lik} relevant to the document?
answer yes or no”. If the LLM outputs “Yes”, we
consider lik to be relevant to Xi. Conversely, if the
model outputs “No”, we consider lik as an unre-
lated label and discard it. We keep all the labels
from the shortlist that received a positive feedback
(“yes”) from the LLM. Then, we use these selected
relevant labels to train the bi-encoder model. A
detailed discussion of different prompts used for
the LLM can also be found in Appendix A.6.

Algorithm 1 Training the bi-encoder with the feed-
back from LLM teacher (LMTX)

Input: Initial bi-encoder Eθ , LLM model MLLM , data
instances {Xi}Ni=1, labels set {lk}Li=1, dev set instances
{Xj}, and number of cycles T
Output: Trained bi-encoder Eθ

1: c = 0.
2: while c < T do
3: Compute Eθ(Xi), Eθ(lk) for all {Xi}Ni=1 and {lk}Li=1

4: Retrieve top labels Si = ANNS(Eθ(Xi), Eθ(lk)
L
k=1)

for each Xi

5: Fetch pseudo positive labels P+
i = MLLM (Xi, Si)

for all Xi

6: for i=0 to N_batches do
7: Sample a mini_batch Bi = {Xi, P

+
i } where,

|Bi| = m
8: Update Eθ using mini-batch Bi, loss L and

AdamW optimizer.
9: end for

10: Evaluate Eθ with MLLM on the dev set {Xj} and
obtain P@1 over pseudo labels.

11: if P@1 does not improve on dev dataset then
12: Stop training cycle
13: end if
14: c = c+ 1
15: end while
16: return model Eθ

Training Bi-Encoder with Pseudo Positive La-
bels (stage-III): To train the bi-encoder, we follow

the training procedure in (Dahiya et al., 2023). Out
of the labels identified by the LLM as the pseudo
positives, we choose only one of the pseudo posi-
tive labels for each document during the training
process. This is shown to help in achieving faster
convergence in the earlier work (Dahiya et al.,
2023). Regarding the negatives, which we need
to compute the instance-wise loss, we use in-batch
negative sampling, in which the negatives for a
document come from the pseudo positive labels
of other documents in the same batch. Our analy-
sis in Section 5 shows that using labels which are
rejected by the LLM, as hard negatives, leads to
degradation in prediction performance.

For the label lk, the predicted relevance score
between document Xi and lk is computed through
the cosine similarity ⟨Eθ(Xi), Eθ(lk)⟩, and triplet
loss is used to train the bi-encoder (Schroff et al.,
2015a; Manmatha et al., 2017; Dahiya et al., 2023):

L =

N∑
i=1

∑
k′

[⟨Eθ(Xi), Eθ(lk′)⟩ − ⟨Eθ(Xi), Eθ(lp)⟩+ γ]+

(1)

where γ is the margin, the k′ stands for the index
of hard negative labels from the mini batch, lk′ and
lp correspond to the text of the negative labels and
the pseudo positive label.

As training progresses, the bi-encoder gradu-
ally improves, leading to an enhancement in the
quality of labels within the shortlist and increased
relevance to the corresponding document. During
training, we evaluate the model on the develop-
ment dataset and choose the best one based on
performance evaluated by the LLM since under
the EZ-XMC setting one does not have access to
annotated ground-truth labels. If there is no perfor-
mance improvement on the development set, train-
ing is halted, so the number of cycles is actually
determined by the performance on the development
dataset. The pseudo code of the proposed algorithm
LMTX, for training the bi-encoder model with feed-
back from LLM, is presented in Algorithm 1.
Inference: The model’s inference procedure is
analogous to the formation of the shortlist during
training, as depicted in Stage-I of Figure 2. We
build the MIPS (Johnson et al., 2019) over these
label embeddings, which implements the efficient
maximum inner product search. For each docu-
ment, we employ its embedding as a query to re-
trieve the top-m labels, which ultimately serve as
the predicted results. The use of MIPS2 in the infer-

2https://github.com/facebookresearch/faiss
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ence process ensures a sublinear time complexity
for each instance. The label embedding extraction
and construction of MIPS index are performed just
once, hence amortizing the cost of this step.

Dataset N Ntest Nlabel LN

EURLex-4K 15,511 3,803 3,956 20.79
Wiki10-31K 14,146 6,616 30,938 8.52
AmazonCat-13K 1,186,239 306,782 13,330 448.57
LF-WikiSeeAlso-320K 693,082 177,515 312,330 4.67
LF-Wikipedia-500K 1,813,391 783,743 501,070 24.75

Table 1: Statistical overview of the datasets. N : total
number of training samples, Ntest: number of test sam-
ples, Nlabel: total number of unique labels, LN : average
number of samples per label.

4 Experiments

Datasets and Evaluation Metrics: We utilized
five tagging datasets for evaluation: EURLex-
4k, Wiki10-31k, and AmazonCat-13K were ob-
tained from the XLNet-APLC repository3, while
the remaining datasets were downloaded from the
extreme classification repository4. Table 1 pro-
vides comprehensive statistical information for all
datasets. To optimize computational resources, we
constrained the training data for AmazonCat-13K,
LF-WikiSeeAlso-320K, and LF-Wikipedia-500K
to 30,000 documents each. In contrast, baseline
models utilize the entire dataset.

We employ the commonly used evaluation met-
rics (Reddi et al., 2019; Chang et al., 2021b;
Zhang et al., 2022) for the EZ-XMC setting:
Precision@k and Recall@m. Further details on
the evaluation metrics and implementation can be
found in the Appendix A.2 and A.1 respectively.
Baselines: We have incorporated state-of-the-art
EZ-XMC models as our baselines. The base-
line contains unsupervised pseudo-labels methods:
MACLR (Xiong et al., 2022) and RTS (Zhang et al.,
2022). Unsupervised pre-trained embeddings and
encoders: GloVe (Pennington et al., 2014), Inverse
Cloze Task (ICT) (Lee et al., 2019) and MPNet
(Song et al., 2020). Sentence matching: Sent-
BERT (Reimers and Gurevych, 2019) and SimCSE
(Gao et al., 2021). Pre-trained retrieval bi-encoder:
Msmarco-distilbert (Reimers and Gurevych, 2021).
LLM-based methods: ICXML (Zhu and Zamani,
2024). To assess the baseline performance of LF-
WikiSeeAlso-320K and LF-Wikipedia-500k, we
obtained the results from (Zhang et al., 2022). As

3https://github.com/huiyegit/APLC_XLNet
4http://manikvarma.org/downloads/XC/XMLRepository.html

for the other baselines, we acquired their perfor-
mance by executing the respective baseline.
Comparison with standard baselines: In Table 2,
we present a comparative analysis of our model’s
performance against other models. Notably, our
LMTX model demonstrates substantial improve-
ments in both Precision@m & Recall@m, espe-
cially for datasets like EURLex-4k, Wiki10-31k,
AmazonCat-13k, and LF-Wikipedia-500k. Particu-
larly striking are the results in LF-Wikipedia-500k
and AmazonCat-13K, where our model shows an
increase of 31% and 37%, respectively, for P@1.
In addition, our results on LF-WikiseeAlso-320k
are competitive with those of the leading mod-
els, despite the unique nature of this task, which
focuses on identifying related Wikipedia titles
rather than traditional tagging. Moreover, Table
6 presents a comparison of the training time and
computational resources required for LMTX rel-
ative to other methods, further underscoring the
efficiency of our approach. These results strongly
indicate that our approach is both computationally
efficient and highly effective in zero-shot scenarios,
capable of addressing diverse tagging and catego-
rization tasks with state-of-the-art performance.
Comparison with LLM-based baseline: We com-
pared our results against ICXML (Zhu and Zamani,
2024) (only LLM baseline for EZ-XMC) using vari-
ous LLM models as shown in Table 3. On EURLex-
4K, LMTX significantly outperforms all ICXML
variants, achieving a P@1 of 47.28 versus 19.14.
On LF-WikiSeeAlso-320K, LMTX demonstrates
superior performance compared to models up to
33B in size, with an insignificant performance drop
relative to the substantial difference in model size
(70B vs 66M). Crucially, LMTX achieves these
results with significantly reduced computational
demands and substantially lower inference times,
enabling more scalable real-world deployment.

5 Ablations and Comprehensive Analysis

Evaluating Teacher Models (Analyzing Open-
Source LLMs): We evaluate open-source LLMs as
potential teacher models. Table 4 presents the per-
formance results using different recently released
LLM model families, with same parameters (13B).

Our analysis reveals that WizardLM outperforms
other models on the AmazonCat-13K and LF-
WikiSeeAlso-320K datasets, while Llama2 demon-
strates improved performance over WizardLM on
the LF-Wikipedia-500K dataset. These findings
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Method P@1 P@3 P@5 R@1 R@3 R@5 R@10 P@1 P@3 P@5 R@1 R@3 R@5 R@10

EURLex-4K Wiki10-31K

Glove 1.66 1.11 1.04 0.37 0.73 1.08 1.88 3.87 3.11 2.87 0.24 0.57 0.89 1.48
SentBERT 8.52 7.70 6.83 1.70 4.54 6.69 10.20 9.39 6.93 5.81 0.60 1.31 1.81 2.70
SimCSE 5.86 4.44 3.85 1.20 2.86 3.93 6.12 23.55 17.21 14.01 1.42 3.07 4.13 6.01
MPNet 10.81 8.65 7.21 2.27 5.28 7.28 10.85 44.82 29.18 22.38 2.63 5.12 6.52 8.89
Msmacro-distilbert 15.91 9.89 7.81 3.33 6.16 8.08 11.22 54.17§ 33.44§ 25.38§ 3.18§ 5.82§ 7.32§ 9.70§

RTS 30.58§ 21.54§ 17.73§ 6.19§ 13.01§ 17.72§ 25.34§ 47.73 31.03 23.65 2.81 5.41 6.84 9.12

LMTX 47.28† 29.34† 21.98† 9.6† 17.68† 21.96† 28.44† 57.89† 38.00† 29.09† 3.41† 6.68† 8.46† 11.14†

AmazonCat-13K LF-WikiSeeAlso-320K

Glove 4.83 3.89 3.42 0.99 2.46 3.67 6.05 3.86 2.76 2.21 2.12 4.11 5.22 6.95
SentBERT 5.21 4.22 3.68 0.99 2.34 3.37 5.35 1.71 1.27 1.06 1.08 2.16 2.90 4.17
SimCSE 2.84 2.60 2.42 0.52 1.41 2.17 3.75 9.03 6.64 5.22 4.99 9.89 12.34 15.93
ICT 15.52 10.48 8.34 2.91 5.93 7.86 11.04 10.76 10.05 8.12 6.12 14.32 18.05 23.01
MPNet 18.01 12.84 10.51 3.63 7.68 10.48 15.73 13.75 11.93 9.58 8.14 17.77 22.21 28.11
MACLR 10.66 6.75 5.14 1.98 3.79 4.81 6.35 16.31 13.53 10.78 9.71 20.39 25.37 32.05
Msmacro-distilbert 16.36 10.96 8.68 3.29 6.62 8.73 12.23 14.93 12.65 10.08 8.99 19.25 23.99 30.19
RTS 18.89§ 13.59§ 11.07§ 3.69§ 8.03§ 10.97§ 16.20§ 18.64 15.14 12.07 10.86 22.68 28.29 35.47

LMTX 25.91† 17.08† 13.12† 5.53† 10.77† 13.60† 17.84† 19.11 14.00 10.95 11.41 21.38 26.10 32.44

LF-Wikipedia-500K

Glove 2.19 1.52 1.23 0.85 1.66 2.18 3.10
SentBERT 0.17 0.15 0.13 0.05 0.13 0.18 0.30
SimCSE 14.32 6.84 4.55 4.24 8.03 11.26 14.35
ICT 17.74 9.67 7.06 7.35 11.60 13.84 17.19
MPNet 22.46 12.87 9.49 8.74 14.07 16.76 20.64
Msmacro-distilbert 21.62 12.75 9.52 8.27 13.81 16.68 20.89
MACLR 28.44 17.75 13.53 10.40 18.16 22.38 28.52
RTS 30.67 19.03 14.34 10.58 18.48 22.51 28.23

LMTX 40.25 23.00 16.81 13.65 22.15 26.16 31.61

Table 2: Comparison of LMTX model with state-of-the-art EZ-XMC methods. The symbol † indicates a statistically
significant improvement over the best baseline model (paired t-test with p ≤ 0.01) and the symbol § represents the
best baseline model.

underscore the versatility of our proposed method,
which is not confined to a single LLM model. This
flexibility enables selection of the most appropriate
teacher model to achieve optimal performance.
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Figure 3: Effect of training sample size on LMTX per-
formance and training time.

Optimizing Training Efficiency: Impact of Sam-
ple Size on Performance and Training Time
To enhance the efficiency and cost-effectiveness
of LMTX, particularly when incorporating LLM-
based teacher models in large datasets, we trained
the bi-encoder using a subset of the training dataset.
As depicted in Figure 3, we systematically investi-
gated the impact of reducing the number of docu-

ments on both final performance and training time
by randomly sampling data from the entire dataset.
The results show that increasing the number of
training samples improves model performance, as
evidenced by higher P@1 scores. However, this im-
provement is accompanied by a significant increase
in training time, underscoring the necessity of bal-
ancing performance gains with the corresponding
training time.
Assessing Initialization Robustness: The choice
of initialization influences both the quality of the
initial label shortlist and the subsequent training
process of the bi-encoder. To isolate the effects
of our method from potential biases due to initial-
ization advantages, we applied identical initializa-
tion procedures to both our approach and the best
non-LLM baseline RTS (Zhang et al., 2022). The
results, as presented in Table 5, demonstrate that
our method consistently outperforms the baseline,
even when identical initialization is applied. We
also include the performance of the initialized bi-
encoder model, msmarco-distilbert-base-v45, in Ta-

5https://huggingface.co/sentence-transformers/msmarco-
distilbert-base-v4
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Dataset Methods P@1 P@5 R@1 R@5 Inf. time GPUs

EURLex-4K

ICXML-WizardLM-13B 2.21 2.28 0.5 2.39 16.46 1x(A100-40GB)
ICXML-Vicuna-33B 7.47 6.05 1.64 6.15 35.28 2x(A100-40GB)
ICXML-Llama3-70B 19.14 16.51 3.85 16.27 21.32 4x(A100-80GB)

LMTX-DistilBERT-66M 47.28 21.98 9.6 21.96 0.019 1x(A100-40GB)

LF-WikiSeeAlso-320K

ICXML-WizardLM-13B 4.38 2.94 2.74 8.28 19.48 1x(A100-40GB)
ICXML-Vicuna-33B 6.6 4.12 3.76 11.29 24.29 2x(A100-40GB)
ICXML-Llama3-70B 26.13 13.93 13.54 31.02 15.53 4x(A100-80GB)

LMTX-DistilBERT-66M 19.22 10.94 11.15 26.01 0.032 1x(A100-40GB)

Table 3: Performance comparison of LMTX and ICXML on EURLex-4K and LF-WikiSeeAlso-320K datasets.
The table shows precision and recall metrics, inference time (in hours), and the number of GPUs used. Results for
LF-WikiSeeAlso-320K are averaged over two 3500-sample subsets.

Dataset LLM Model P@1 P@5 R@1 R@5

AmazonCat-
13K

WizardLM 25.91 13.12 5.53 13.60
Vicuna 25.01 12.70 5.24 12.95
Llama2 25.21 12.76 5.34 13.22

LF
WikiSeeAlso-

320K

WizardLM 19.11 10.95 11.41 26.10
Vicuna 17.76 11.07 10.91 26.58
Llama2 17.59 10.64 10.46 25.27

LF
Wikipedia-

500K

WizardLM 40.25 16.81 13.65 26.16
Vicuna 39.37 16.78 13.47 26.04
Llama2 41.67 17.20 14.37 26.86

Table 4: Comparison of different LLM models as
teacher.

Dataset Initialization P@1 P@5 R@1 R@5

AmazonCat-
13K

RTS-SI 17.87 10.35 3.57 10.61
LMTX 25.91 13.12 5.53 13.60

LF- WikiSee
Also-320K

RTS-SI 14.82 8.89 8.41 21.02
LMTX 19.11 10.95 11.41 26.10

Table 5: Performance comparison across datasets with
consistent initialization. RTS-SI uses same initialization
as ours.

ble 2. The results demonstrate that training with the
proposed method improves the bi-encoder model,
making it outperform the initialized model on XMC
problems. These results indicate that our method’s
efficacy stems from intrinsic improvements in the
learning process rather than initialization advan-
tages, underscoring its robustness and broad appli-
cability.
Evaluating Negative Sampling and the Impact
of LLM-Derived Hard Negatives: Our bi-encoder
training employs in-batch negatives. We extended
this approach by incorporating hard negatives, iden-
tified by the LLM model and tagged as "no". For
each document, we constructed a negative set
comprising these hard negatives and the pseudo-
positive labels of other documents within the same
batch. Figure 4 illustrates the comparative per-
formance of these strategies. Notably, our results

P@1

P@3

P@5

R@1

R@3

R@5

5

10

15

20

25

In-batch Hard negatives + In-batch 
AmazonCat-13K LF-WikiSeeAlso-320KAmazonCat-13K LF-WikiSeeAlso-320K

Figure 4: Comparative impact of negative sampling
strategies on precision and recall performance.

indicate that the inclusion of hard negatives can
potentially impede bi-encoder training, likely due
to the risk of introducing false negatives.

6 Related Work

Supervised Extreme Multi-label Text Classifica-
tion : Supervised XMC methods leveraging non-
label features include one-vs-rest approaches (Yen
et al., 2016; Babbar and Schölkopf, 2017, 2019;
Schultheis and Babbar, 2022), which are based on
TF-IDF representations, as well as tree-based meth-
ods (You et al., 2019; Yu et al., 2022; Chang et al.,
2020; Jiang et al., 2021; Liu et al., 2021; Gupta
et al., 2022; Zhang et al., 2021; Kharbanda et al.,
2022; Khandagale et al., 2020) that train distinct
classifiers for different levels of the tree. State-of-
the-art non-label feature methods (Kharbanda et al.,
2022; Zhang et al., 2021; Jiang et al., 2021) are
based on a transformer encoder and multi-layered
tree classifiers. In contrast, state-of-the-art label
feature methods (Saini et al., 2021; Dahiya et al.,
2021; Mittal et al., 2021b; Dahiya et al., 2023; Mit-
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tal et al., 2021a; Gupta et al., 2023) focus on embed-
ding both label text and document text to achieve
high accuracy. All of these supervised approaches
rely on well-annotated datasets and require com-
prehensive coverage of most of the labels in the
training dataset.
Zero-shot Extreme Multi-label Text Classifi-
cation: The zero-shot XMC is capable of han-
dling unseen labels which are not in the training
dataset. ZestXML (Gupta et al., 2021) applied gen-
erated TF-IDF features and a trained linear model
to enable retrieval of unseen labels. However,
this method still relies on well-annotated training
datasets to learn the linear model and is not suit-
able for the cold start scenario. Another extreme
setting in zero-shot XMC is Extreme Zero-shot Ex-
treme Multi-label Text Classification (EZ-XMC)
(Xiong et al., 2022). EZ-XMC is specifically de-
signed for the zero-shot scenario, particularly tai-
lored for the cold start scenario without the need
for a well-annotated training dataset. The key dis-
tinction between zero-shot XMC and EZ-XMC lies
in whether annotated labels are employed in the
training process. Unlike zero-shot XMC, EZ-XMC
does not utilize any annotated labels. We adopt the
EZ-XMC setting in this paper. MACLR (Xiong
et al., 2022) proposes a multi-stage self-supervised
approach for EZ-XMC by using pseudo pairs of
(title, document). On the other hand, RTS (Zhang
et al., 2022) introduces a randomized text segmen-
tation method to construct pseudo positive labels
with segments within one document.
Dense Sentence Embedding: In the domains of
open domain question answering and information
retrieval, ICT (Inverse Cloze Task) (Lee et al.,
2019) constructs positive passages by extracting
random sentences and their corresponding contexts
from the documents. MSS(Guu et al., 2020) shows
that the ICT encoder can be improved by predict-
ing the masked salient spans with a reader. Spider
(Ram et al., 2022) adopts sentences that contain
recurring spans as positive passage. Both HLP
(Zhou et al., 2022) and WLP(Chang et al., 2019)
utilize hyperlinks within Wikipedia pages to con-
struct positive passages. ART (Sachan et al., 2023)
tries to guide the training of bi-encoder via the ques-
tion reconstruction score. Additionally, there are
works that focus on sentence similarity, including
(i) SimCSE (Gao et al., 2021) introduces a con-
trastive learning framework that employs dropout
noise as augmented positives, and (ii) Sentence-
BERT (Reimers and Gurevych, 2019) introduces a

supervised siamese transformer framework.
Large Language Models XMC Applications:
LLM models such as GPT-3 (Brown et al., 2020),
and GPT-4 (OpenAI, 2023) have demonstrated
their zero-shot effectiveness in various NLP down-
stream tasks. In XMC, Xu et al. (2023b) employed
LLM to construct a thesaurus for labels in a few-
shot setting. Liu et al. (2024) applied LLM for
incremental XMC setting. Zhu and Zamani (2024),
on the other hand, directly applied the LLM for
inference in EZ-XMC setting. This approach pre-
dominantly focuses on recommendation datasets
and relies on the costly GPT-3.5 and GPT-4 for
inference. In contrast, our methods concentrate
on tagging tasks and emphasize swift inference
through a lightweight bi-encoder.

7 Conclusion

This paper introduces a novel approach to address
the EZ-XMC tagging and categorization challenge.
We leverage an LLM as a teacher to guide the train-
ing of the bi-encoder model. Unlike existing meth-
ods, our approach effectively handles the issue of
low-quality training pairs. Additionally, our al-
gorithm enables faster inference without the need
for an LLM during prediction, providing a signifi-
cant advantage over LLM-based methods and sup-
porting lightweight deployment in EZ-XMC sce-
narios. Performance evaluations demonstrate that
our method achieves state-of-the-art results across
multiple datasets. Ablation experiments further
highlight its potential for improved performance
when using alternative teacher models. For future
work, exploring more efficient ways to integrate
the LLM model is interesting, such as transitioning
from point-wise to list-wise prompts, could be an
exciting direction.

8 Limitations

While our method demonstrates superior perfor-
mance with a smaller subset, there is potential for
further improvements with a larger training set (Fig-
ure 3). However, our current LLM pseudo-labeling
approach relies on point-wise feedback, which is
time-consuming. For the comparison with ICXML,
we employed publicly available open-source mod-
els instead of GPT-3.5, which is specified in the
original ICXML implementation. Despite this,
benchmarking on large-label datasets proved com-
putationally prohibitive. Instead, we used a subset
of the test set and repeated the experiments multiple
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times to ensure statistical significance.
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A Appendix

A.1 Implementation Details

Bi-Encoder: In our bi-encoder framework, we
adopt a siamese network architecture for sentence
encoding. The core of this network is DistilBERT
(Sanh et al., 2019), comprising six transformer lay-
ers. For the generation of sentence embeddings,
we apply mean pooling, yielding embeddings of

768 dimensions. The bi-encoder is initialized using
the msmarco-distilbert-base-v46, and ANNs is built
via the HNSW package7. For optimization, we em-
ploy the AdamW optimizer (Loshchilov and Hutter,
2018) with a learning rate of 0.0002, setting the
batch size to 128. All experiments for training the
bi-encoder are conducted on a single A100 GPU.
Following the supervised method in (Dahiya et al.,
2023), we have used triplet loss (Schroff et al.,
2015b; Liu et al., 2017) with margin γ is set to
0.3. For model selection, a development set of 800
documents is randomly selected from the training
dataset, with pseudo labels derived from the top-k
labels as determined by the LLM model.
LLM: For our Large Language Model (LLM)
component, we employ the WizardLM-13B-V1.0
model (Xu et al., 2023a), an open-source LLM
notable for achieving 89.1% of GPT-4’s (OpenAI,
2023) performance with approximately 13 billion
parameters. In addition, for the purposes of this
study, we incorporate Llama2 (Touvron et al., 2023)
and vicuna-13b-v1.3 (Chiang et al., 2023) models
in our ablation experiments to serve as comparative
benchmarks. All LLM computations are performed
on 2 × A100 GPUs, with input instances truncated
to 430 tokens. For the comparison with ICXML
(Zhu and Zamani, 2024), we adopt Llama3 (Dubey
et al., 2024) and vicuna-33b-v1.3 (Chiang et al.,
2023) for inference.
Random Training Subsets: To minimize bias
from random subsets for AmazonCat-13K, LF-
WikiSeeAlso-320K, and LF-Wikipedia-500K, we
conducted three separate random samplings and
used the average performance of the three models
on the test set as our final result in Table 2.

A.2 Evaluation Metrics
We employ the commonly used evaluation met-
rics (Reddi et al., 2019; Chang et al., 2021b;
Zhang et al., 2022) for the EZ-XMC setting :
Precision@k(P@m) and Recall@m(R@m).

P@m =
1

m

∑
i∈rankm(ŷ)

yi, R@m =
1∑
l yl

∑
i∈rankm(ŷ)

yi

(2)

where ŷ ∈ RL represents a vector containing the
predicted labels’ score for each instance, while
y ∈ {0, 1}L corresponds to a vector representing
the ground truth for each document. The term
rankm(ŷ) refers to a list of the predicted top-m

6https://huggingface.co/sentence-transformers/msmarco-
distilbert-base-v4

7https://github.com/kunaldahiya/pyxclib
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https://proceedings.neurips.cc/paper_files/paper/2019/file/9e6a921fbc428b5638b3986e365d4f21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9e6a921fbc428b5638b3986e365d4f21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9e6a921fbc428b5638b3986e365d4f21-Paper.pdf
https://aclanthology.org/2022.findings-emnlp.362
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label indices. The definition of the two metrics
applies to a single instance; for multiple instances,
the performance is the average across all instances.

Dataset Models Training GPUs

AmazonCat-
13K

MACLR 28.86 4 A100
RTS 35.60 4 A100

LMTX 30k 22.79 2 A100
LF-

WikiSeeAlso-
320K

MACLR 28.88 4 A100
RTS 26.66 4 A100

LMTX 30k 26.03 2 A100

Table 6: The training time (in hours) comparison with
non-LLM methods.

A.3 Training time
In Table 6, we present the training time for our
model when trained with a subset of the train-
ing set. The table shows that LMTX’s time ef-
ficiency is competitive or even superior compared
to other models, especially in the context of larger
datasets. These results underscore the effectiveness
of LMTX, even with the incorporation of the LLM
model.
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Figure 5: Impact of shortlist size on performance met-
rics for EURLex-4k dataset.

A.4 Sensitivity to the Shortlist Size
The size of the shortlist directly impacts both the
quality of pseudo labels generated by the LLM
and the computational efficiency of the screening
process. We empirically evaluated the effect of
varying shortlist sizes on precision and recall for
the EURLex-4K dataset, as illustrated in Figure 5.
Our results demonstrate that while a shortlist size
of 5 negatively impacts performance, increasing the
size beyond 10 does not yield significant improve-
ments. Notably, we observed optimal performance
across multiple metrics at a shortlist size of 10,

indicating that our approach achieves superior re-
sults with a relatively compact shortlist, thereby
enhancing training efficiency.

A.5 Evaluating Pseudo-Label Quality and the
Role of Curriculum Learning:

To assess the LLM’s capability in selecting relevant
labels and the quality of the selected pseudo-labels,
we measured the overlap between the pseudo-labels
and the supervised ground truth. The overlap ratio
is calculated as follows

quality =
len(pseudo_labels ∩ true_labels)

len(true_labels)

As illustrated in Figure 6, the overlap ratio progres-
sively increases across training epochs for both the
EURLex-4K and AmazonCat-13K datasets. This
trend demonstrates the effectiveness of our cur-
riculum learning framework, as the LLM refines
its label selection over time, resulting in higher-
quality pseudo-labels. The increasing overlap high-
lights that the curriculum learning strategy not
only improves pseudo-label alignment with ground
truth but also enhances the performance of the bi-
encoder.
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Figure 6: Overlap ratio between LLM-generated pseudo-
labels and ground truth labels across training epochs for
EURLex-4K and AmazonCat-13K datasets.

A.6 Prompts for LLM

• EURLex-4k and Wiki10-31K: “document =
{doc}. Is the tag {label_text} relevant to the
document? answer yes or no”

• AmazonCat-13K: “document = {doc}. The
document is amazon product description, Is
the tag {label_text} relevant to the document?
answer yes or no”
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• LF-WikiSeeAlso-320K: "document = {doc}.
The document is the wikipedia page. Does
another wikipedia page name "{label_text}"
has the relation to the document? answer yes
or no"

• LF-Wikipedia-500K:"document = {doc}, the
document is the wikipedia page. Is the tag
"{label_text}" relevant to the document? an-
swer yes or no".
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