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Abstract

The rapid expansion of online content has inten-
sified the issue of information redundancy, un-
derscoring the need for solutions that can iden-
tify genuinely new information. Despite this
challenge, the research community has seen
a decline in focus on novelty detection, par-
ticularly with the rise of large language mod-
els (LLMs). Additionally, previous approaches
have relied heavily on human annotation, which
is time-consuming, costly, and particularly chal-
lenging when annotators must compare a target
document against a vast number of historical
documents. In this work, we introduce NO-
VASCORE (Novelty Evaluation in Atomicity
Score), an automated metric for evaluating
document-level novelty. NOVASCORE aggre-
gates the novelty and salience scores of atomic
information, providing high interpretability and
a detailed analysis of a document’s novelty.
With its dynamic weight adjustment scheme,
NOVASCORE offers enhanced flexibility and
an additional dimension to assess both the nov-
elty level and the importance of information
within a document. Our experiments show
that NOVASCORE strongly correlates with hu-
man judgments of novelty, achieving a 0.626
Point-Biserial correlation on the TAP-DLND
1.0 dataset and a 0.920 Pearson correlation on
an internal human-annotated dataset.

1 Introduction

Textual novelty detection has long been a key chal-
lenge in information retrieval (IR) (Soboroff and
Harman, 2005), focusing on identifying text that
introduces new, previously unknown information.
With the rapid expansion of online content, this
issue has become more significant, as redundant
information increasingly obstructs the delivery of
critical, timely, and high-quality content (Ghosal
et al., 2022). Schwartz (2022) reveals that 60% of
internet content is duplicated. The rise of Large
Language Models (LLMs) has further contributed

Figure 1: Conceptual illustration of novelty and salient
information retrieval in real-world applications.

to the generation of artificial and semantically re-
dundant information. Detecting whether a docu-
ment provides new, relevant, and salient informa-
tion is crucial for conserving space, saving time,
and maintaining reader engagement.

In addition, Li et al. (2024) introduce novelty as
a key metric for benchmark design, noting that per-
formance on existing benchmarks is often highly
correlated (Liu et al., 2023a; Perlitz et al., 2024;
Polo et al., 2024). Novelty helps uncover hidden
performance patterns and unexpected model be-
haviors, enabling more dynamic evaluations and
the development of higher-quality benchmarks that
push the limits of model improvement.

Despite the increasing issue of information re-
dundancy and the growing need for novelty in
benchmarking, focus on novelty detection has de-
clined, especially since the rise of LLMs after
2022. Most prior efforts in document-level novelty
detection rely on single categorical classification,
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lacking detailed analysis of what is genuinely new
within a document. Additionally, previous work
has overlooked the salience of information – how
important each piece is and how it contributes to
assessing a document’s overall novelty and value.
These methods also heavily depend on human anno-
tation, which is time-consuming, costly, and chal-
lenging, especially when comparing a target doc-
ument against many historical documents (Ghosal
et al., 2018a), as illustrated in Figure 1.

Our motivation is twofold: (a) to develop a new
metric for document-level novelty that offers gran-
ular analysis and incorporates the salience of infor-
mation, and (b) to provide an automated solution
that reduces the costs and time associated with
manual labeling. Our contributions are as follows:

1. We introduce NOVASCORE, short for Novelty
Evaluation in Atomicity Score, an automated
metric for evaluating document-level nov-
elty. NOVASCORE aggregates the novelty and
salience scores of atomic content units, providing
high interpretability and demonstrating strong
correlation with human judgments of novelty.

2. We release NOVASCORE as an open-source tool1,
encouraging further research to expand its appli-
cability and enhance its scalability.

2 Related Work

Novelty Detection Textual novelty detection has
its roots in early IR research, particularly through
the Topic Detection and Tracking (TDT) cam-
paigns. These efforts focused on new event detec-
tion by clustering news stories based on similarity
thresholds (Wayne, 1997; Brants et al., 2003). The
task gained further prominence during the Text Re-
trieval Conferences (TREC) from 2002 to 2004,
where sentence-level novelty detection became a
focal point (Soboroff et al., 2003; Clarke et al.,
2004; Soboroff and Harman, 2005; Schiffman and
McKeown, 2005). While sentence-level detection
was well-researched, it is insufficient for address-
ing the vast amount of document-level information
available on the web today (Ghosal et al., 2022).

At the document level, Yang et al. (2002) pio-
neered the use of topical classification for detecting
novelty in online document streams. Zhang et al.
(2002) introduced redundancy measures to assess
document novelty. More recent approaches have
explored information entropy measures (Dasgupta
and Dey, 2016), deep neural networks (Ghosal

1Our code is available at this GitHub repository.

et al., 2018a), multi-source textual entailment
(Ghosal et al., 2022), and unsupervised approaches
(Nair, 2024) for detecting novelty in documents.

Information Similarity Evaluation Directly as-
sessing the novelty of information is challenging.
However, numerous metrics exist for evaluating
semantic similarity between pieces of information.
A common approach involves using cosine sim-
ilarity between contextual embeddings, as seen
in methods like BertScore (Zhang et al., 2020),
MoverScore (Zhao et al., 2019), and BartScore
(Yuan et al., 2021). Additionally, Natural Language
Inference (NLI) is widely recognized for evaluat-
ing information similarity and consistency. It is
frequently employed in novelty detection (Dagan
et al., 2022; Ghosal et al., 2022), summarization
evaluation (Liu et al., 2023c; Laban et al., 2022),
and factuality assessment (Min et al., 2023; Zha
et al., 2023; Ji et al., 2023). Beyond these one-stage
metrics, two-stage approaches, such as QA-based
methods, are extensively used to evaluate informa-
tion overlap and faithfulness in both summarization
and factuality evaluations (Deutsch et al., 2021;
Zhong et al., 2021; Goyal et al., 2022; Fabbri et al.,
2022). In our work, we utilize and assess all three
categories of approaches as a close approximation
for identifying semantic-level non-novelty.

3 NOVASCORE

We introduce NOVASCORE, a new automated
method for evaluating the novelty of a target docu-
ment compared to a series of historical documents.
Unlike previous methods that assign a categorical
value to the entire document, NOVASCORE offers
an interpretable and granular analysis at the atom-
icity level. As shown in Figure 2, the process starts
by decomposing the target document into Atomic
Content Units (ACUs). We define an ACU simi-
larly to Min et al. (2023) (atomic facts) and Liu
et al. (2023b), but with a more holistic perspective
– an elementary information group that combines
the minimal number of atomic facts necessary to
convey a single message. Each ACU is then evalu-
ated for novelty by comparing it to an ACUBank of
historical documents and assessed for its salience
within the document’s context. The overall NO-
VASCORE is computed by aggregating the novelty
and salience scores of all ACUs. After process-
ing, the target document ACUs can be stored in the
ACUBank for future analysis. This approach allows
for a high-level assessment of the document’s nov-

https://github.com/lynneeai/NovAScore
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Figure 2: The NOVASCORE framework. The target document is first decomposed into ACUs. ACU-level novelty is
assessed by comparing each ACU against the ACUBank of historical documents, while salience is determined by
whether the ACU is included in the document’s summary. The final NOVASCORE is calculated by aggregating the
scores of the ACUs. ACUs can be stored in the ACUBank for future analysis if necessary.

elty while precisely identifying new and important
information, providing fine-grained interpretability.

3.1 ACU Extraction and ACUBank

We build on the ideas from Liu et al. (2023b) and
Min et al. (2023) to extract abstractive ACUs, but
unlike their methods, which break down sentences
into highly fine-grained units, we extract document-
level ACUs directly. This approach better suits our
task of novelty detection, which requires a holistic
evaluation of new information rather than overly
fine details. We frame automatic document-level
ACU extraction as a sequence-to-sequence problem
(Sutskever et al., 2014): m(D) → A, where D is
the input document, m is a language model, and A
is the set of generated document-level ACUs.

While previous research has focused on
sentence-level novelty (Schiffman and McKeown,
2005; Ghosal et al., 2022), we choose ACU-level
analysis to better handle complex, information-
dense sentences and to maintain context by consid-
ering messages that may span multiple sentences.

To efficiently evaluate the novelty of target
ACUs, we construct an ACUBank – a collection
of databases that store ACUs from historical doc-
uments – allowing for quick similarity searches at
minimal computational cost without the need for
real-time relevant content retrieval. The databases
are built by indexing ACUs using SentenceBERT
embeddings (Reimers and Gurevych, 2019). For
each ACU, the most relevant historical ACUs are

rapidly retrieved via semantic cosine similarity to
assess novelty. To speed up searches, the ACUBank
is organized into multiple databases, each contain-
ing ACUs from specific clusters, so a target doc-
ument is only searched within its cluster, signifi-
cantly narrowing the search scope.

3.2 ACU Novelty Evaluation
We approximate non-novel information assessment
using three common information similarity evalu-
ators: embedding cosine similarity, NLI, and QA,
as discussed in Section 2. These evaluators assess
ACU novelty, treating it as a binary task – deter-
mining whether the information is new or not.

Cosine similarity provides a straightforward ap-
proach to evaluating ACU novelty. We compare
each target ACU with historical ACUs from the
ACUBank. If any historical ACU exceeds a set sim-
ilarity threshold with the target ACU, it is classified
as non-novel, indicating likely repetition; and vice
versa. This method efficiently assesses overlap,
making it a practical tool for novelty detection.

NLI is based on the principle that a premise P
entails a hypothesis H if a typical human reader
would conclude that H is most likely true after
reading P (Dagan et al., 2005). In the context of
novelty detection, this means that if one or more
entailing premises are found for a given hypothesis,
the content of that hypothesis is considered not new
(Bentivogli et al., 2011). To evaluate ACU-level
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novelty, we concatenate the most relevant historical
ACUs into a single premise and compare it against
the target ACU as the hypothesis. If the historical
content entails the target ACU, it is classified as
non-novel; otherwise, it is considered novel.

QA-based approach is widely used to evaluate
information overlap by representing reference in-
formation as question-answer pairs, with recall as-
sessed by how well the candidate text answers these
questions (Deutsch et al., 2021; Zhong et al., 2021).
We adapt this method in reverse: for each target
ACU, we generate questions where the target ACU
itself is the answer. If any historical ACUs can an-
swer these questions, the target ACU is considered
non-novel; otherwise, it is novel. We generate three
questions per ACU, focusing on named entities and
noun phrases (Deutsch et al., 2021). The answers
derived from historical ACUs are consolidated into
a single sentence and compared to the target ACU.
If the consolidated answer has a cosine similarity
of 0.85 or higher with the target ACU, it is classi-
fied as non-novel. The rationale for this threshold
is detailed in Appendix A.2.2.

3.3 ACU Salience Evaluation

Not all information in a document is equally im-
portant. For instance, as shown in Figure 2, the pri-
mary focus of the target document is Enzon Inc.‘s
positive results for a new medication, while the
company’s ownership structure, briefly mentioned
later, is less significant within the pharmaceutical
domain. Therefore, when evaluating novelty, it is
essential to prioritize the most important content to
ensure an accurate assessment.

To determine the salience of each ACU, we com-
pare it to the document’s summary. The under-
lying assumption is that a high-quality summary
should include all and only the essential informa-
tion from the document. Therefore, we formulate
ACU salience evaluation as a binary classification
problem: whether or not an ACU is mentioned in
the document’s summary.

3.4 ACU Scores Aggregation

When aggregating ACU scores to compute the over-
all NOVASCORE of a document, it is essential to
assign higher weights to salient ACUs to accurately
reflect their importance. To achieve this, we imple-
ment a dynamic weight adjustment scheme based
on the following principles:

1. Salience Emphasis at Low Salience Ratio:

When the ratio of salient ACUs is low, each
salient ACU is assigned a significantly higher
weight compared to non-salient ACUs. This en-
sures that the final score is not overly influenced
by the novelty of less important content.

2. Non-Salience Boost at High Salience Ratio:
When the proportion of salient ACUs is high,
the weights of non-salient ACUs are increased
slightly to ensure they still contribute meaning-
fully to the overall score.

3. Consistent Prioritization: Salient ACUs con-
sistently receive higher weights than non-salient
ACUs, regardless of their proportion.

Figure 3: The top plot shows the weights for salient (ws)
and non-salient (wns) ACUs across different salience
ratios with dynamic weight adjustment. The bottom plot
compares the maximum NOVASCORE of 100 ACUs,
with and without weight adjustment. Both plots utilize
α = 1, β = 0.5, and γ = 0.7.

To implement these principles, we set the weight
for salient ACUs as ws = 1 and dynamically ad-
just the weight of non-salient ACUs using a cubic
function: wns = min(ws, α(ps − β)3 + γ), where
ps is the salience ratio of the document. The hy-
perparameters α, β, and γ shape the cubic curve,
with α controlling steepness and β and γ adjusting
the midpoints on the x and y axes. These hyperpa-
rameters determine the devaluation of non-salient
ACUs and the adjustment for extreme salience ra-
tios, which can vary depending on the datasets and
applications. Further details are in Appendix A.2.1.
Figure 3 shows the impact of the weight adjust-
ment scheme: as the salience ratio shifts to very
low or high, non-salient ACU weights adjust more
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rapidly. This adjustment ensures that documents
with low salience ratios have a lower maximum
NOVASCORE, giving less value to documents with
less salient information.

The NOVASCORE of a document is then:

NOVASCORE =

∑n
i=1 Ni · (ws · Si + wns · (1− Si))

n

where Ni and Si represent the binary novelty
and salience of the i-th ACU, respectively, and n
denotes the total number of ACUs.

4 Experiments

In this section, we evaluate the effectiveness of
NOVASCORE by examining its correlation with
human judgments of novelty.

4.1 How Well Does NOVASCORE Align with
Human Judgments of Novelty?

We begin by analyzing how closely NOVASCORE

aligns with human judgments of novelty on a broad
scale, specifically by examining its correlation with
human-annotated document-level novelty.

# TAP-DLND 1.0 APWSJ

Novel 250 259
Non-Novel 250 241
Total 500 500

Table 1: Statistics of dataset used for experiments.

Datasets We utilize the following two datasets,
which, to the best of our knowledge, are among the
few publicly available in the news domain:

1. TAP-DLND 1.0 (Ghosal et al., 2018b): This
dataset contains 2,736 human-annotated novel
documents and 2,704 non-novel documents, all
clustered into specific categories. Each novel or
non-novel document is annotated against three
source documents.

2. APWSJ (Zhang et al., 2002): This dataset com-
prises 10,833 news articles from the Associated
Press (AP) and Wall Street Journal (WSJ) cor-
pora, covering 33 topics. The documents are
chronologically ordered and annotated into three
categories: absolutely redundant, somewhat re-
dundant, and novel. Of these, 7,547 are novel,
2,267 are somewhat redundant, and 1,019 are
absolutely redundant.
For both datasets, we sample 500 documents.

In TAP-DLND 1.0, we randomly select 500 doc-
uments across clusters. For APWSJ, where doc-
uments are chronologically sorted and annotated

for novelty relative to earlier ones, we sequentially
select a balanced set of 500 non-novel and novel
documents. Table 1 provides the dataset statistics
used in our experiments.

Setup and Implementation We utilize GPT-4o
across all modules, including ACU extraction, doc-
ument summarization, salient ACU selection, and
both NLI and QA-based novelty evaluation. Details
on the prompts are provided in Appendix A.1.

The ACUBank is implemented using FAISS2 for
fast similarity search and efficient indexing. Each
ACU is indexed by its sentence embedding from
the pre-trained SentenceBERT3. In TAP-DLND
1.0, we create separate databases for each of the
223 clusters. For APWSJ, documents are processed
chronologically into a unified database.

To retrieve relevant historical ACUs from the
ACUBank, we select the top-5 ACUs with a co-
sine similarity of 0.6 or higher. The rationale for
this threshold is detailed in Appendix A.2.2. If
any meet this threshold, the ACU is considered
non-novel when using the cosine similarity novelty
evaluator. For NLI or QA novelty evaluators, these
similar ACUs are concatenated to form the premise
for NLI or the context for QA, further assessing the
ACU’s novelty.

We use different hyperparameters for each
dataset in the dynamic weight adjustment to ac-
count for ACU salience when calculating the over-
all NOVASCORE. These parameters control the
devaluation of non-salient ACUs and adjust for
extreme salience ratios, varying by dataset. For
TAP-DLND 1.0, we use α = 0, β = 0.5, and
γ = 1 (no adjustment). For APWSJ, we use α = 1,
β = 0.5, and γ = 0.7. The rationale for these
choices is detailed in Appendix A.2.1.

Metrics We employ Point-Biserial, Spearman,
and Kendall to evaluate the relationship be-
tween the NOVASCORE and human annotations
of document-level novelty. Point-Biserial is a spe-
cial case of Pearson correlation that compares con-
tinuous variables with binary variables. For the
TAP-DLND 1.0 dataset, where human annotations
are binary, we assign a label of 1 to novel and 0
to non-novel for calculating correlations. In con-
trast, the APWSJ dataset contains three classes: we
assign novel a value of 1, somewhat redundant a
value of 0.5, and absolute redundant a value of 0

2https://ai.meta.com/tools/faiss/
3https://huggingface.co/sentence-transformers/all-mpnet-

base-v2

https://ai.meta.com/tools/faiss/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Dataset → TAP-DLND 1.0 APWSJ
Novelty Evaluator → CosSim NLI QA CosSim NLI QA

Correlation ↓
Point-Biserial 0.545(4.9e−40) 0.626(9.2e−56) 0.508(2.3e−33) 0.447(6.5e−26) 0.476(1.2e−29) 0.422(2.2e−22)

Spearman 0.555(1.1e−41) 0.622(9.2e−55) 0.497(8.1e−32) 0.446(9.0−26) 0.482(1.8e−30) 0.439(2.9e−24)

Kendall 0.460(2.8e−35) 0.510(8.0e−44) 0.409(5.4e−28) 0.358(2.6e−24) 0.395(4.8e−27) 0.353(5.2e−23)

Table 2: The correlations (statistics(p-value)) between NOVASCORE and human annotations on the TAP-DLND 1.0
and APWSJ datasets, using different novelty evaluators and correlation metrics.

for the Spearman and Kendall correlations. For
Point-Biserial correlation on APWSJ, we set both
absolute redundant and somewhat redundant to 0.

Results As shown in Table 2, across both datasets
and using all novelty evaluators, NOVASCORE

demonstrates a moderate to strong correlation with
human judgments of document-level novelty, as
indicated by the correlation cutoffs detailed in Ap-
pendix A.3. These correlations are statistically
significant, with p-values ranging from 10−22 to
10−56, indicating the robustness of NOVASCORE

in aligning with human perceptions of novelty.
Among the different evaluators, the NLI nov-

elty evaluator consistently outperforms the others,
showing a particularly strong correlation with hu-
man annotations. Notably, on the TAP-DLND
1.0 dataset, the NOVASCORE with the NLI nov-
elty evaluator achieves a Point-Biserial of 0.626, a
Spearman of 0.622, and a Kendall of 0.510, all sig-
nifying a strong alignment with human judgment.

4.2 Can NOVASCORE Capture Granular
Insights at the ACU Level?

In addition to broad document-level novelty anal-
ysis, we also assess NOVASCORE’s reliability on
a granular scale by examining its alignment with
human judgments of novelty at the ACU level.

Human Annotation Since existing public
datasets only provide single categorical labels
at the document level without fine-grained
annotations, we curate and annotate a new dataset
for this purpose. We manually select 32 news
articles, clustered into 8 topics. Within each
topic, the documents are sorted in chronological
order, and we extract ACUs using GPT-4o,
following the strategy described in Sections 3.1.
Human annotators evaluate each ACU based
on four labels: correctness (logical and factual
consistency), redundancy (non-informativeness
or intra-document non-novelty), novelty, and
salience. The full annotation instructions and
label schema are provided in Appendix B.1.

Two annotators independently perform the entire
annotation task. After completing the annotations,
the annotators meet to discuss and resolve any
conflicting annotations, ensuring consensus on
the final labels. Further discussion on annotation
quality is presented in Appendix B.2.

Novelty Evaluator Performance We compare
the performance of each novelty evaluator against
human annotations of ACU-level novelty. As
shown in Table 3, all novelty evaluators achieve
strong classification results, with the NLI-based
evaluator leading with an accuracy of 0.94.

Novelty Evaluator → CosSim NLI QA

Metric ↓
Accuracy 0.83 0.94 0.91
Macro F1 0.71 0.84 0.80

Table 3: Novelty evaluator performance.

NOVASCORE vs Human Judgments We aggre-
gate ACU-level scores to compute the document-
level novelty score, resulting in the following NO-
VASCORE variants: (1) NOVASCOREhuman, using
human-annotated novelty and salience labels, and
(2) NOVASCORECosSim, NOVASCORENLI, and NO-
VASCOREQA, which are fully automated versions
utilizing their respective novelty evaluators and
GPT salience evaluator. For all variants, we apply
weight adjustment parameters of α = 1, β = 0.5,
and γ = 0.7, as used for the APWSJ dataset. We
also compute all variants without incorporating
salience to better assess the performance of the
novelty evaluators.

We then use Pearson correlation to evaluate the
relationship between NOVASCOREhuman and the
three automated variants, as all produce continuous
scores with nearly linear distributions. As shown in
Table 4, all automated variants demonstrate strong
to very strong correlations, with NOVASCORENLI
achieving the highest Pearson correlation of 0.920
without salience and 0.835 with salience. The
discrepancy between human-annotated and GPT-
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selected salient ACUs, as discussed in Section 5.1,
slightly degrades the correlation statistics when
salience is incorporated, which is expected. De-
spite this, the fully automated NOVASCORE with
salience included still shows a very strong correla-
tion with human judgments, indicating that GPT-4o
is a reasonable estimator of information salience.
The full correlation results between the three auto-
mated variants and NOVASCOREhuman are detailed
in Table 8 in Appendix A.4.

NOVASCORECosSim NOVASCORENLI NOVASCOREQA

Salience ↓
w/o 0.748(8.5e−07) 0.920(9.6e−14) 0.843(2.9e−09)

w/ 0.722(3.1e−06) 0.835(2.9e−09) 0.779(2.4e−07)

Table 4: The Pearson correlations (statistics(p-value)) be-
tween NOVASCOREhuman and NOVASCORE with differ-
ent novelty evaluators.

These results underscore the effectiveness of
NOVASCORE in capturing document-level novelty
while also providing fine-grained interpretability
at the atomic level, making it a reliable tool for
assessing document-level novelty.

4.3 How Does Dynamic Weight Adjustment
Enhance Novelty Evaluation?

NOVASCORENLI NOVASCORENLI w/o WA

Correlation ↓
Point-Biserial 0.476(1.2e−29) 0.442(2.2e−25)

Spearman 0.482(1.8e−30) 0.468(1.4e−28)

Kendall 0.395(4.8e−27) 0.393(1.4e−25)

Table 5: The correlations (statistics(p-value)) between
NOVASCORENLI and human annotations on APWSJ
with and without weight adjustment (WA).

As discussed in Section 4.1 and Appendix A.2.1,
the dynamic weight adjustment scheme is designed
to ensure that the overall NOVASCORE reflects
both the novelty and importance of the information.
The magnitude and rate of adjustment, controlled
by the hyperparameters, vary depending on the spe-
cific dataset and its standards. In datasets like AP-
WSJ, where document-level novelty is determined
with nuanced considerations of redundancy and
individual perception differences, the concept of in-
formation salience is implicitly included in the final
novelty label. As shown in Table 5, incorporating
weight adjustment on APWSJ consistently results
in higher correlation values across all metrics. Con-
versely, on datasets like TAP-DLND 1.0, where
novelty labels are strict binary cutoffs reflecting
only whether there is sufficient new information,

adding weight adjustment does not necessarily im-
prove the correlation.

The strength of this weight adjustment scheme
lies in its flexibility to emphasize both important
and less critical information when evaluating a doc-
ument’s overall novelty, tailored to the needs of the
specific application. This provides NOVASCORE

with an additional dimension, enabling it to assess
not only the level of novelty but also the worthiness
of the information within a target document.

5 Discussion

5.1 GPT-4o Performance and Reliability

ACU Extraction As introduced in Section 4.2,
we collect correctness and redundancy labeled on
GPT-generated ACUs during human annotation.
Results reveal that none of the GPT-4o generated
ACUs are labeled as incorrect by the annotators,
and only 0.1% are considered redundant. These
findings indicate that GPT-4o is highly reliable in
generating high-quality ACUs.

Currently, no public datasets are designed for
abstractive document-level ACU extraction. The
closest are summarization datasets, which focus
on key information and miss non-salient ACUs.
Thus, our evaluation prioritizes precision over re-
call, leaving full ACU extraction and novelty recall
for future work (see Limitations section).

Salience Evaluation Recent studies suggest that
LLM-generated summaries are often on par with
human-written ones (Zhang et al., 2024), support-
ing our confidence in GPT-4o’s ability to evaluate
salience. We compare GPT-selected salient ACUs
with human-annotated salience labels as outlined
in Section 4.2, and find that GPT achieves a macro
F1 score of 0.6. This discrepancy may result from
the different conditions: human annotators deter-
mine salience in real-time without summaries, mak-
ing the task more challenging, while GPT-4o can
reference the generated summary. Additionally,
salience is inherently subjective, making it diffi-
cult to standardize. Despite these factors, GPT-4o’s
performance in salience evaluation is satisfactory.

5.2 Cost

We report the token usage of NOVASCORE during
GPT-4o calls, as shown in Table 6. “ACU Extrac-
tion & Salience” refers to the one-pass call that han-
dles both tasks, with the detailed prompt in Section
A.1. The embedding cosine similarity evaluator
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Dataset → APWSJ TAP-DLND 1.0

Module ↓
ACU Extraction & Salience 1.7M 1.5M
NLI Novelty Evaluator 0.8M 0.9M
QA Novelty Evaluator 2.0M 1.7M

Table 6: Tokens Utilized in GPT-4o Calls for Each
Module. “ACU Extraction & Salience” refers to the
one-pass call that performs both ACU extraction and
salience evaluation.

doesn’t require GPT calls, making it cost-effective,
especially for large-scale evaluations.

The QA novelty evaluator consumes about twice
as many tokens as the NLI evaluator due to its two-
step process: question generation followed by ques-
tion answering. In addition, although QA-based
methods are effective in other tasks like summariza-
tion evaluation (as discussed in Sections 2 and 3.2),
they don’t perform as well as NLI and sometimes
even embedding cosine similarity on novelty de-
tection. Therefore, if budget is not a concern, we
recommend using the NLI novelty evaluator for
its strong performance. Alternatively, embedding
cosine similarity offers a good balance between
cost and effectiveness.

5.3 Scalability

We examine the time required to search for similar
ACUs across different ACUBank sizes. As shown
in Figure 4, search time increases linearly with
the size of the ACUBank. To improve scalability,
clustering documents or ACUs and creating sep-
arate databases within the ACUBank for each
cluster would reduce search space and time.

We do not report the average latency of GPT
API calls, as various factors – such as usage time
and network conditions – can affect this. However,
we acknowledge that potential API lags could in-

Figure 4: Search time for similar ACUs per ACU at
varying ACUBank sizes with a single database.

crease the framework’s runtime. Replacing some
modules with locally hosted smaller models, like
fine-tuned open-source NLI models, could mitigate
these delays and enhance efficiency.

5.4 Applications
Novelty detection in NLP has broad applications
across various tasks, including plagiarism detection
(Gipp et al., 2014), news event tracking (Ghosal
et al., 2018b), scientific novelty detection (Gupta
et al., 2024; Kelty et al., 2023), and misinformation
detection (Qin et al., 2016; Ai et al., 2021). Further-
more, recent work (Li et al., 2024) introduces nov-
elty as a key metric for benchmark design, reveal-
ing hidden performance patterns and unexpected
model behaviors, which enhances evaluations and
drives the creation of higher-quality benchmarks
that advance model development. Despite its wide-
ranging utility, this area has not received sufficient
attention. Our work aims to address this gap and
push forward the research on novelty detection.

6 Conclusions and Future Work

In this work, we introduce NOVASCORE, an auto-
mated metric for evaluating document-level novelty.
NOVASCORE considers novelty and salience at the
atomic level, providing high interpretability and
detailed analysis. By incorporating information
salience and a dynamic weight adjustment scheme,
NOVASCORE offers enhanced flexibility and an
additional dimension, allowing it to assess not only
the level of novelty but also the worthiness of the
information when evaluating the overall novelty
of a document. Our experiments on both public
datasets and an internal human-annotated dataset
demonstrate that NOVASCORE strongly correlates
with human judgments of novelty, validating its
effectiveness and reliability.

Looking ahead, we aim to explore ways to im-
prove the cost and scalability of NOVASCORE by
integrating open-source LLMs and smaller models
to replace GPT-4o in each module. This would
reduce dependency on proprietary systems and en-
hance the accessibility of our framework.

Additionally, as outlined in Section 5.4, NO-
VASCORE serves as a foundation for various tasks
and applications. We encourage further research
to expand its use across more fields, and believe
its potential in novelty detection and model eval-
uation will have a strong impact on the research
community.
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Limitations

Internal Human Annotated Data Restriction
One limitation of our study is that the human-
annotated data discussed in Section 4.2 is internal
and proprietary, which means we cannot provide
additional information about the specific content
or characteristics of this data, nor can we release it
for public use. However, we do provide complete
annotation instructions and schema in Appendix
B.1. Looking ahead, we plan to construct a pub-
licly available human-annotated dataset to address
this limitation and support future research in this
area.

ACU Extraction Recall Evaluation Another
limitation of our current approach is the challenge
of evaluating the completeness of extracted ACUs
in terms of covering the entire content of articles.
Currently, there are no public datasets specifically
designed for abstractive document-level ACU ex-
traction. The most relevant datasets available are
those used for summarization, where documents
are paired with human-written summaries. How-
ever, these datasets are not ideal for evaluating
non-salient ACUs, as summaries typically focus
only on the most important information. Similar to
Min et al. (2023), we rely on machine-generated
atomic information as part of our pipeline. Conse-
quently, our evaluation emphasizes precision rather
than recall. We acknowledge this limitation and
plan to address it in future work, where we aim to
conduct a more comprehensive assessment of ACU
extraction and novelty recall.

GPT-4o Reliance Another constraint of our
work is its reliance on GPT-4o for evaluation,
which presents two main challenges: (1) the non-
deterministic nature of LLMs complicates repro-
ducibility, as the same conditions may yield differ-
ent results due to inherent variability, and (2) LLMs
can be financially and computationally expensive,
posing scalability issues.

We acknowledge these concerns but note that
LLM-based evaluation methods are increasingly
adopted in various applications (Zhang et al., 2024;
Min et al., 2023) because their strong capabilities
often outweigh these limitations. To address re-
producibility, we conduct experiments under con-
trolled conditions and report average results across
multiple runs to mitigate the impact of variability.
Furthermore, as highlighted in Sections 5.3 and
6, we are exploring the use of smaller, determin-

istic, open-source LLMs that offer finer control
over sampling parameters, such as temperature and
decoding, to ensure more consistent outputs.

Our choice of GPT-4o is motivated by its demon-
strated performance across a variety of NLP tasks,
including summarization, question answering, and
natural language inference. While the higher cost
of GPT-4o is a limitation, it provides a reliable
benchmark for evaluating NOVASCORE’s effec-
tiveness and establishes a strong foundation for
future refinements. Moving forward, we plan to
leverage smaller, fine-tuned, open-source models
to enhance scalability and cost efficiency. Recent
studies suggest that such task-specific models can
match or even surpass LLMs like GPT-4 in cer-
tain domains, bolstering our confidence that future
evaluations using optimized models will maintain
NOVASCORE’s effectiveness while improving ac-
cessibility and affordability.
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A Experiment Details

A.1 GPT Prompt Templates

We provide the detailed prompt templates we use
in the GPT calls in this section.

A.1.1 ACU Extraction and Salient ACU
Selection Prompt

INSTRUCTION:
1. First, extract the list of all atomic content units
(ACUs) from a given document. An ACU is
an elementary information group that conveys a
single message without further division. When
identifying any named entity, temporal entity,
location entity, or attribute, avoid using indirect
references. Instead, specify the actual entity,
attribute, or noun directly. For example, replace
‘this company’ with the actual name of the
company, ‘this location’ with the actual location
name, ‘it’ with the actual subject being referred,
etc.
2. Then, summarize the given document.
3. Finally, using the summary, identify the most
salient ACUs from the full list of ACUs. The
salient ACUs should be those explicitly mentioned
in the summary.
Output the response in JSON format:
{"all_acus": "array of ACU strings", "summary":
"document summary", "salient_acus": "array of
salient ACU strings"}

Example 1:
###Document: {example document}
###Output: {example output}

###Document: {input document}
###Output:

A.1.2 NLI Novelty Evaluator Prompt
INSTRUCTION: For each given premise-
hypothesis pair, perform Natural Language
Inference (NLI) to determine whether the hy-
pothesis should be classified as ‘entailment’,
‘contradiction’, or ‘neutral’ based on the informa-
tion provided in the premise.
Output the response in JSON format:
{"nli_results": "array of NLI results in the
following format: [{{"id": int, "nli": "entail-
ment"|"contradiction"|"neutral"}}]"}

==============
EXAMPLE:

###Premise 1: ABC Bank reported a significant
drop in profits for the second quarter due to rising
loan defaults. The bank’s CEO mentioned the chal-
lenging economic environment as a key factor.
###Hypothesis 1: ABC Bank’s profits declined
in the second quarter because of increased loadn
defaults.
###Premise 2: Global oil prices surged by 5% on
Monday following geopolitical tensions in the Mid-
dle East. Analysts predict that the prices may con-
tinue to rise if the situation escalates.
###Hypothesis 2: Oil price decreased despite ten-
sions in the Middle East.
###Premise 3: The ECB decided to maintain its
current monetary policy stance, keeping interest
rates unchanged.
###Hypothesis 3: The ECB’s decision will impact
the foreign exchange rates of the Euro.

###Output:
{"nli_results": [{"id": 1, "nli": "entailment"},
{"id": 2, "nli": "contradiction"}, {"id": 3, "nli":
"neutral"}]}

==============
{premise (similar ACUs) hypothesis (target ACU)
pairs}
###Output:

A.1.3 QA Novelty Evaluator Prompt
Question Generation Prompt

INSTRUCTION: For each given sentence,
generate three distinct questions that correspond to
the named-entities and noun phrases found in this
sentence, and use the sentence as the answer.
Output the response in JSON format:
{"questions_list": "list of question arrays in the
format: [[question_str, ...], [question_str, ...], ...]"}

==============
EXAMPLE:
###Sentences:
1: The stock market experienced a sharp decline
due to economic uncertainty.
2: Albert Einstein, a theoretical physicist, devel-
oped the theory of relativity.

###Output:
{"questions_list": [["What sector faced a significant
downturn because of economic uncertainty?",
"Why did the stock market show a sudden decrease
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recently?", "What caused the sharp decline in
the financial markets?"], ["Who is credited with
developing the theory of relativity?", "What field
was Albert Einstein associated with?", "What
significant scientific theory did Albert Einstein
develop?"]]}

==============
###Sentences:
{target ACUs}
###Output:

Question Answering Prompt

INSTRUCTION: For each context-questions
pairs, follow these steps:
1. Given the context, answer the following
questions.
2. Consolidate all responses into a single concise
sentence.

==============
EXAMPLE:
Context 1: The stock market experienced a sharp
decline due to economic uncertainty.
Q1: What sector faced a significant downturn
because of economic uncertainty?
Q2: Why did the stock market show a sudden
decrease recently?
Q3: What caused the sharp decline in the financial
markets?
Context 2: Albert Einstein, a theoretical physicist,
developed the theory of relativity.
Q1: Who is credited with developing the theory of
relativity?
Q2: What field was Albert Einstein associated
with?
Q3: What significant scientific theory did Albert
Einstein develop?

###Output:
{"answers": ["The stock market experienced a
sharp decline due to economic uncertainty.", "
Albert Einstein, a theoretical physicist, developed
the theory of relativity."]}

==============
{context (similar ACUs) questions (generated
questions) list}
###Output:

A.2 Hyper-Parameter Selection
We describe the rationale of the hyperparameter
selection in this section.

A.2.1 Dynamic Salient Weight Adjustment
As introduced in Section 3.4, we adjust the weight
of non-salient ACUs using a cubic function: wns =
min(ws, α(ps − β)3 + γ), where ps represents the
salience ratio of the document. This adjustment is
designed to ensure that the overall NOVASCORE

accurately reflects both the novelty and importance
of the information within the document.

The parameterααα controls the steepness of the cu-
bic function, determining how sensitive the weight
adjustment is to the salience ratio. A higher α re-
sults in a more pronounced adjustment, causing the
weight of non-salient ACUs to decrease or increase
more rapidly in response to very low or very high
salience ratios. This sensitivity allows us to fine-
tune how much emphasis is placed on non-salient
ACUs depending on the distribution of salient in-
formation within the document.

The parameter γγγ adjusts the midpoint on the
y-axis, which corresponds to the general level of
devaluation for non-salient ACUs, referred to as the
"mean non-salience devaluation." For example, set-
ting γ = 0.7 implies that, on average, non-salient
ACUs are considered 70% as important as salient
ACUs, with further adjustments based on the docu-
ment’s salience ratio, as controlled by α.

The parameter βββ shifts the midpoint on the x-
axis, determining the salience ratio at which the
"mean non-salience devaluation" is applied. For
instance, if β = 0.5 and γ = 0.7, then in doc-
uments where the salience ratio is less than 0.5,
non-salient ACUs are assigned a lower weight than
the mean devaluation of 0.7, with the rate of adjust-
ment dictated by α. Conversely, in documents with
a salience ratio greater than 0.5, non-salient ACUs
receive a higher weight than the mean devaluation,
again with the rate of adjustment controlled by α.

The choice of α, β, and γ depends on the specific
dataset and application requirements. For the TAP-
DLND 1.0 and APWSJ datasets used in our experi-
ments, we performed a grid search with α ∈ [0, 2],
β ∈ [0, 0.8], and γ ∈ [0.5, 1]. The optimal hy-
perparameters for TAP-DLND 1.0 are found to be
α = 0, β = 0.5, and γ = 1, indicating no weight
adjustment was necessary. For APWSJ, the opti-
mal values are α = 1, β = 0.5, and γ = 0.7. This
discrepancy arises from the different standards and
annotation approaches used in the two datasets.
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Statistics → Pearson Spearman Kendall

Strength ↓
Negligible 0.00 0.00 0.00
Weak 0.10 0.10 0.06
Moderate 0.40 0.38 0.26
Strong 0.70 0.68 0.49
Very Strong 0.90 0.89 0.71

Table 7: Cutoff values for the correlation statistics.

The advantage of this weight adjustment scheme
lies in its flexibility to control and incorporate both
important and less important information when
evaluating the overall novelty of a document. This
provides NOVASCORE with an additional dimen-
sion, allowing it to assess not only the level of
novelty but also the worthiness of the information
within a target document.

A.2.2 Similarity Thresholds
We choose a threshold of 0.85 for embedding co-
sine similarity to determine whether two ACUs are
almost identical because a higher threshold ensures
that the two units are very close in semantic content.
At this level, the embeddings are nearly overlap-
ping, indicating that the ACUs convey virtually the
same information with minimal variation. Con-
versely, a lower threshold of 0.6 is used to decide
whether two ACUs are similar but not necessarily
identical. This threshold allows for some semantic
variation while still capturing a significant level of
similarity, making it suitable for identifying ACUs
that share related content or themes without be-
ing exact duplicates. These thresholds are selected
based on empirical results, which demonstrate that
they provide the best performance in distinguish-
ing between near-duplicates and related content,
thereby enabling a more nuanced analysis of a doc-
ument’s novelty and relevance.

A.3 Correlation Statistics Interpretation
Table 7 details the cutoff values for the rank-based
correlation statistics, which are based on the recom-
mendations for the Pearson correlation by Schober
et al. (2018). Note that Point-Biserial statistics is a
special case of Pearson correlation.

A.4 Full NOVASCORE Correlation Results on
Internal Data

Table 8 details the full results of the correlations be-
tween fully automated NOVASCORE and NOVAS-
COREhuman on our annotated data, using different
novelty evaluators.

B Human Annotation

We provide the details of our human annotation
process in this section.

B.1 Annotation Instruction and Label Schema

Following is the comprehensive annotation
instruction and label schema we provide to the
annotators.

Instruction: Articles are clustered and sorted by
date within each cluster. Annotate the articles clus-
ter by cluster, completing one cluster before mov-
ing on to the next. When annotating, reach each
article in sequential order within its cluster. Mem-
orize all information from the articles as you read.
This is necessary for accurately judging the novelty
of each ACU in subsequent articles within the same
cluster. Novelty is only considered within the same
cluster, not across different clusters.

First, read the news article carefully to under-
stand the content and context of the entire article.
Then label each ACU by the following steps.

Step 1: Assessing Correctness and Redundancy
Evaluate each ACU within the context of the
article to determine the correctness. Determine the
redundancy of the ACU by comparing it with the
previous ACUs within the same article.

Label Schema
Correctness
correct: The ACU is accurate and logically consis-
tent within the context of the article.
incorrect: The ACU contains incorrect information,
errors, illogical, or LLM hallucinations.

Redundancy
redundant: The ACU

(a) is a direct repeat or rephrase of a previous
ACU within the current article.

(b) does not convey any meaningful information.
This is usually the case where the ACU describes
the metadata of the article. For instance, an ACU
such as "The article is written by xxx" or "The
publish date of the article is xxx" should be marked
as redundant.
not-redundant: The ACU provides new unique and
meaningful information within the current article.
If an ACU is partially new, it is also considered
not-redundant.
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Dataset → w/ Salience w/o Salience
Score → NOVASCORECosSim NOVASCORENLI NOVASCOREQA NOVASCORECosSim NOVASCORENLI NOVASCOREQA

Correlation ↓
Pearson 0.722(3.1e−06) 0.835(2.9e−09) 0.779(2.4e−07) 0.748(8.6e−07) 0.920(9.6e−14) 0.843(2.7e−09)

Spearman 0.758(5.2e−07) 0.567(7.3e−04) 0.562(1.0e−04) 0.836(2.6e−09) 0.782(1.2e−07) 0.798(7.5e−08)

Kendall 0.559(2.4e−05) 0.423(1.4e−03) 0.409(2.5e−03) 0.690(8.6e−07) 0.687(1.9e−06) 0.643(1.2e−05)

Table 8: The correlations (statistics(p-value)) between automated NOVASCORE and NOVASCOREhuman computed
from our internal annotated data, using different novelty evaluators.

Step 2: Assessing Novelty and Salience (Only for
Correct and Not Redundant ACUs)
Evaluate the novelty of each ACU by comparing
it with the previous articles in the same clusters
to check if all information in the ACU is already
known. For each ACU, you will be shown the
top 5 similar ACUs from previous articles. For
the first article within the cluster, no similar ACUs
will be shown as we assume there are no older
articles to compare with. Therefore, all correct
and not redundant ACUs in the first article should
be considered novel. Use similar ACUs only as a
reference.
Situation 1: Information not in the top 5 similar
ACUs does not necessarily mean that it is not men-
tioned in previous articles. Try your best to mem-
orize what you’ve read and always go back to the
original article to verify if you recall something
you’ve read but is not in the top 5 similar ACUs.
Situation 2: If an article is different in topic/domain
than the previous articles, the top 5 similar ACUs
might not be useful at all. Please always refer
back to the original articles to check for detailed
information. Assess whether the information in the
ACU is crucial for understanding the main points
of the article to determine the salience of the ACU.

Label Schema
Novelty
novel: The ACU introduces some new information
that is not present in previous article. If an ACU is
partially new, it is also considered novel.
not-novel: The ACU does not introduce any new
information in the sense that all information
mentioned in this ACU has been mentioned
in older articles within the same cluster. Only
consider inter-article novelty, not intra-article
novelty – an ACU should only be annotated as
"not-novel" if all information has been mentioned
in previous articles within the same cluster. If an
ACU introduces the exact same information as an
earlier ACU within the same article, it should be

labeled as "redundant".

Salience
salient: The ACU contains the essential informa-
tion that you would include in a summary of the
article – label the ACU as salient if you think it is
an essential information to convey the main point
of the article.
non-salient: If the ACU does not contain essential
information for the summary.

B.2 Annotation Quality

Metric → Precision Recall F1-Score Support

Class ↓
Non-Novel 0.00 0.00 0.00 0
Novel 1.00 0.99 1.00 222

Accuracy 0.99 222
Weighted Avg 1.00 0.99 1.00 222

Table 9: The classification report of human annotation
on expected novel ACUs.

Metric → Precision Recall F1-Score Support

Class ↓
Non-Novel 1.00 0.82 0.90 22
Novel 0.00 0.00 0.00 0

Accuracy 0.82 22
Weighted Avg 1.00 0.82 0.90 22

Table 10: The classification report of human annotation
on expected non-novel ACUs.

We have two annotators independently perform
the entire annotation task. After completing their
annotations, they meet to discuss and resolve any
conflicting labels, ensuring consensus on the final
results. To further ensure the quality of the anno-
tations, we discreetly create and insert three syn-
thetic articles as quality control samples without
informing the annotators. Two of these articles are
complete paraphrases of previous articles within a
cluster and are added to the end of the cluster; for
these, all ACUs are expected to be non-novel. The
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third article is manually written as a completely
new piece, unrelated to any other articles in the
cluster, where all ACUs are expected to be novel.
Additionally, for the first article in each cluster, all
ACUs are also expected to be novel. As shown in
Tables 9 and 10, the human annotation achieves
a weighted F1 score of 1.0 on the expected novel
ACUs and 0.9 on the expected non-novel ACUs,
indicating the high quality of the annotation pro-
cess.
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