@inproceedings{song-etal-2025-assessing,
title = "Assessing the Human Likeness of {AI}-Generated Counterspeech",
author = "Song, Xiaoying and
Mamidisetty, Sujana and
Blanco, Eduardo and
Hong, Lingzi",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.239/",
pages = "3547--3559",
abstract = "Counterspeech is a targeted response to counteract and challenge abusive or hateful content. It effectively curbs the spread of hatred and fosters constructive online communication. Previous studies have proposed different strategies for automatically generated counterspeech. Evaluations, however, focus on relevance, surface form, and other shallow linguistic characteristics. This paper investigates the human likeness of AI-generated counterspeech, a critical factor influencing effectiveness. We implement and evaluate several LLM-based generation strategies, and discover that AI-generated and human-written counterspeech can be easily distinguished by both simple classifiers and humans. Further, we reveal differences in linguistic characteristics, politeness, and specificity. The dataset used in this study is publicly available for further research."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2025-assessing">
<titleInfo>
<title>Assessing the Human Likeness of AI-Generated Counterspeech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoying</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujana</namePart>
<namePart type="family">Mamidisetty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingzi</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Counterspeech is a targeted response to counteract and challenge abusive or hateful content. It effectively curbs the spread of hatred and fosters constructive online communication. Previous studies have proposed different strategies for automatically generated counterspeech. Evaluations, however, focus on relevance, surface form, and other shallow linguistic characteristics. This paper investigates the human likeness of AI-generated counterspeech, a critical factor influencing effectiveness. We implement and evaluate several LLM-based generation strategies, and discover that AI-generated and human-written counterspeech can be easily distinguished by both simple classifiers and humans. Further, we reveal differences in linguistic characteristics, politeness, and specificity. The dataset used in this study is publicly available for further research.</abstract>
<identifier type="citekey">song-etal-2025-assessing</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.239/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>3547</start>
<end>3559</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing the Human Likeness of AI-Generated Counterspeech
%A Song, Xiaoying
%A Mamidisetty, Sujana
%A Blanco, Eduardo
%A Hong, Lingzi
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F song-etal-2025-assessing
%X Counterspeech is a targeted response to counteract and challenge abusive or hateful content. It effectively curbs the spread of hatred and fosters constructive online communication. Previous studies have proposed different strategies for automatically generated counterspeech. Evaluations, however, focus on relevance, surface form, and other shallow linguistic characteristics. This paper investigates the human likeness of AI-generated counterspeech, a critical factor influencing effectiveness. We implement and evaluate several LLM-based generation strategies, and discover that AI-generated and human-written counterspeech can be easily distinguished by both simple classifiers and humans. Further, we reveal differences in linguistic characteristics, politeness, and specificity. The dataset used in this study is publicly available for further research.
%U https://aclanthology.org/2025.coling-main.239/
%P 3547-3559
Markdown (Informal)
[Assessing the Human Likeness of AI-Generated Counterspeech](https://aclanthology.org/2025.coling-main.239/) (Song et al., COLING 2025)
ACL
- Xiaoying Song, Sujana Mamidisetty, Eduardo Blanco, and Lingzi Hong. 2025. Assessing the Human Likeness of AI-Generated Counterspeech. In Proceedings of the 31st International Conference on Computational Linguistics, pages 3547–3559, Abu Dhabi, UAE. Association for Computational Linguistics.