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Abstract

Large Language Models (LLMs) show promis-
ing learning and reasoning abilities. Compared
to other NLP tasks, multilingual and multi-label
emotion evaluation tasks are under-explored in
LLMs. In this paper, we present EthioEmo, a
multi-label emotion classification dataset for
four Ethiopian languages, namely, Amharic
(amh), Afan Oromo (orm), Somali (som), and
Tigrinya (tir). We perform extensive experi-
ments with an additional English multi-label
emotion dataset from SemEval 2018 Task 1.
Our evaluation includes encoder-only, encoder-
decoder, and decoder-only language models.
We compare zero and few-shot approaches of
LLMs to fine-tuning smaller language models.
The results show that accurate multi-label emo-
tion classification is still insufficient even for
high-resource languages such as English, and
there is a large gap between the performance
of high-resource and low-resource languages.
The results also show varying performance lev-
els depending on the language and model type.
EthioEmo is available publicly1 to further im-
prove the understanding of emotions in lan-
guage models and how people convey emotions
through various languages.

1 Introduction

In today’s digital age, individuals freely express
their feelings, arguments, opinions, and attitudes on
websites, micro-blogs, and social media platforms.
This situation has increased interest in extracting
user sentiments and emotions towards events for
various purposes such as decision-making, prod-
uct analysis, customer feedback analysis, political
promotions, marketing research, and social media
monitoring (Kusal et al., 2022).

Emotion classification is one of the most chal-
lenging NLP tasks, where a given text is assigned

∗ Equal contribution. Corr. email: tadesseit@gmail.com
1https://github.com/Tadesse-Destaw/EthioEmo

to the most appropriate emotion(s) that best re-
flect(s) the author’s mental state (Tao and Fang,
2020). It poses more challenges than similar NLP
tasks, such as sentiment analysis. The challenges
of emotion classification as a task worth exploring
include many classes, the possibility of a single
text expressing multiple emotions, and the cultural
and language differences inherent in interpreting
or transferring emotions (Kusal et al., 2023; Wang
et al., 2024b).

Multi-label Emotion Classification (MLEC) con-
siders all emotions expressed in a text, which is
a more challenging but essential NLP task, as a
text can express multiple emotions simultaneously
(Ameer et al., 2020; Deng and Ren, 2020). Multi-
label classification enables an instance to have any
combination (none, one, some, or all) of labels
from a given set of emotions.

This work intends to create and evaluate a
multi-label text emotion dataset for the follow-
ing Ethiopian languages: Amharic (amh), Afan
Oromo (orm), Somali (som), and Tigrinya (tir),
with an available English dataset for evaluation.
As it makes the task more intricate and reflects
the complexity often found in real-world data (Liu
et al., 2023), we follow the multi-label emotion
classification approach.

The main contributions are summarized as:

1. We introduce EthioEmo, a new multi-label
emotion benchmark dataset for four Ethiopian
languages.

2. We explore popular Afri-centric encoder-only
models that include most of our target lan-
guages in the pre-training phase and show
fine-tuning performance.

3. We evaluate the effectiveness of popular
encoder-decoder and decoder-only models for
multi-label emotion classification and exam-
ine the role of few-shots in improving the task.

4. We present detailed results and error analyses

https://github.com/Tadesse-Destaw/EthioEmo
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across languages, data sources, LLMs, and
the effects of the translation test set.

2 Related Work

Emotion recognition involves identifying an under-
lying emotional state of individuals based on their
verbal and nonverbal cues, including text, facial ex-
pressions, body language, and speech (Dadebayev
et al., 2022; A.V. et al., 2024). LLMs are showing
promising results for the downstream NLP tasks.
Based on the training setup, the model architecture,
and the use cases, LLMs can be broadly classified
into encoder-only, encoder-decoder, and decoder-
only types. In the past few years, there has been a
significant increase in the release of decoder-only
LLMs at an industry scale, and extensively used
for sentiment analysis (Zhong et al., 2023; Zhang
et al., 2024b). We explore emotion classification
works in the following categories.
LLMs for text emotion classification: Sabour
et al. (2024) proposed EmoBench to evaluate the
emotional cause recognition of LLMs in English
and Chinese. Liu et al. (2024) proposed EmoLLMs
by fine-tuning various open-sourced LLMs for af-
fect analysis and emotion prediction. However,
these works are limited to predicting a single emo-
tion class and lack content from languages other
than English. Cageggi et al. (2023) fine-tune MT5
and evaluate FLAN and ChatGPT using few-shot
prompting approaches for multi-label emotion pre-
diction. Apart from this, the performance of other
LLMs has not been assessed for multi-label emo-
tion prediction.
Multi-label emotion classification (MLEC): To
predict all possible emotions from a text, the fol-
lowing popular datasets were compiled: GoEmo-
tions Demszky et al. (2020), Balanced Multi-Label
Emotional Tweets (BMET) Huang et al. (2021), Ro-
manian emotion dataset (REDv2) Ciobotaru et al.
(2022), Multilingual Emotion Prediction (XLM-
EMO) Bianchi et al. (2022), WASSA2023 Shared-
Task 2 Ameer et al. (2023), and SemEval-2024
Task 3 (Wang et al., 2024a). Nowadays, MLEC
tasks also include the corresponding intensity of
each identified emotion, such as SemEval-2018
task 1 (Mohammad et al., 2018), multimodal multi-
label emotion, intensity, and sentiment dialogue
dataset (MEISD) (Firdaus et al., 2020), and EmoIn-
Hindi (Singh et al., 2022).
Emotion for Ethiopian languages: Emotion de-
tection in the context of Africa generally, for

Ethiopian languages specifically, has not been stud-
ied yet, except for a few sentiment analysis (neg-
ative, positive, neutral) tasks (Yimam et al., 2020;
Tela et al., 2020; Muhammad et al., 2023).
Limitations of existing emotion works: Although
there have been several efforts in constructing
benchmark datasets and evaluations for text emo-
tion, the existing efforts have the following short-
comings.

• The emotion research is mainly focused on En-
glish or a few other high-resource languages
(Singh et al., 2022).

• Textual datasets are mostly taken from a single
source, such as either news headline (Strap-
parava and Mihalcea, 2007), YouTube com-
ments (Sarakit et al., 2015), Twitter (X) tweets
(Mohammad et al., 2018), SMS (Ameer et al.,
2023), or Facebook comments (Laabar and
Zaghouani, 2024). We might not get all basic
emotions from a single data source, and it is
hard to generalize about emotion in this case.

• The evaluation experiments are focused on
classical machine learning and deep learning
approaches (Maruf et al., 2024), the current
state-of-the-art LLMs’ multi-label and multi-
lingual emotional understandings are under-
explored.

Towards this end, we create a multi-label EthioEmo
dataset, which is constructed from various sources
(news headlines, Twitter (X) posts, YouTube com-
ments, and Facebook post comments), and each
instance is annotated with one or more emotion
classes. We also conduct rigorous evaluation ex-
periments that classify emotions in multi-label set-
tings using state-of-the-art encoder-only, encoder-
decoder, and open-sourced decoder-only LLMs.

3 EthioEmo Dataset Construction

This section describes the construction of the
EthioEmo dataset in detail. The driving force be-
hind creating this dataset is the lack of an available
emotion dataset in Ethiopian/African languages.
Evaluating LLMs in multi-lingual and multi-label
emotion understanding is another under-explored
area. Moreover, emotion is language, culture, and
other circumstances dependent (Sailunaz et al.,
2018). EthioEmo is a new multi-label emotion
dataset for four Ethiopian languages, two languages
written in Ethiopic Ge’ez (gez) script (amh and
tir) and two languages in Latin script (orm and
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som). We used Ekman’s (Ekman, 1992) six basic
emotion labels (anger, disgust, fear, joy, sadness,
and surprise) plus neutral class.

3.1 Lexicon Collections
Lexicon entries are emotion keywords that are used
to filter instances from millions of collected corpus
for annotation. Based on our previous lexicon cre-
ation experiences within the Ethiopian context for
sentiment analysis (Yimam et al., 2020) and hate
speech (Ayele et al., 2023), we create a list of lexi-
con entries for each emotion class and language to
ensure that each emotion class dataset is balanced
and comprehensive. For example, lexicon entries
of Joy emotion are “happy,” “excited,” and “thanks”
in English. This is a step to balance the dataset by
taking equal proportions from each emotion class
for annotation. The Lexicon entries are adapted
from an English source, NRC EmoLex Moham-
mad and Turney (2013), with additional manually
created emotion keywords. We obtain the emotion
lexicon entries in the following ways:

• Translate the English NRC EmoLex (Moham-
mad and Turney, 2013) lexicon into Ethiopian
languages with the help of Google Translate
and native speaker validations (incorrect trans-
lations are discarded).

• Collect additional emotion lexicon entries us-
ing nearest neighbors of the emotion lexicon
entries from available Word2Vec and FastText
word embedding models that include our tar-
get Ethiopian languages (Yimam et al., 2021;
Belay et al., 2021).

• We manually add the remaining basic emotion
lexicon for each language and emotion class.

We used 293 amh, 275 orm, 283 som, and 280 tir
emotion query entries for six basic emotion classes.
We will open-source these lexicons along with the
dataset.

3.2 Data Collection
The datasets have been collected from various
sources such as news portals, X/formerly Twitter,
YouTube, and Facebook.

The sources are selected since they have been
common data sources for previous emotion classifi-
cation works and contain rich content for Ethiopian
languages (Mohammad et al., 2018; Laabar and
Zaghouani, 2024). These diverse sources are se-
lected to rate the emotions that persist within texts
across the sources. The statistics of the data and

Data sources amh orm som tir
Twitter (X) 2000 2700 2400 3100
Facebook 1500 600 900 600
YouTube 2000 2000 2000 2000
News headline 500 500 500 500
Total 6000 5800 5800 6200

Table 1: Data sources and sample amount taken from
each source: Twitter (X) posts, Facebook post com-
ments, YouTube video comments, and news headlines.

the sources are presented in Table 1. As part of the
data preprocessing technique, language detection
is applied using GeezSwitch (Gaim et al., 2022)
for Ge’ez scripts and pycld32 for Latin scripts lan-
guages. We masked user names and URLs to pre-
vent data privacy and confidentiality. For annota-
tion, we select text length with a minimum of 15
characters and a maximum length of a tweet (280
characters).

Regarding the period of the collected data, for
Facebook, comments from posts between Septem-
ber and December 2023 were extracted as the
data was collected at this time using the comment
scraper tool3. For news headlines, we pulled all
available BBC (https://www.bbc.com/x, where
x is the name of the language) news headlines
using Python script4. For Twitter (X), we used
data scraped from 2014 to 2022 using Twitter API
for academic research. For YouTube, we did not
consider time span; we collected comments un-
der the playlist/video with the most comments for
the specific language using YouTube API. We ap-
plied text preprocessing such as language detection,
username, URL anonymization, and over-repeated
character normalization.

3.3 Data Annotation

For the data annotation, we employed native speak-
ers for each language. Annotators were provided
annotation guidelines with text examples and emo-
tion label(s), hands-on practical training, and pilot
tests before the main annotation. We compensated
annotators with a payment of roughly $6 per hour
on average, nearly the same as the hourly wage
of Master’s degree holders in Ethiopia. The de-
tailed backgrounds of the annotators are shown in
Appendix B.

We customize the POrtable Text Annotation
2https://pypi.org/project/pycld3/
3https://exportcomments.com/
4https://github.com/keleog/bbc_pidgin_scraper

https://www.bbc.com/x
https://pypi.org/project/pycld3/
https://exportcomments.com/
https://github.com/keleog/bbc_pidgin_scraper
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TOol (POTATO) (Pei et al., 2022) for our in-house
annotation platform. A minimum of three anno-
tators annotated each instance. The data is anno-
tated in multiple batches by assessing the data qual-
ity and annotators’ performance, including control
questions and agreements in each batch. Disagreed
instances were re-annotated by new annotators, and
if no agreement was reached again, the instances
were excluded from the dataset. The final gold la-
bel was determined based on agreement by at least
two annotators for each emotion class.

3.4 Inter-Annotator Agreement (IAA)

The most common IAA measurements, such as Co-
hen’s kappa (Cohen, 1960), Fleiss’ kappa (Fleiss,
1971), Krippendorff’s alpha (Krippendorff, 2011),
and bootstrapping method (Marchal et al., 2022) do
not support multi-label with multiple annotators at
the same time. We adopted a multi-label agreement
(MLA) method proposed by Li et al. (2023) to ob-
tain the multi-label agreement among all annotators.
We also computed free marginal Randolph’s Kappa
scores (Randolph, 2005), a metric well-suited for
measuring inter-annotator agreement in tasks in-
volving multiple annotators.

Language MLA Cohen’s K. Free M.
Amharic 0.50 0.52 0.65
Afan Oromo 0.64 0.66 0.76
Somali 0.51 0.50 0.66
Tigrinya 0.53 0.57 0.68

Table 2: IAA of the EthioEmo Dataset. Multi-label
Agreement (MLA) is a direct agreement between the
multi-label classes and all annotators. Cohen’s Kappa
is a pairwise agreement between two annotators, and
the result is an average pair-wise of the three annota-
tors. Free Margin (Free M.) is calculated as a pairwise
agreement between two emotion classes and takes an
average.

According to the work of Sánchez-Velázquez
and Sierra (2016), the IAA results in Table 2 show
moderate and above agreement as Cohen’s Kappa
score ranges from 0.41-0.60 is moderate. For fur-
ther analysis of IAA, we observe Cohen’s kappa
agreement for four main emotion classes (Anger,
Disgust, Sadness, and Joy), and the results are
Amharic: 0.74, Afan Oromo: 0.81, Somali: 0.75,
and Tigrinya: 0.77, showing significantly higher
scores than the scores obtained from the total of
seven classes. This shows that IAA scores vary
with the number of classes, as more classes gener-

ally increase the complexity of annotation, often
lowering agreement scores (Stefanovitch and Pisko-
rski, 2023). Based on Cohen’s Kappa value, our
IAA result is also comparable with related works,
as the GoEmotion (Demszky et al., 2020) dataset
IAA is 0.29 for 27 emotion classes. The high-
est agreement scores are reported for Afan Oromo.
We manually go through the annotator-level data
and observe that most of the annotators selected
single emotions during the annotation, the reason
for Afan Oromo having a better agreement score.
This shows that the number of annotated labels
by each annotator is inversely proportional to the
agreement score. The overall IAA agreement score
shows multi-label emotion task difficulty, a condi-
tion where an instance can have none, one, two, or
all emotion classes with multiple annotators.

4 Evaluation Settings

Training and testing LLMs such as GPT-4 (OpenAI
et al., 2024), Mixtral 8x22B (Jiang et al., 2024),
PaLM-340B (Anil et al., 2023), and LLaMA-405B
(Dubey et al., 2024) are often not feasible for aca-
demic researchers and companies with limited re-
sources. As a result, there has been a shift to-
wards smaller language models (Chen and Varo-
quaux, 2024). Our experiment includes pre-trained
encoder-only, encoder-decoder, and medium-size
parameter decoder-only models for scientific re-
producibility. We fine-tune encoder-only models
using the EthioEmo training dataset and evaluate
zero-shot and in-context learning predictions with
LLMs. The statistical distribution of the EthioEmo
and English datasets is shown in Table 3.

Language Train Test Dev Total
Amharic 2,614 1,309 437 4,360
Afan Oromo 2,598 1,300 435 4,333
Somali 2,087 1,045 349 3,481
Tigrinya 2,865 1,435 479 4,779
English 6,327 1,232 845 8,404

Table 3: Statistics of train, test, and dev sets for
EthioEmo along with SemEval-2018 Task 1 English
dataset. We randomly stratify to split the EthioEmo
dataset into train (60%), dev (10%), and test (30%) sets.
These statistics are without the Neutral class as our
overall experiments do not include Neutral class in the
evaluation. Final annotated dataset statistics with no
emotion or Neutral class are Amharic: 5,891, Afan
Oromo: 5,690, Somali: 5,631, and Tigrinya: 6,109, a
total of 23,321 instances were annotated.
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4.1 Afri-centric Encoder-only Models

Considerable efforts have been dedicated to creat-
ing multilingual BERT-based encoder-only mod-
els for African languages. We select encoder-only
models based on popularity, and models include at
least two languages from our target languages.

We make zero-shot and fine-tuning evaluations
using the following Afri-centric pre-trained lan-
guage models. AfriBERTa (Ogueji et al., 2021)
pre-trained on 11 African languages. It includes
our four target languages. AfroLM (Dossou et al.,
2022): a multilingual model pre-trained on 23
African languages, including amh and orm from
Ethiopian languages. AfroXLMR (Adelani et al.,
2024a): adaptation of XLM-R-large model (Con-
neau et al., 2020) (has two versions: 61 and 76
languages) for African languages including the
four Ethiopian languages and high-resource lan-
guages (English, French, Chinese, and Arabic).
EthioLLM (Tonja et al., 2024): multilingual mod-
els for five Ethiopian languages (amh, gez, orm,
som, and tir) and English.

4.2 Open Source Decoder-only Models

From the family of decoder-only LLMs, we work
with instruction-tuned versions of popular open-
source models. Namely, Llama-2-7b (Touvron
et al., 2023), Llama-3-8B (Meta, 2024), Llama-3.1-
8B (Dubey et al., 2024), Gemma-1.1-7b (Gemma
et al., 2024), and Gemma-2b (Gemma et al.,
2024). From encoder-decoder, we evaluate Aya-
101 (Üstün et al., 2024) — fine-tuned from mT5
(Xue et al., 2021). It is a multilingual 13B pa-
rameter model that follows instructions in 101 lan-
guages, including amh and som. We choose these
models based on their popularity in the open-source
community and serve as a baseline for similar NLP
task evaluation. From closed-source LLMs, we
include GPT-4o-mini in our evaluation as it is cost-
efficient and easy to reproduce (OpenAI, 2024). We
used English-based prompts for evaluating LLMs
following the work by Zhang et al. (2024a); Agar-
wal et al. (2024) as English prompts work better
than in-language prompts.

4.3 Translate Test Experiments

Following the work by Etxaniz et al. (2023), one ap-
proach to improve the performance of multilingual
language models is to translate the data to English
using existing machine translation systems. Our
approach involves translating the EthioEmo test

dataset to English to determine if English-centric
models can solve the task efficiently. For the trans-
lation, we used the NLLB-200-3.3B multilingual
machine translation model (Team et al., 2022).

4.4 In Context Learning (ICL)

One approach to improve the performance of LLMs
is to show them examples of the task. Following
the work of Zhang et al. (2024a); Agarwal et al.
(2024), we use in-context learning to teach the
models about the task without parameter updates
by showing them input and output examples. We
work with 2, 4, 6, and 8 demonstrations in our
experiment and compare them with zero-shot ex-
periments. We increase the number of contexts (k
shots) by two to show the slightly increasing ef-
fects of examples. For our k-shot experiments, we
applied randomly selected in-language examples
from the dev set, which remained consistent across
models. We used log likelihood-based evaluations
using lm-evaluation-harness5 by Gao et al. (2023)
for zero-shot and few-shot LLMs experiments.

5 Results

5.1 Fine-tuned Encoder-only Models

Results of fine-tuned encoder-only models are
shown in Table 4. Based on the results,
AfroXLMR-76L outperforms for amh and orm with
a 69.9% and 72.6% F1 score, respectively, as both
languages are included in the pre-training. Exam-
ining the overall encoder-only results, AfroXLMR
families perform better for the target languages.
We observe that languages included in the pertain-
ing phase perform better. Although encoder-only
models demand more training data and computa-
tional resources, they still have significant room
for improvement in tackling multi-label emotion
classification tasks. Pre-training is important for
multi-label emotion classification task. This is
evidenced by the F1-scores we present, where the
highest score is achieved by the orm language from
AfroXLMR-76L with a score of 72.6%.

5.2 Zero-shot Experiments

We conduct a zero-shot evaluation and make the
following observations, as summarized in Table 5.

Encoder-only models still have an advantage
over the recently popular open-source decoder-
only models for low-resource languages. We

5https://github.com/EleutherAI/
lm-evaluation-harness

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness


3528

Model name amh orm som tir
Fine-tuned encoder-only models
EthioLLM-small 65.3 69.4 47.1 55.7
EthioLLM-large 64.2 67.4 38.0 56.7
AfroXLMR-61L 68.3 66.5 64.2 62.4
AfroXLMR-76L 69.9 72.6 62.6 58.1
AfroLM-active-l 65.4 67.7 52.0 53.2
AfriBERTa-large 51.6 71.4 63.2 60.7

Table 4: Weighted-averaged F1-score results from fine-
tuned pre-trained language models. The light-gray
shows the model does not include the languages in the
pre-training.

compare zero-shot results of LLMs with zero-shot
and fine-tuned encoder-only models, and LLMs
under-perform compared to encoder-only models.
This is likely due to their initial multilingual setup
of encoder-only models for low-resource languages.
Cohere-aya-101 outperforms all decoder-only mod-
els with an average score of 46.12% as it is de-
signed for multilingual and officially includes amh
and som languages. Looking at the target languages,
the closest performance we see between encoder-
only and encoder-decoder models is in the amh
language, with a score difference of 8.9% between
AfroLM and Cohere-aya-101. For the encoder-
only model, we can see AfroXLMR-76L takes the
lead, which explains its top performance in the
fine-tuning experiment. From zero-shot evalua-
tions, Cohere-aya-101 consistently outperforms in
all languages except orm. In general, the result
shows how fine-tuning smaller and more efficient
pre-trained language models can still outperform
zero-shot performances of LLMs, which have room
for improvement in multi-label emotion classifica-
tion. Considerably, zero-shot or in-context learning
of LLMs is not comparable with the BERT fam-
ily’s pre-trained model that has already seen the
language in the pre-training phase. However, we
compare only according to the resources that LLMs
consume to fine-tune, and we expected LLMs to
perform better based on their size.

5.3 Translate Test Experiments

The models struggle to classify multi-label emo-
tions even after translating the test set to English.
We conduct an experiment using the translation of
the test set to investigate the reasons for poor per-
formance in decoder-only models, as discussed in
Section 4.3. Our findings reveal that even after

the test set is translated into English, these mod-
els still struggle to identify emotions accurately
compared to English. In particular, Cohere-aya-
101 performs poorly in all EthioEmo translation
test set evaluations compared to a near similar size
LLaMA-3-8B-Instruct model. This might be due
to either the limitations of the machine translation
system employed (we do not have ground truth for
further translation quality checking) or the inher-
ent complexities of the emotion task that may not
carry the same meaning across languages in the
translation.

5.4 In-Context Learning Results
We do in-context learning experiments because
fine-tuning LLMs can incur enormous computing
costs. This approach helps improve the model’s un-
derstanding ability without any parameter update.

All models benefit from two-shot examples
compared to zero-shot tests. Based on the results
shown in Figure 1, all our models benefit from
two-shot contexts. Looking at the Ethiopian lan-
guages, we can see that they all improved their
scores by showing two examples compared to
zero-shot tests. However, this improvement is
not shown in Gemma-1.1-7b-it, which already had
good scores in the zero-shot experiment across lan-
guages. Among target languages, orm gains the
highest scores in the zero-shot experiment with
Gemma-1.1-7b-it model. The same pattern does
not apply to som — it uses Latin script as orm,
which requires further investigation. For English,
Gemma-1.1-7b-it at four-shots has a better compa-
rable result to the zero-shot.

Examining the impact of increasing the num-
ber of shots by two examples is not guaranteed
to improve performance. We observed that the im-
provement was inconsistent and could not be guar-
anteed. However, there are clear performance gains
from 0 to 2 shots, 2 to 6, 2 to 8, and 4 to 8 shots.
This is particularly evident in all languages. The
encoder-decoder Cohere-aya-101 model has a com-
parable best result for low-resource languages to
the commercial GPT-4o-mini. Encoder-decoder
Cohere-aya-101 model outperforms the open-
source LLMs. The exception for the lowest per-
formance for tir is that it is not included in the
pre-training of the Cohere-aya-101 model. Another
observation is that improvements in results are as-
sociated with the sizes of the models’ size or param-
eters, such as from Gemma-2b-it to Gemma-1.1-7b
and from LLaMA-2-7B to LLaMA-3-8B.
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Pre-trained LMs amh orm som tir eng Average

Zero shot for encoder-only
EthioLLM-small 31.72 12.88 30.88 32.09 37.76 29.07
EthioLLM-large 14.38 32.35 10.53 10.94 37.87 21.21
AfroXLMR-61L 22.05 39.68 21.12 22.30 43.00 29.63
AfroXLMR-76L 28.62 35.81 14.86 15.94 24.38 23.92
AfroLM-active-l 39.91 25.60 15.92 35.63 33.93 30.20
AfriBERTa-large 25.67 15.57 19.98 35.39 26.38 24.60

Zero shot for decoder-only
Gemma-2b-it 10.22 7.81 14.26 7.87 46.4 17.37
Gemma-1.1-7b-it 27.94 34.87 25.87 19.55 65.73 34.79
LLaMA-2-7b-chat-hf 17.35 19.24 22.05 12.97 54.07 25.14
LLaMA-3-8B-Instruct 28.18 26.91 29.29 19.73 66.74 34.17
Llama-3.1-8B-Instruct 20.58 24.10 22.07 10.28 51.17 25.25
Cohere-aya-101 48.80 33.65 43.00 38.97 66.20 46.12

Zero shot for closed models
GPT-4o-mini 53.86 47.84 52.04 35.47 70.98 52.04

Zero shot for decoder-only translated to English
Gemma-2b-it 30.91 28.66 31.43 22.54 28.39
Gemma-1.1-7b-it 45.05 47.86 44.72 35.35 43.25
LLaMA-2-7b-chat-hf 35.48 34.27 34.58 25.19 32.38
LLaMA-3-8B-Instruct 48.26 48.55 46.46 40.93 46.06
Llama-3.1-8B-Instruct 28.59 34.43 32.28 21.66 29.24
Cohere-aya-101 44.95 43.39 41.52 31.63 40.37

Translated zero shot for closed models
GPT-4o-mini 55.89 51.59 51.14 47.60 51.56

Table 5: Zero-shot experiment results from encoder-only and decoder-only models (weighted-averaged F1-score)
across languages. The translated test is by translating EthioEmo test set to English. The light-gray background
indicates AfroLM does not include the languages in the pre-training.
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Figure 1: In-context learning (ICL) experiments with k-shots and languages.
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5.5 Prompt Sensitivity Experiment

Role-based prompt gained more results from
LLMs. A drawback of the prompting evaluation
is the model sensitivity to prompts, where slight
changes in instruction can lead to large differences
in performance (Sun et al., 2023). To handle this,
we use the following three prompts: (1) generic:
a prompt which does not give information about
the task, used in (Liu et al., 2024); (2) task-based:
describes the given task (Edwards and Camacho-
Collados, 2024); (3) role-based: a new prompt
which gives more information, including "You are
a helpful AI assistant that can identify
emotions from text". All prompting results
presented in this paper are averages of the three
prompts. For reproducibility of the experiment, the
prompts are shown in Appendix 2, and the results
of each prompt are presented in Appendix G.3.

Generic prompt :

 Identify all applicable emotions for the given text from (anger, disgust,
fear, sadness, joy, surprise).
Text: """{text}"""
Answer:

Task-based prompt :

 Categorize the text’s emotional tone as the presence of one or more of
the given emotions (anger, disgust, fear, sadness, joy, surprise) only.
No explanation is needed.
Text: """{text}"""
Answer:

Role-based prompt :

You are a helpful AI assistant that can identify emotions from text.
Categorize the text’s emotional expression, classifying it as one or more
of the specified emotions [‘anger’, ‘disgust’, ‘fear’, ‘sadness’, ‘joy’,
‘surprise’] that reflect the writer’s state of mind. No explanation is
needed.
Text: """{text}"""
Answer:

Figure 2: The three prompts used for decoder-only zero-
shot and in-context learning experiments

6 Error Analysis and Discussion

Task difficulty: Our analysis shows that the task
is not easily solvable by any of the methods. This
shows the significance of this task in evaluating the
existing models and observing that multi-label emo-
tion classification needs more exploration, even for
high-resource languages such as English. Some of
the difficulties include 1) inability to know the ex-
act feelings of the writers in sarcastic texts — needs
context, and 2) ambiguity between some emotion
classes such as Anger and Disgust (for example,
in 61 instance annotations, Anger and Disgust ap-

pear together from 85 disagreed amh instances).
The fact that the task is difficult also means a great
deal of work to advance further research in emotion
detection and analysis, which shows that EthioEmo
dataset is a useful contribution to evaluating the
upcoming advanced models.

Data sources from news headlines mostly ex-
hibit none of the six basic emotion classes, while
other sources are better for the basic emotions.
We visualize the statistics of emotion distributions
across languages and data sources are shown in Ap-
pendix F; instances sourced from news headlines
are almost Neutral - do not have any of the
basic emotions. Emotion classes such as Anger,
Disgust, and Joy are shared on Facebook com-
ments and Twitter (X) posts. YouTube comments
include all basic emotions — a better source for
Ethiopian languages’ emotion data that has the rare
Surprise emotion class. The statistics of emotion
distributions across languages and data sources are
shown in Appendix F.

Challenges in emotion annotation : Obtaining
consistent annotations for an NLP dataset, espe-
cially for emotion, is challenging. This is due to
several reasons, including 1) difficulty in knowing
the exact feeling of the writers in sarcastic texts, 2)
differences in human experience that impact how
they perceive emotion in text, 3) sometimes anno-
tators depend only on emotion keywords present in
the text during annotation, 4) ambiguity between
some emotion classes such as Anger and Disgust,
and 5) reports of third person sayings as the writer’s
emotion are some of the challenges encountered
during the annotation.

Experiment error analysis: Regarding the
dataset emotion distribution, the dataset has more
Anger and Disgust. Firstly, this is common also
in other emotion datasets (Mohammad et al., 2018;
Demszky et al., 2020; Wang et al., 2024a). Sec-
ondly, one reason is because of the conflict situa-
tions (in the year 2023) in some parts of Ethiopia
and in the global context, such as the Hamas-Israel
and Russia-Ukraine wars.

We go through the predicted test file from the
best-performing encoder-only model, AfroXLMR-
76L, with the help of experts from each language.
The following are the most common cases of the
incorrect prediction of emotions. 1) While the gold
labels of an instance have more than one emotion,
the models predict a single emotion label and vice
versa — a common issue in a multi-label classifi-
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cation problem. 2) The model classifies based on
some emotion keyword/emojis in the text, not the
whole context. This shows that text with emo-
jis is straightforward for the models to predict
emotions and is aligned with the work of Liegl
and Furtner (2024). 3) The model fails due to
incomplete text and grammatical errors. This is
mainly due to the limited length of tweets and the
informal writing style of social media (Belay et al.,
2022). 4) The model fails to categorize a text into
specific emotion classes, resulting in nothing pre-
dicted. This problem is shown in encoder-decoder
models. In multi-label classification, encoder-only
works in OneVsRest (One vs other) approach (Goš-
tautaitė and Sakalauskas, 2022) which is predicting
whether each emotion is present or not separately,
for instance, Anger or Not anger, Fear or Not
Fear. When the model responds Not for all emo-
tions, the result will be nothing predicted. On the
other hand, decoder-only models such as GPT-4o-
mini (OpenAI et al., 2024) show an over-predicted
problem, assigning more emotion classes while
most of the instances have a single emotion class.
For these above-mentioned cases, emotion instance
examples are shown in Appendix E for the corre-
sponding language and case number.

7 Conclusion and Future Work

In light of the growing interest in creating chal-
lenging NLP tasks to assess the abilities of LLMs,
language- and culture-specific datasets are becom-
ing crucial (Wang et al., 2024c; Adelani et al.,
2024b). This work presented a multi-label emotion
dataset (EthioEmo) and an evaluation of multi-label
emotional understanding of encoder-only, encoder-
decoder, and decoder-only language models. The
dataset provides diversity regarding the data source
(X/Twitter posts, YouTube comments, Facebook
comments, and news headlines) and four Ethiopian
languages with available English dataset for eval-
uation). We reported strong baseline results using
various experimental settings such as fine-tuning
encoder-only models, translated test sets, prompt
sensitivity, zero-shot, and impacts of increasing
the number of shots for in-context learning eval-
uations. Encoder-only Afri-centric models that
include target languages during the pre-training
phase are the best for the classifications of the
EthioEmo dataset. In general, the results show that
fine-tuning encoder-only language models can still
outperform the few-shot approaches of LLMs. The

open-source Cohere-aya-101 model outperformed
other LLMs next to the commercial GPT-4o-mini.
This paper focused on evaluating state-of-the-art
open-source LLMs with the least parameters for
scientific reproducibility. Fine-tuning open-source
and evaluating closed-source LLMs are out of the
scope of this work and are the next works. We
believe this dataset and results can be employed
as a baseline in the future for better multi-label
emotion classification tasks. Resources such as
lexicons, annotation guidelines, and datasets are
publicly available for further investigation.

Limitations

In this work, we present and evaluate the EthioEmo
dataset using Afri-centric pre-trained language
models and open-source LLMs. Despite our ef-
forts, the following are limitations of this work.
Imbalanced data: Even if it is impossible to bal-
ance emotion data, we tried to balance the emotions
using lexicon entries. One of the limitations of this
work is that the distribution of the emotion classes
is imbalanced. Having more balanced data would
be better. However, the nature of the task itself
makes it challenging to balance each emotion class
because all emotions are not expressed equally in
the data source platforms.
Translation effect on emotions: To evaluate gen-
erative models, we translate the EthioEmo test
dataset to English to know if the prediction dif-
ficulties come from the task’s nature or language
understanding. However, this translation will have
quality and context effects on the emotion itself as
emotions are culture and language-dependent.
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A EthioEmo Languages

There are more than 2000 languages spoken in the African continent, and more than 80 of them are spoken
in Ethiopia6. Amharic, Afan Oromo, Somali, and Tigrinya are the top four languages in Ethiopia by the
number of speakers.
Amharic (amh): is a Semitic language written in Ge’ez script, known as Fidel, which consists of 33
primary characters, each with seven vowel sequences. It is the second most widely spoken Semitic
language, next to Arabic.
Afan Oromo (orm): is an Afro-Asiatic language written in Latin script. It is the most widely spoken
language in Ethiopia and the third most widely spoken in Africa, next to the Arabic and Hausa languages.
It is mostly spoken in the Horn of Africa, including Ethiopia, Kenya, and Somalia alone.
Somali (som): is an Afro-Asiatic language belonging to the Cushitic group. It is spoken in Ethiopia,
Somaliland, Kenya, and Somalia. It is the third most widely spoken language in Ethiopia.
Tigrinya (tir): is a Semitic language spoken in the Tigray region of Ethiopia and Eritrea. The language
uses Ge’ez script with additional Tigrinya alphabets and is closely related to Ge’ez and Amharic (Eberhard
et al., 2024).

B Annotators Background
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Figure 3: Backgrounds of Annotators: gender, language participated, academic qualification, and field of study.

C Number of Emotion Labels Per Instance

Figure 4 shows the number of emotion label(s) distribution across languages. As we can see, most of the
dataset for all languages has a single emotion class. Of the amh dataset, 88% has a single label, 11.7% has
two emotion labels, and 0.17% has three labels. In the orm, 92.9% has a single label, 6.9% two labels, and
0.17% three labels. In som, 94.8% has single labels, 5.7% two labels, and only three instances have three
labels. In tir, 82.3% has single labels, 12.4% two labels, and 0.36% three labels. EthioEmo dataset is
also used for multiclass emotion classification for future work as instances with more than two labels are
less.

Amharic

4360

Afan Oromo Somali Tigrinya

1 label 2 labels 3 labels

4334 3481 4779

Figure 4: Number of emotion labels per instance across languages

6https://www.statista.com/statistics/1280625/number-of-living-languages-in-africa-by-country/
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D Experiment Hyper-parameters

We make fine-tune encoder-only models using FLAIR framework (Akbik et al., 2019) with the following
hyper-parameters: model_max_length = 512 (except AfroLM model_max_length is 256 as the models
built it up), learning_rate = 5.0e-5, mini_batch_size = 8, and max_epochs=3, as recommended in the
BERT paper (Devlin et al., 2019). We test decoder-only models with temperature = 0 and batch_size = 1.

E Emotion Examples for Error Analysis

 

# Text Gold Pred. 

 

 

 

 

 

 

1 

amh: ጥንካሬሽ የሚገረም ነው በእባ ጨረስኩት የሰው ጭካኔ ግን       sadness,  

surprise 

sadness 

orm:  Humni shiraan guddate shiraan jiraachuu filata . Haata'uutii shirri qaama biraa irratti hojjatamu qaamuma shiricha hojjate 

balleessa . Warri ODP amala badaa. 

disgust anger, 

disgust 

tig: ኣንታ እወ ጭንቀት ሞይትና እናነበርና ናብ ዘይምንባር ተፀጊዕና ምስ ህዝብካ ኮይንካስ ኩሉ ትርኢ ሓደ ዓመት 
ሓሊፉና ኣሎ ትግራይ ትስዕር 

tir: ከምዚኦም ዝኣመሰሉ ደመኛታት ጸላእትና ኩላትና ተኣኪብና ብዓውታ ብዘይፍርሒ እንተዘይመኪትናዮምን ሓድነትና 
እንተዘይርኢናዮምን ሃገርና 

fear, 

sadness 

sadness, 

anger 

som: USER Madooobow adeeer waaarimeyside war hakaaa haro magaaaladiii aaad 

dhaqaaalaheeeda intaaasooo sanadoood dhuuuqeysay iney sidaaas u burbursanaaato waaa kugu 

ceeeb dhowr laaammmi lama rabeee inta jid eee magaaalada ka baxda ilaaa iyo kuwa 

Dhooobley iyo Afmadow tago ayaaa lagaaa rabay inaaad laaammmi saaarto 

 

 

disgust 

 

anger, 

disgust 

 

 

 

2 

amh: የሰማይ የምድር ጌታ በቤታቸው በኑሮዋቸው በልጆቻቸው በዘመድ ባዝማዳቸው ችግር አዘን መከራ አዘን 
ይግባባቸው 

disgust sadness 

orm: Biyyyaaa Sanaaa keeesaaa seeeriii hin jiruuu kani kan godhuuu abbbiyyyiiidha 

Ummmani Oromooo ganaaa fixxxaaa   Dinnnaaa fanaaa hiriruuuraaa otttooo tokkkooo 

tannneee dinnnaaa ofiraaa fincileee gaaariiidha 

anger 

 

joy, 

anger 

orm: Takele uma motumaan kun hin kufaa shakiin hin jiruu wayyanenuu hin kufttee sodaa 

lubbutiif jetee umataa kee baldhaa hin ganiin dhugaa irraa dhabadhuu dinaa wajiin harkaa hin 

dhahiin URL 

anger disgust 

 

tir: እስኪ ሓድሽ ድሃይ ሃብና እዚ ምድግጋም እንታይ ዋጋ ኣሎዎ አረ ብጭንቀት ክንመውት እና በጃኹም ድሃይ ሃቡና fear sadness 

3 amh:  ትክክል ነው የዘነጉት ግን ይህ ሰው በስልጣን ከቀጠለ አገርም ሊኖራቸው እንደማይችል ነው። የ USER ስጋት 
ለአማራ ብቻ ነው የሚለው ስህ  

fear disgust, 

anger 

tir: ግፍዒ ሰቃይ ስእነት ዋላክዋ ዘይደለ አንተ ኾነ ኣብ ? ጠራይ ከም ዝርከብ ገርካ ምግራምካ ገሪሙኒ ምናልባት ስደት surprise sadness 

Table 6: Examples of emotion texts for cases discussed in the experiment error analysis, Section 6; amh, orm, som,
and tir are the languages used in the example.

F Data Source and Emotion Distribution

In this section, we visualize the EthioEmo dataset emotion distributions across data sources: Twitter (X),
YouTube, Facebook, and news headlines and languages: amh, orm, som, and tir. Figure 5 shows general
emotion distribution across data sources for the EthioEmo dataset. Figure 6 shows emotion distribution
across languages. Figures 7, 8, 9, and 10 show emotion distribution across languages and data sources:
Facebook comments, YouTube comments, Twitter (X), and news headlines, respectively. Figure 10 shows
that the news headlines almost do not have any of the basic emotions.
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Figure 5: Emotion distribution in the data sources for EthioEmo dataset
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Figure 6: Emotion distribution for EthioEmo dataset across languages
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Figure 7: Facebook comment emotions distribution across languages from the given quota
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Figure 8: YouTube comment emotions distribution across languages from the given quota
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Figure 9: Twitter (X) post emotions distribution across languages from the given quota
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Figure 10: News headlines emotions distribution across languages from the given quota
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G Additional Results

G.1 Encoder-only Experimental Results
We compared our experimental results using a weighted-averaged F1-score. Table 7 shows additional
multi-label evaluation metrics such as multi-label accuracy, macro F1-score, and micro F1-score across
languages and encode-only models.

Amharic (amh) Afan Oromo (orm) Somali (som) Tigrinya (tir)

Pre-trained LMs Acc Mac F1 Mic F1 Acc Mac F1 Mic F1 Acc Mac F1 Mic F1 Acc Mac F1 Mic F1
EthioLLM-s-70K 50.3 58.8 69.0 60.94 61.4 70.0 40.8 42.4 51.0 48.0 46.3 59.8
EthioLLM-l-70K 48.6 53.9 65.1 60.0 55.7 68.9 31.2 32.2 43.6 48.9 46.8 60.3
Afro-xlmr-large-61L 54.0 68.3 68.4 58.4 55.8 68.0 53.4 61.7 64.9 51.4 55.4 64.5
Afro-xlmr-large-76L 55.6 67.5 70.0 63.3 66.3 72.9 53.6 59.4 64.3 49.1 48.4 61.4
AfroLM-active-learning 50.0 60.7 65.6 59.1 52.2 66.2 40.9 48.2 53.2 36.6 33.8 49.5
Afriberta-large 67.5 64.2 67.7 62.4 63.7 71.8 53.7 60.1 64.5 49.3 52.8 62.6

Table 7: Additional results of encoder-only models. Acc - multi-label average accuracy, Mac F1 - macro F1-score,
and Mic F1 - micro F1-score.

G.2 Emotion Class-based Results
Table 8 shows class-level emotion results from the three encoder-only models. We discovered that
the emotion class with less dataset distribution performs low, for example, Fear class in orm and tir
languages. In overall performance across languages, som and tir have low performance; this might be
because of the amount of corpus in the pre-training and the data in the emotion classes.

EthioLLM-s-70K Afro-xlmr-large-61L Afro-xlmr-large-76L AfriBERTa-large

Emotions amh orm som tir amh orm som tir amh orm som tir amh orm som tir
Anger 56.3 55.1 10.0 19.5 59.6 55.1 41.1 25.6 58.7 61.2 30.2 20.2 58.3 57.4 39.7 29.2
Disgust 68.4 68.9 36.7 71.9 66.7 629 58.3 77.2 71.5 68.2 57.4 73.6 68.6 68.1 53.8 74.6
Fear 21.7 30.2 57.8 2.8 48.7 12.3 69.1 27.1 53.9 42.0 70.7 00.0 40.7 34.9 73.2 18.2
Sadness 74.7 55.2 53.7 53.9 75.0 54.1 71.4 62.9 77.8 63.1 68.7 58.4 74.7 62.0 70.4 61.7
Joy 71.2 85.6 72.4 56.9 82.3 84.2 77.5 63.2 81.2 87.0 79.8 64.2 76.9 87.5 79.0 60.9
Surprise 60.6 73.0 23.9 73.0 65.5 66.7 52.9 76.5 62.3 76.0 49.6 74.1 66.2 72.4 44.6 72.3

Table 8: Class-based emotion F1 results from selected fine-tuned encoder-only models
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G.3 Results Across Prompts, Languages, and k-shots
The details of the prompts are shown in Figure 2. Prompt 1 is a generic prompt, Prompt 2 is a task-based
prompt, and Prompt 3 is a role-based prompt.

Gemma-2b-it Gemma-1.1-7b LLaMA-2-7b-chat-hf

Lang 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Pr
om

pt
1

amh 8.33 16.98 12.98 11.14 12.99 31.55 20.88 17.11 19.03 20 3.59 49.74 49.68 21.74 25.62
eng 47.27 59.92 58.6 58.91 61 67.5 64.45 58 57.51 58.72 49.09 60.36 59.82 58.01 59.63
orm 7.05 18.04 11.57 10.57 11.01 31.92 21.4 19.79 24.21 28.39 11.44 25.86 20.24 22.26 24.6
som 14.16 16.12 14.88 15.47 14.81 20.8 25.83 25.73 26.21 27.57 13.92 28.13 25.26 29.14 29.38
tir 7.82 18.48 16.98 15.59 15.52 27.84 13.56 12.86 12.71 14.04 2.5 16.42 16.17 20.21 20.91

Pr
om

pt
2

amh 11.57 10.21 9.78 8.2 8.36 25.61 21.26 18.42 19.18 21.27 23.83 18.87 19.52 21.17 21.53
eng 18.82 48.21 47.69 52.49 57.36 65 60.54 58.64 58.58 58.63 54.16 61.52 61.49 60.56 62.98
orm 6.99 6.64 7.77 7.55 8.17 36.36 18.54 21.11 25.19 29.4 23.99 25.33 21.23 23.08 27.47
som 15.13 12.31 13.11 12.51 12.36 28.73 25.07 25.57 26.61 27.41 26.41 27.75 25.15 27.68 28.37
tir 8.73 9.68 15.91 13.32 10.52 15.6 12.55 12.93 13.42 14.79 22.07 15.92 15.23 19.38 19.06

Pr
om

pt
3

amh 10.76 12.9 11.57 10.34 9.6 26.65 22.23 18.88 20.8 22.8 24.64 20.59 20.29 23.58 25.79
eng 43.11 47.9 47.05 55.36 57.89 66.49 63.74 59.98 59.14 60.31 59.97 61.15 61.39 62.46 64.21
orm 9.39 9.39 9.74 7.68 9.23 36.32 18.76 22.89 25.07 28.95 22.28 26.62 24.14 27.17 27.85
som 13.5 16.32 16.94 15.45 16 28.09 26.99 26.42 26.11 28.56 25.82 25.57 24.63 25.82 27.12
tir 7.06 12.22 12.55 10.75 10.22 15.2 14.09 13.39 16.04 15.11 14.34 17.29 18.67 20.2 20.64

LLaMA-3-8B-Instruct LLaMA-3.1-8B-Instruct CohereForAI__aya-101

Pr
om

pt
1

amh 15.38 29.22 27.92 31.51 32.79 21.63 34.25 33.58 37.96 39.52 49.98 54.7 55 56.59 57.54
eng 64.82 66.22 64.82 63.54 64.41 54.64 68.21 67.42 66.4 67.22 63.88 65.97 67.42 67.93 67.16
orm 25.9 33.43 33.77 37.65 39.12 29.71 36.24 37.75 38.25 40.67 31.71 48.8 53.47 53.73 54.75
som 26.01 32.65 33.49 34.77 34.46 23.19 34.99 38.55 37.63 40.31 36.49 47.39 49.18 50.71 51.84
tir 8.4 21.72 19.64 22.37 23.45 8.4 20.52 19.25 21.41 22.64 41.52 48.96 50.09 50.84 50.01

Pr
om

pt
2

amh 36.95 27.63 27.25 30.15 30.55 32.73 33.9 34.24 35.65 37.78 47.38 53.73 54.96 56.12 66.66
eng 67.12 65.87 63.55 61.94 63.58 65.46 66.47 66.49 66.57 67.39 65.21 65.33 65.83 66.75 66.66
orm 24.6 33.29 31.72 35.72 37.24 31.83 37.24 37.9 39.36 41.25 35.42 47.82 51.52 53.9 54.27
som 30.22 31.63 31.34 34.55 34.89 29.57 18.08 16.69 17.42 18.45 45.32 49.35 49.06 51.66 51.33
tir 31.32 17.72 18.88 19.86 22.39 15.34 18.08 16.69 17.42 18.45 38.58 47.86 49.04 50.67 49.37

Pr
om

pt
3

amh 32.22 27.95 24.9 28.44 28.83 7.38 34.68 33.86 36.2 37.04 49.03 53.29 53.7 53.7 50.58
eng 68.27 66.57 64.66 63.45 63.85 33.4 67.07 66.84 65.46 65.93 69.52 69.11 70.26 69.71 70
orm 30.24 35.06 34.71 35.52 36.94 10.77 36.13 37.32 37.97 39.32 33.82 48.15 52.4 52.21 49.8
som 31.64 29.73 29.39 31.41 33.77 13.44 34.45 36.81 37.38 38.38 17.18 18.9 50.62 50.91 49.51
tir 19.46 21.37 21.51 25.17 25.41 7.11 22.59 20.72 22.69 20.98 36.81 41.2 40.1 40.05 33.92

Test-set translated results
Gemma-2b-it Gemma-1.1-7b LLaMA-2-7b-chat-hf

Pr
om

pt
1

amh 33.29 36.1 35.57 37.83 40.6 42.67 43.12 39.06 40.31 41.53 24.7 43.7 41.27 61.65 46.01
orm 29.7 34.7 40.41 41.74 44.54 46.52 40.71 39.7 42.48 41.9 22.64 43.79 41.16 44.45 44.71
som 29.24 38.42 40.27 40.74 42.85 42.71 47.29 45.73 45.26 46.01 28.44 46.24 45.71 46.03 48.89
tir 25.57 26.5 29.07 30.47 30.22 33.43 32 31.6 31.65 33.11 19.88 31.09 31.02 31.15 37.08

Pr
om

pt
2

amh 33.77 31.67 32.71 35.64 37.45 45.44 40.4 40.73 40.58 42.45 41.92 43.39 41.75 43.43 45.51
orm 28.87 31.1 34.75 36.01 40.65 47.85 34.96 40.82 43.49 45.05 38.36 43.07 44.4 45.88 45.71
som 33.9 37.83 39.37 40.67 41.81 46.32 45.39 45.89 45.64 47.73 35.8 47.12 46.8 46.08 50.15
tir 24.45 24.42 27.86 30.47 31.28 37.6 30.69 32.15 33.11 34.82 29.77 29.05 29.79 30.24 33.69

Pr
om

pt
3

amh 25.68 34.1 34.09 35 38 47.03 42.65 41.07 40.61 42.73 39.82 41.93 40.81 42.54 45.17
orm 27.42 33.17 35.77 37.66 40.61 49.31 39.84 41.38 44.64 44.19 41.82 41.81 41.2 44.75 46.43
som 31.14 39.9 39.34 42.55 43.02 45.12 46.25 46.1 46.51 47.22 39.5 43.54 44.52 46.22 47.67
tir 17.6 24.69 27.2 29.02 30.44 35.02 30.85 31.06 33.2 34.02 25.93 27.7 28.88 32.64 35.4

LLaMA-3-8B-Instruct LLaMA-3.1-8B-Instruct CohereForAI__aya-101

Pr
om

pt
1

amh 45.77 47.4 45.87 45.44 46.06 33.85 46.09 47.37 46.16 48.51 42.27 47.81 49.62 49.86 49.27
orm 47.65 47.96 46.3 46.83 47.38 44.14 48.49 48.41 50.4 49.17 39.86 44.72 45.55 46.66 47.6
som 42.81 48 48.65 48.39 48.91 36.12 47.04 47.9 49.73 50.66 37.36 46.34 44.48 46.42 47.36
tir 38 34.13 32.17 34.73 36.34 27.84 33.58 37.05 39.74 40.63 27.01 39.338 38.47 38.08 39.27

Pr
om

pt
2

amh 48.12 45.55 44.69 45.31 45.13 38.73 44.51 46.01 45.96 48.25 47.38 48.62 48.72 49.51 47.85
orm 46.94 47.27 45.64 46.36 47.99 38.5 46.85 46.84 48.62 48.56 43.76 45.71 45.5 47.21 48.03
som 46.82 46.92 47.09 46.96 48.12 48.03 45.76 47.74 49.69 49.51 41.17 46.83 45.07 46.77 46.77
tir 40.77 28.77 30.75 34.48 33.25 28.11 30.47 35.8 36.47 38.28 37.5 39.31 38.68 37.08 38.08

Pr
om

pt
3

amh 50.89 46.61 44.85 45.04 46.18 13.18 46.07 46.79 46.17 48.08 45.2 46.79 46.54 44.39 44.71
orm 51.05 45.72 44.78 45.46 46.52 20.65 47.76 48.42 47.3 48.85 46.56 47.93 49 48.19 47
som 49.75 45.65 47.18 46.94 47.93 20.7 46.89 48.23 48.9 48.48 46.02 46.89 46.16 47.34 47.33
tir 44.02 33.01 31.51 34.1 37.51 9.02 34.28 37.26 38.66 40.05 30.37 33 32.12 31.44 29.99

Table 9: Prompt sensitivity experiment results across k-shots, LLMs, and languages
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