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Abstract

Recent advancements in large language mod-
els (LLMs) have enabled in-context learning
(ICL)-based methods that significantly outper-
form fine-tuning approaches for text-to-SQL
tasks. However, their performance is still con-
siderably lower than that of human experts
on benchmarks that include complex schemas
and queries, such as BIRD. This study con-
siders the sensitivity of LLMs to the prompts
and introduces a novel approach that leverages
multiple prompts to explore a broader search
space for possible answers and effectively ag-
gregate them. Specifically, we robustly refine
the database schema through schema linking
using multiple prompts. Thereafter, we gener-
ate various candidate SQL queries based on the
refined schema and diverse prompts. Finally,
the candidate queries are filtered based on their
confidence scores, and the optimal query is ob-
tained through a multiple-choice selection that
is presented to the LLM. When evaluated on
the BIRD and Spider benchmarks, the proposed
method achieved execution accuracies of 65.5%
and 89.6%, respectively, significantly outper-
forming previous ICL-based methods.

1 Introduction

The text-to-SQL task involves translating a natu-
ral language question into SQL and is crucial for
natural language interfaces to databases (NLIDB)
systems. With the recent advancements in large lan-
guage models (LLMs), in-context learning (ICL)-
based approaches for text-to-SQL (Pourreza and
Rafiei, 2023a; Gao et al., 2023; Tai et al., 2023)
have demonstrated significant performance im-
provements over traditional fine-tuning methods
(Hui et al., 2022; Qi et al., 2022; Li et al., 2023a,b).
Notably, Pourreza and Rafiei (2023b) showed
that these methods even surpassed gold reference
queries in terms of human evaluation within the Spi-
der benchmark. However, for the more challenging
BIRD (Li et al., 2023c) benchmark, characterized

by its complex database (DB) schemas and queries,
the accuracies of ICL-based methods have not ex-
ceeded 60%, which is significantly lower than the
93.0% achieved by humans. This gap underscores
the need for further advancements in the ICL ap-
proach to serve as an NLIDB system.

A significant limitation of LLMs across various
tasks is their sensitivity to the structure and con-
tent of prompts. Even for semantically identical
prompts, LLMs can generate drastically varying re-
sponses because of factors such as the order of sen-
tences (Jang and Lukasiewicz, 2023; Wang et al.,
2023b), choice of demonstration examples (Liu
et al., 2022; Nori et al., 2023), and the sequence
in which these examples are presented (Lu et al.,
2022). Our experiments confirmed a similar ten-
dency in the text-to-SQL context, where alterations
in the schema presentation (§5.3) and the choice of
few-shot examples (§5.4) resulted in variations in
LLM outputs.

In this study, to improve the accuracy and ro-
bustness of LLMs for text-to-SQL, we introduce
a novel approach that leverages multiple prompts
to generate various candidate answers and effec-
tively aggregates them. We utilize the sensitivity of
LLMs to prompts to explore a broader search space
for answers using different prompts. As shown in
Figure 1, the SQL generation process comprises
three steps: schema linking, multiple SQL gener-
ation, and selection. Initially, the schema-linking
phase robustly selects tables and columns relevant
to the question from the DB schema using multi-
ple prompts. Subsequently, the generation phase
employs various prompts to produce diverse candi-
date SQL queries, ensuring a broader exploration
of potential queries. Finally, the selection phase fil-
ters candidate queries based on confidence scores,
and the optimal query is selected through multiple-
choice selection (MCS) that is presented to the
LLM.

We evaluated our methodology using two bench-
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Figure 1: Overview of the proposed methodology, including three steps: schema linking, multiple SQL generation,
and selection.

marks, BIRD (Li et al., 2023c) and Spider (Yu et al.,
2018). For BIRD, we achieved an execution accu-
racy (EX) of 65.5% and a valid efficiency score
(VES) of 71.4%, which outperforms the previous
state-of-the-art (SOTA) ICL-based method (Wang
et al., 2023a) by +5.9% and +3.7%, respectively,
setting a new SOTA performance for the BIRD. In
addition, for the Spider test set, we achieved an EX
of 89.6%, which outperforms the existing SOTA
ICL-based approach (Gao et al., 2023) by 3.0%.

2 Related Work

Prompt Engineering Prompt engineering,
which is the study of designing effective prompts,
is an active research area as prompts significantly
impact the performance of LLMs across various
NLP tasks. A prominent example is the chain-of-
thought (CoT) prompting (Wei et al., 2022), which
employs manually crafted examples to guide the
LLM to generate intermediate reasoning steps
prior to deriving the answer. This technique has
demonstrated significant performance enhance-
ments across various tasks. Kojima et al. (2022)
further demonstrated that LLMs can explain
their reasoning steps even in the absence of
human-annotated examples.

In addition to CoT, self-consistency decoding
(Wang et al., 2022) has been proposed, wherein
multiple answers are sampled from the LLM before
selecting one through a majority vote. Compared
with greedy decoding, this technique facilitates the
exploration of various reasoning paths and has ex-
hibited substantial performance gains. For more
effective explorations of the reasoning steps, vari-
ations such as tree-of-thought (Wei et al., 2022)

and graph-of-thought (Besta et al., 2023) have also
been proposed.

However, because these approaches rely on a
single prompt to generate the reasoning steps, we
hypothesize that they fail to mitigate the issue of
LLMs’ high sensitivity to prompts, thereby explor-
ing only a limited search space. Several studies
have shown that even when presented with se-
mantically identical prompts, the outputs of LLMs
vary based on factors such as sentence structure
(Webson and Pavlick, 2022), sequence of sentences
(Jang and Lukasiewicz, 2023; Wang et al., 2023b;
Pezeshkpour and Hruschka, 2023), choice of few-
shot examples (Liu et al., 2022; Nori et al., 2023),
and the order in which the examples are presented
(Lu et al., 2022). Therefore, we use multiple dis-
tinct prompts for a wider exploration of potential
answers, thereby mitigating the LLM’s sensitivity
issue of LLMs to prompts and ensuring the genera-
tion of more robust answers.

ICL for Text-to-SQL As ICL-based approaches
have shown remarkable performance in text-to-
SQL tasks, various studies have focused on creat-
ing better prompts for text-to-SQL. Several studies
have focused on applying prompting techniques
such as CoT or least-to-most (Zhou et al., 2022)
for text-to-SQL generation (Pourreza and Rafiei,
2023a; Tai et al., 2023; Wang et al., 2023a). How-
ever, these methods rely on fixed sets of manually
crafted examples, and their performance can vary
significantly depending on the selection of these
examples. In this work, instead of relying on fixed
human-labeled examples, we dynamically select
few-shot examples from the training data based on
the test sample. Some studies have aimed to deter-
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mine a more effective few-shot selection strategy
for text-to-SQL (Guo et al., 2023; Nan et al., 2023;
Gao et al., 2023). However, unlike these studies,
which focused on determining a single optimal se-
lection strategy, we employ a parallel approach that
employs various few-shot selection strategies with
multiple prompts and effectively aggregates them.

3 Methodology

As shown in Figure 1, the proposed method com-
prises three steps: (1) schema linking, wherein ta-
bles and columns irrelevant to the question from
the DB schema are excluded; (2) multiple SQL gen-
eration, wherein multiple candidate SQL queries
are generated based on various prompts; and (3)
selection, wherein the most accurate SQL query is
selected from among the candidates.

3.1 Schema Linking
Schema linking involves identifying relevant ta-
bles and columns from a DB to convert a natural
language question into an SQL query (Guo et al.,
2019). The introduction of schema linking has sig-
nificantly improved the performances of both fine-
tuning-based (Lei et al., 2020; Xu et al., 2022; Qi
et al., 2022; Li et al., 2023a) and ICL-based (Dong
et al., 2023; Pourreza and Rafiei, 2023a; Wang
et al., 2023a) approaches.

We perform schema linking in two steps: first,
the tables related to the natural language query
are extracted (table linking). Thereafter, the nec-
essary columns within those tables are extracted
(column linking). We employ multiple prompts in
both phases with the aim of achieving a high recall.

3.1.1 Table Linking
In table linking, the DB schema and question are in-
put into the LLM, which extracts a list of reference
tables to generate the SQL query. Inspired by zero-
shot-CoT (Kojima et al., 2022), we ask the LLM to
explain why each table is necessary, instead of just
selecting a list of tables. To easily parse the LLM’s
answer, we ask it to respond in the JSON format,
as described in Listing 1.
### For a given DB schema and question,

extract the list of tables required
to write the SQL query.

### DB schema: ...
### Question: ...

Your answer should be in the json format
:

{

"reasoning": "..." # The reason for
selecting each table.

"answer": [...] # List of selected
tables.

}

### Your answer:

Listing 1: Prompt template for table linking. An example
of the full prompt is presented in Appendix B.1.1.

To enhance the robustness of table linking, we
utilize multiple prompts. Various studies have
demonstrated that LLM outputs are significantly af-
fected by the sequence of input sentences (Jang and
Lukasiewicz, 2023; Wang et al., 2023b; Liu et al.,
2023). Similarly, our experiments (§5.3) revealed
that the output of schema-linking output of LLMs
also depends on the sequence in which the tables
and columns are arranged in the prompts. To mini-
mize the influence of the table order, we randomly
shuffle the order of tables, generating pt distinct
prompts. For each prompt, we obtain n responses
from the LLM by using a high sampling tempera-
ture. The final table-linking output is derived from
the union of all responses, amounting to pt ·n table
lists. We use a union operation because including
unnecessary tables in table linking does not sig-
nificantly impact the subsequent SQL-generation
process; however, omitting the necessary tables
prevents the generation of the correct SQL query.

3.1.2 Column Linking

For column linking, we ask the LLM to extract
the columns required for converting a question
into an SQL query using a prompt similar to that
used in table linking. The prompt includes only the
schemas of the tables selected during table link-
ing, instead of the entire DB schema. Because the
same column name can exist in different tables,
we instruct the LLM to provide the answer in the
[table_name].[column_name] format.

Similar to table linking, the order of the tables
and columns is randomly shuffled to generate pc
unique prompts. Subsequently, n LLM responses
are generated for each prompt, where each response
represents a selected column list. The column-
linking output is the union of all pc ∗ n responses.

In the subsequent SQL-generation steps, when
providing the DB schema to LLM, only the tables
and columns selected through schema linking are
provided instead of the full schema.
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3.2 Multiple SQL Generation

To address the sensitivity of the LLM to prompts,
we generate various SQL queries based on multi-
ple, distinct prompts. Several studies have demon-
strated that the output of an LLM can differ signif-
icantly depending on the few-shot examples pro-
vided (Liu et al., 2022; Wu et al., 2023), and even
on the sequence in which these examples are pre-
sented (Lu et al., 2022; Zhao et al., 2021). To effec-
tively leverage this variability, we generate multiple
prompts by varying both the selection method of
the few-shot examples and the order in which they
are presented, thereby ensuring a broader explo-
ration of potential SQL queries.

3.2.1 Few-Shot Examples Selection
For each test sample, a set of few-shot examples
is selected from the training dataset. To generate
multiple prompts with different examples, we use
two distinct selection strategies: one that leverages
question similarity and another that utilizes masked
question similarity. In the question similarity-based
approach, we select the top-k questions from the
training dataset that have the nearest sentence em-
beddings to the natural language question of the
test sample.

Similarly, the masked question similarity-based
approach considers the embedding similarity of
masked questions, wherein tokens specific to the
DB schema in the question are masked. This mask-
ing allows determining the similarity of questions
in terms of generating similar queries by disregard-
ing schema-specific content. We employ an LLM
for the masking process by presenting it with the
DB schema and question, and asking it to replace
the table names, column names, and values with
special tokens. The prompt for this question mask-
ing is presented in Appendix B.2.

Through these two few-shot selection strategies,
we generate pq different prompts, including one
derived exclusively from question similarity, an-
other solely from masked question similarity, and
additional prompts created by integrating examples
from both strategies in various sequences.

3.2.2 SQL Generation

### Generate the correct SQL query for a
given DB schema and question.

### Gold Examples:
- Question: ...
- Gold SQL: ...
...

### DB Schema: ...
### Sample Table Contents: ...
### Question: ...

Your answer should be in the json format
:

{
"reasoning": ".." # The reasoning
steps behind the generated SQL query

"sql": ".." # The generated SQL query.
}

### Your answer:

Listing 2: Prompt template for SQL generation. An
example of the full prompt is presented in Appendix B.3.

As illustrated in Listing 2, our SQL-generation
prompt includes few-shot examples, a DB schema,
sample table contents, and a natural language ques-
tion. The few-shot examples comprise questions
and their corresponding gold SQL pairs. To con-
serve the limited length of the prompt, we exclude
the schema of the target DB for each question. Re-
garding the DB schema, we selectively present only
the tables and columns selected during the schema-
linking process to avoid burdening the LLM with ir-
relevant information. Additionally, we embed sam-
ple table contents in the CSV format within the
prompt to facilitate the LLM’s comprehension of
potential values in each column, thereby providing
practical insight into the data structure of the DB.
Finally, we instruct LLM not only to produce the
SQL query but also to explain the reasoning be-
hind its generation, thereby enhancing the model’s
interpretability and accuracy.

For each prompt, we generate n responses from
the LLM using a high sampling temperature, result-
ing in pq ·n candidate SQL queries being generated.

3.3 Selection

The selection step aims to select the most accurate
query from the candidate queries. Initially, the can-
didate pool is filtered based on confidence scores,
and the LLM is then tasked with selecting the most
accurate query from the refined pool.

3.3.1 Candidate Filtering
To select the most accurate query among the
candidates, we first narrow down the candidate
pool. Queries with the same execution results are
grouped together, and only the fastest query from
each group is retained. Additionally, queries with
low confidence scores are excluded from the candi-
dates.
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In detail, all candidate queries are executed on
the DB, and queries that result in syntax errors
or timeouts are removed from the candidate pool.
Next, the confidence score for each query in the
candidate pool is calculated, which is determined
based on the number of queries that produce the
same execution result. Formally, for a candidate
pool C containing N queries {q1, . . . , qN}, the
confidence of query qi is computed as follows:

confidence(qi) =
1

N

N∑
j=1

[exec(qj) = exec(qi)]

(1)

where exec(qi) denotes the execution result for
query qi.

Among the queries in candidate pool C with
identical execution results, only the query with the
minimum execution time is selected as follows:

C ′ =
⋃

R∈R(C)

argmin
qi∈C,exec(qi)=R

exec_time(qi) (2)

where R(C) represents the set of all unique
execution results from all queries in C, and
exec_time(qi) denotes the execution time for query
qi.

Finally, all queries in C ′ with confidence score
below threshold T are excluded as follows:

C ′′ = {qi ∈ C ′ | confidence(qi) ≥ T}, (3)

resulting in a refined candidate pool C ′′.

3.3.2 Multiple-Choice Selection (MCS)
Following the filtering process, we utilize the LLM
to select the most accurate query among the candi-
dates through a multiple-choice question.
### For a given DB schema and question,

select the most accurate query among
the candidate SQL queries.

### DB schema: ...
### Question: ...
### Candidate SQLs:
1. SQL1
2. SQL2
3. SQL3

Your answer should be in the json format
:

{
"reasoning": ".." # The reasoning
steps for selecting the correct SQL
query.

"sql": ".." # The selected SQL query.
}

### Your answer:

Listing 3: Prompt template for SQL selection. An
example of the full prompt is presented in Appendix B.4.

As shown in the Listing 3, we present a set of
candidate SQL queries to the LLM and request
it to select the most accurate query for a given
DB schema and question. Candidate queries are
provided in descending order of confidence scores,
considering the tendency of LLMs to favor options
that appear earlier in the multiple-choice questions
(Wang et al., 2023b; Zheng et al., 2023). The LLM
is required to not only select an SQL query but also
provide the reasons for its selection. We sample n
responses from the LLM and determine the final
SQL query through a majority vote.

4 Experimental Setup

4.1 Datasets
Spider Spider (Yu et al., 2018) is a large-scale,
complex, cross-domain text-to-SQL benchmark
comprising 10,181 questions and 5,693 distinct
queries across 200 databases, each with multiple
tables. This benchmark requires the model to adapt
to an unseen DB schema because different DBs are
used for training and testing.

BIRD BIRD (Li et al., 2023c) is a new large-
scale, cross-domain text-to-SQL benchmark com-
prising 12,751 unique question-SQL pairs across
95 large real-world databases. Compared with
Spider, BIRD comprises considerably more com-
plex SQL queries with various SQL keywords
(LEFT JOIN, PARTITION BY, etc.) and func-
tions (IIF, CASE, ROUND, etc.) that are not in-
cluded in Spider. In addition, BIRD requires rea-
soning using external knowledge (such as synonym
knowledge and value illustrations) to generate ac-
curate SQL queries.

4.2 Evaluation Metrics
Execution Accuracy (EX) EX indicates whether
the SQL execution result generated by the model is
identical to the gold SQL query. Because an SQL
query can be written in various forms to produce
the same result, evaluation metrics based on string
matching significantly underestimate model perfor-
mance.

Valid Efficiency Score (VES) For the BIRD
dataset, Li et al. (2023c) proposed an additional
evaluation metric called VES that measures the ef-
ficiency of a valid model-generated query based on
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Dev Test
Model EX VES EX VES

GPT-4 (zero-shot) 46.4 49.8 54.9 60.8
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2023a) 50.7 58.8 55.9 59.4
DAIL-SQL + GPT-4 (Gao et al., 2023) 54.8 56.1 57.4 62.0
MAC-SQL + GPT-4 (Wang et al., 2023a) 57.7 58.8 59.6 67.7
MCS-SQL + GPT-4 (Ours) 63.4 64.8 65.5 71.4

Table 1: Execution accuracies (EX) and valid efficiency scores (VES) for the BIRD dev and test sets.

Model Dev Test

GPT-4 (zero-shot) 74.6 -
DIN-SQL + GPT-4
(Pourreza and Rafiei, 2023a)

82.8 85.3

DAIL-SQL + GPT-4
(Gao et al., 2023)

84.4 86.6

MAC-SQL + GPT-4
(Wang et al., 2023a)

86.8 -

MCS-SQL + GPT-4 (Ours) 89.5 89.6

Table 2: Execution accuracies for the Spider dev and
test sets. "-" denotes that the model did not report per-
formance for the test set.

the execution time. A query is considered invalid
and assigned a score of zero if its execution result
differs from that of the gold SQL. Therefore, VES
considers both the model accuracy and efficiency
for the generated query.

4.3 Implementation Details

In all of our experiments, we used the GPT-4 8K
as the LLM and text-embedding-ada-002
as the sentence embedding model, which was ac-
cessed via Azure OpenAI API. Additionally, we
employed the FAISS (Douze et al., 2024) library
for the embedding similarity search. In schema link-
ing, we used pt = 3 prompts for table linking and
pc = 3 prompts for column linking. To generate
multiple candidate SQL queries, we use pq = 5
distinct prompts. For each GPT API call, we used
a temperature of 1.0 and generated n=20 responses.
In both the SQL-generation and MCS steps, we
used k=20 question-SQL pairs as few-shot exam-
ples. We executed all candidate SQL queries with
a timeout of 180s and filtered out queries with a
confidence score lower than the threshold T=0.2.

4.4 Baselines
We compare the proposed MCS-SQL approach
with ICL-based methods based on GPT-4.

GPT-4 (Achiam et al., 2023) uses the zero-shot
prompt provided in OpenAI’s text-to-SQL demo1.

DIN-SQL (Pourreza and Rafiei, 2023a) classi-
fies the complexity of the question and generates
an SQL query by applying different prompts based
on the classification result. In each step, it uses a
prompt with fixed few-shot examples that are man-
ually written in the CoT style.

DAIL-SQL (Gao et al., 2023) employs dynamic
few-shot examples by considering the similarity of
both the questions and the queries. For additional
performance improvement, self-consistency (Wang
et al., 2022) is introduced.

MAC-SQL (Wang et al., 2023a) decomposes
the question into sub-questions and sequentially
generates SQL queries for each sub-question using
manually crafted few-shot samples. Additionally,
in case of a syntax error, it uses a prompt to correct
the generated query.

5 Results and Analysis

5.1 Main Results
BIRD Table 1 presents the EX and VES of the
proposed and baseline models for the BIRD dev
and test sets. The results demonstrate that the pro-
posed approach significantly outperforms existing
ICL-based approaches in both metrics. Specifically,
the proposed method achieved an EX of 65.45%
and a VES of 71.35% on the holdout test set, sur-
passing the performance of the previous SOTA ICL-
based approach (Wang et al., 2023a) by significant
margins of 5.86% and 3.67%, respectively. Fur-
thermore, the proposed method established a new

1https://platform.openai.com/examples/default-sql-
translate

https://platform.openai.com/examples/default-sql-translate
https://platform.openai.com/examples/default-sql-translate
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Method Simple Moderate Challenging ALL

zero-shot 59.0 40.2 30.6 50.7
+ schema linking 61.4 41.1 35.4 52.8 (+2.1)
+ sample table contents 64.1 42.6 38.9 55.2 (+2.4)
+ few-shot examples 67.1 51.6 41.0 60.0 (+4.8)
+ MCS (pq=1, n=20) 69.3 52.0 48.6 62.1 (+2.1)
+ MCS (pq=5, n=20) 70.4 53.1 51.4 63.4 (+1.3)

Table 3: Execution accuracies for the ablation analysis on the BIRD dev set across various difficulty levels.

Method Easy Medium Hard Extra Hard ALL

zero-shot 79.0 83.4 66.7 52.4 74.6
+ schema linking 86.7 85.0 67.2 57.2 77.9 (+3.3)
+ sample table contents 89.9 88.6 69.0 59.0 80.9 (+3.0)
+ few-shot examples 94.0 90.4 86.2 66.3 86.7 (+5.8)
+ MCS (pq=1, n=20) 93.1 92.6 88.5 72.2 88.8 (+2.1)
+ MCS (pq=5, n=20) 94.0 93.5 88.5 72.9 89.5 (+0.7)

Table 4: Execution accuracies for the ablation analysis on the Spider dev set across various difficulty levels.

SOTA performance on the BIRD, surpassing the
former SOTA method with a substantial margin of
4.74% in EX and 3.67% in VES.

Spider Table 2 presents the EX of the proposed
and baseline methods for the Spider dev and test
sets. Similar to the results obtained for BIRD, the
proposed approach significantly outperforms all
existing ICL-based approaches. Specifically, on
the dev set, our approach achieved an EX of 89.5,
which exceeds that of the former SOTA ICL-based
approach (Wang et al., 2023a) by +2.7%.

5.2 Ablation Study
We conducted an ablation study to investigate the
incremental impact of each component of the pro-
posed approach on the EX. The ablation results for
the BIRD dev set are presented in Table 3. The ad-
dition of schema linking to the baseline zero-shot
setting resulted in a 2.1% improvement. This under-
scores the importance of refining the schema prior
to SQL generation and shows that the proposed
schema-linking process effectively selects relevant
tables and columns. The inclusion of the sample
table contents in the prompt further amplified this
gain by +2.4%. The introduction of dynamic few-
shot examples that were selected based on masked
question similarity resulted in the largest perfor-
mance improvement of +4.8%. Moreover, when
we sampled multiple answers from the LLM using
the same prompt and employed the proposed MCS

method, the performance further improved by 2.1%.
This demonstrates the capability of the proposed
SQL selection method in discerning and selecting
the most accurate query from a set of candidates.
Finally, introducing multiple prompts led to fur-
ther enhancements of +1.3%, particularly showing
significant performance improvement on challeng-
ing queries. This improvement demonstrates that
broadening the search space using various prompts
significantly boosted the SQL-generation accuracy.

Table 4 lists the ablation results for the Spider
dev set, wherein it is evident that each component
of the proposed approach contributed to signifi-
cant performance gains, similar to the results ob-
tained for BIRD. This consistent performance en-
hancement across different benchmarks confirms
the effectiveness and adaptability of the proposed
approach for the text-to-SQL task.

5.3 Impact of Using Multiple Prompts in
Schema Linking

We conducted a comparative analysis of the follow-
ing three cases to investigate the impact of using
multiple prompts in schema linking: (1) greedy de-
coding with a single prompt; (2) taking the union of
multiple answers generated from a single prompt;
and (3) taking the union of multiple answers gener-
ated from multiple prompts. Table 5 lists the recall
of schema linking for each case, which was calcu-
lated based on whether the predicted list of tables
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and columns included those used in the gold query.
The results demonstrate that sampling multiple

responses using the same prompt and aggregating
them led to notable performance gains of +15.8%
for BIRD and +4.7% for Spider. However, lever-
aging multiple prompts contributed to further sig-
nificant improvements, with gains of +12.7% for
BIRD and +2.7% for Spider. These results indi-
cate that the order of tables and columns in the
prompt affects the schema-linking results of the
LLM and that the proposed multiple-prompt ap-
proach effectively mitigates this sensitivity. This
improvement was particularly noticeable in BIRD,
implying that the effectiveness of using multiple
prompts increases for larger and more complex DB
schemas.

As it is impossible to generate accurate SQL
queries in subsequent processes if the necessary ta-
bles or columns are omitted in schema linking, our
proposal of using the union of various responses
from multiple prompts is pivotal for enhancing the
SQL-generation performance.

Method BIRD Spider

pt = pc = 1, n=1 61.3 91.8
pt = pc = 1, n=20 77.1 96.5
pt = pc = 3, n=20
(proposed)

89.8 99.2

Table 5: Recall of schema linking for the BIRD and
Spider dev sets under three different settings: (1) greedy
decoding with a single prompt, (2) sampling multiple
answers from the same prompt, and (3) employing mul-
tiple prompts.

5.4 Impacts of Different Few-shot Selection
Strategies

Table 6 presents the EXs when different few-shot
strategies were employed. The performance im-
proved significantly by selecting few-shot exam-
ples based on question similarity instead of ran-
dom selection, with an increase of 2.3% for BIRD
and 4.2% for Spider. Additionally, a further perfor-
mance boost was noted by predicating the selection
on the similarity of the masked question rather than
the original question, with enhancements of 0.7%
and 0.5% for BIRD and Spider, respectively.

5.5 Impact of MCS
During the SQL selection phase (§3.3), we ex-
plored whether the proposed MCS via LLM was

Method BIRD Spider

Random 57.0 82.0
Question Similarity 59.3 86.2
Masked Question Similarity 60.0 86.7

Table 6: Execution accuracies under different few-shot
examples selection strategies for the BIRD and Spider
dev sets.

more effective than a majority vote, which selects
the query with the highest confidence score. As
presented in Table 7, the proposed MCS approach
outperformed the majority vote approach by +0.6%
and +0.3% for the BIRD and Spider, respectively.
Notably, in the absence of confidence-based filter-
ing, as expressed in Eq. (3), the efficacy of the MCS
method decreased significantly. This result under-
scores the importance of employing confidence-
based filtering to effectively narrow down the can-
didate pool when using MCS.

Method BIRD Spider

Majority Vote 62.8 89.2
MCS w/o confidence filtering 62.5 85.4
MCS w/ confidence filtering
(proposed)

63.4 89.5

Table 7: Execution accuracies under different SQL se-
lection strategies for the BIRD and Spider dev sets.

6 Conclusion

This study introduces a novel method that lever-
ages multiple prompts to enhance the accuracy and
robustness of ICL-based text-to-SQL generation.
Specifically, the proposed approach performs ro-
bust schema linking using distinct prompts. In addi-
tion, we employ different few-shot selection strate-
gies to generate multiple query generation prompts,
which yield various candidate SQL queries. These
candidates are subsequently filtered based on their
confidence scores, and the optimal query is se-
lected using the LLM with MCS. Evaluations on
the BIRD and Spider benchmarks showed that the
proposed approach significantly outperforms ex-
isting ICL-based approaches and achieved a new
SOTA performance on the BIRD.
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Limitations

Our SQL-generation process is costly due to (1)
requiring three to four consecutive API calls to
the LLM and (2) utilizing multiple prompts and
generating diverse LLM responses for each prompt.
As the LLM advances, the cost will decrease, but
a more cost-effective approach could be a future
research direction.
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A Error Analysis

We performed an error analysis to gain a deeper un-
derstanding of the instances in which the proposed
method failed to accurately predict the SQL query.
This analysis was conducted on a random sample of
100 examples from both the Spider and BIRD dev
sets, where the execution results of the predicted
query and gold SQL differed. Failure cases were
categorized into four distinct categories as follows:

• Incorrect Gold: The gold SQL query pro-
vided by human annotators in the dataset was
incorrect.

• Semantically Correct: The predicted SQL
query was semantically equivalent to the gold
SQL query, but the execution result differed
owing to factors such as ties in the output
(Pourreza and Rafiei, 2023b), the order of
columns in the SELECT clause, or the inclu-
sion of additional columns in the SELECT
clause.

• Schema Linking Error: The predicted SQL
query referred to different tables or columns
than those referred to in the gold SQL query.

• Other Errors: The predicted SQL contained
errors other than schema linking.

Examples from each category are listed in Table 8.
The results of manually classifying the failure

cases are depicted in Figure 2. The 62 and 73%
failure cases in the BIRD and Spider benchmarks,
respectively, were those wherein the correct query
was generated but they were still considered fail-
ures owing to inaccuracies in the gold queries or

limitations of the method used to calculate the EX.
When these cases were excluded, the most preva-
lent error was schema linking, which involved se-
lecting incorrect tables or columns (20% for BIRD
and 21% for Spider). However, even for human
experts, referencing the exact tables and columns
as the gold query is a challenging task because of
inherent ambiguities. Such ambiguities arise when
multiple columns in a DB share the same semantic
meaning, or when the question does not explicitly
specify the columns to be included in the SELECT
clause. Other errors, excluding schema linking, ac-
counted for only 6% and 18% of the errors for Spi-
der and BIRD, respectively. These errors encom-
passed cases in which the question or evidence was
misinterpreted, incorrect assumptions were made
regarding the DB content, or a syntactically correct
SQL query could not be generated.

These results indicate that the EX of the pro-
posed approach was significantly underestimated
for both datasets. Furthermore, this analysis under-
scores the need for more precise gold queries and
robust evaluation methodologies for text-to-SQL
tasks.

Figure 2: Error analysis for the Spider and BIRD dev sets.
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Incorrect Gold

Question List out the code for drivers who have nationality in America.
Evidence nationality = ’America’
GOLD SELECT code FROM drivers WHERE Nationality = ’American’
PRED SELECT code FROM drivers WHERE nationality = ’America’

Question Which customer paid the most in 2012/8/25?
Evidence ’2012/8/25’ can be represented by ’2012-08-25’
GOLD SELECT CustomerID FROM transactions_1k WHERE Date = ’2012-08-25’ GROUP BY

CustomerID ORDER BY SUM(Price) DESC LIMIT 1
PRED SELECT CustomerID FROM transactions_1k WHERE Date = ’2012-08-25’ GROUP BY

CustomerID ORDER BY SUM(Amount * Price) DESC LIMIT 1

Semantically Correct

Question What is the phone number and extension number for the school with the zip code 95203-3704?
Indicate the school’s name.

GOLD SELECT Phone, Ext, School FROM schools WHERE Zip = ’95203-3704’
PRED SELECT School, Phone, Ext FROM schools WHERE Zip = ’95203-3704’

Question List the card names with value that cost more converted mana for the face.
Evidence more converted mana for the face refers to Max(faceConvertedManaCost);
GOLD SELECT name FROM cards ORDER BY faceConvertedManaCost LIMIT 1
PRED SELECT name FROM cards WHERE faceConvertedManaCost = ( SELECT

MAX(faceConvertedManaCost) FROM cards )

Schema Linking Error

Question Which constructor has the highest point?
GOLD SELECT T2.name FROM constructorStandings AS T1 INNER JOIN constructors AS T2 on

T1.constructorId = T2.constructorId ORDER BY T1.points DESC LIMIT 1
PRED SELECT T2.name FROM constructorResults AS T1 INNER JOIN constructors AS T2 ON

T1.constructorId = T2.constructorId ORDER BY T1.points DESC LIMIT 1

Question List all the mythic rarity print cards banned in gladiator format.
Evidence mythic rarity printing refers to rarity = ’mythic’; card banned refers to status = ’Banned’; in

gladiator format refers to format = ’gladiator’;
GOLD SELECT DISTINCT T1.id FROM cards AS T1 INNER JOIN legalities AS T2 ON T1.uuid =

T2.uuid WHERE T2.format = ’gladiator’ AND T2.status = ’Banned’ AND T1.rarity = ’mythic’
PRED SELECT DISTINCT cards.name FROM cards INNER JOIN legalities ON cards.uuid = le-

galities.uuid WHERE legalities.format = ’gladiator’ AND legalities.status = ’Banned’ AND
cards.rarity = ’mythic’

Other Errors

Question What is the lowest grade for the District Special Education Consortia School with National
Center for Educational Statistics school district identification number of 613360?

Evidence District Special Education Consortia School refers to EdOpsCode = ’SPECON’.
GOLD SELECT MIN(T1.‘Low Grade‘) FROM frpm AS T1 INNER JOIN schools AS T2 ON

T1.CDSCode = T2.CDSCode WHERE T2.NCESDist = 613360 AND T2.EdOpsCode =
’SPECON’

PRED SELECT frpm.‘Low Grade‘ FROM frpm INNER JOIN schools ON frpm.CDSCode =
schools.CDSCode WHERE schools.EdOpsCode = ’SPECON’ AND schools.NCESDist =
’613360’

Question What type of promotion is of card ’Duress’?
Evidence card Duress refers to name = ’Duress’; type of promotion refers to promoTypes;
GOLD SELECT promoTypes FROM cards WHERE name = ’Duress’ AND promoTypes IS NOT NULL
PRED SELECT promoTypes FROM cards WHERE name = ’Duress’

Table 8: Examples of each error case in the BIRD dev set.



349

B Prompts

B.1 Prompt for Schema Linking

B.1.1 Prompt for Table Linking

### Given a database schema, question, and knowledge evidence, extract a list of
tables that should be referenced to convert the question into SQL.

### SQLite SQL tables, with their properties:
# molecule ( molecule_id, label )
# connected ( atom_id, atom_id2, bond_id )
# bond ( bond_id, molecule_id, bond_type )
# atom ( atom_id, molecule_id, element )
#
# atom.molecule_id = molecule.molecule_id
# bond.molecule_id = molecule.molecule_id
# connected.bond_id = bond.bond_id
# connected.atom_id2 = atom.atom_id
# connected.atom_id = atom.atom_id

### Question: Among all chemical compounds identified in the database, what percent
of compounds form a triple-bond.

### Knowledge Evidence: triple bond refers to bond_type = ’#’;

You need to not only select the required tables, but also explain in detail why each
table is needed.

Your answer should strictly follow the following json format.
{

"reasoning": "", // The reason for choosing each table.
"tables": [], // List of selected tables.

}

### Your Answer:

B.1.2 Prompt for Column Linking

### Given a database schema, question, and knowledge evidence, extract a list of
columns that should be referenced to convert the question into SQL.

### SQLite SQL tables, with their properties:
# molecule ( molecule_id, label )
# bond ( bond_id, molecule_id, bond_type )
#
# bond.molecule_id = molecule.molecule_id

### Question: Among all chemical compounds identified in the database, what percent
of compounds form a triple-bond.

### Knowledge Evidence: triple bond refers to bond_type = ’#’;

You need to not only select the required columns, but also explain in detail why
each column is needed.

Your answer should strictly follow the following json format.
{{

"reasoning": "", // The reason for choosing each column.
"columns": ["table_name_i.column_name_j", ...], // List of selected columns

}}

### Your Answer:

B.2 Prompt for Question Masking

### Given a DB schema and a question, mask the table name, column name, and values
in the question.

<example1>
### SQLite SQL tables, with their properties:
# customers ( CustomerID: integer, Segment: text, Currency: text )
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# gasstations ( GasStationID: integer, ChainID: integer, Country: text, Segment:
text )

# products ( ProductID: integer, Description: text )
# transactions_1k ( TransactionID: integer, Date: date, Time: text, CustomerID:

integer, CardID: integer, GasStationID: integer, ProductID: integer, Amount:
integer, Price: real )

# yearmonth ( CustomerID: integer, Date: text, Consumption: real )

### Question: For all the people who paid more than 29.00 per unit of product id No
.5. Give their consumption status in the August of 2012.

### Masked Question: For all the [TABLE] who paid more than [VALUE] per unit of [
COLUMN] [VALUE]. Give their consumption status in the [VALUE].

</example1>

<example2>
### SQLite SQL tables, with their properties:
# customers ( CustomerID: integer, Segment: text, Currency: text )
# gasstations ( GasStationID: integer, ChainID: integer, Country: text, Segment:

text )
# products ( ProductID: integer, Description: text )
# transactions_1k ( TransactionID: integer, Date: date, Time: text, CustomerID:

integer, CardID: integer, GasStationID: integer, ProductID: integer, Amount:
integer, Price: real )

# yearmonth ( CustomerID: integer, Date: text, Consumption: real )

### Question: How much did customer 6 consume in total between August and November
2013?

### Masked Question: How much did [TABLE] [VALUE] consume in total between [VALUE]
and [VALUE]?

</example2>

<example3>
### SQLite SQL tables, with their properties:
# drivers ( driverId: integer, driverRef: text, number: integer, code: text,

forename: text, surname: text, dob: date, nationality: text, url: text )

### Question: How many Australian drivers who were born in 1980?
### Masked Question: How many [VALUE] [TABLE] who were born in [VALUE]?
</example3>

### SQLite SQL tables, with their properties:
# molecule ( molecule_id, label )
# bond ( bond_id, molecule_id, bond_type )
#
# bond.molecule_id = molecule.molecule_id

### Question: Among all chemical compounds identified in the database, what percent
of compounds form a triple-bond.

### Knowledge Evidence: triple bond refers to bond_type = ’#’;

### Masked Question:

Listing 4: An example of a full prompt for question masking.

B.3 Prompt for SQL Generation

### Given a database schema, question, and knowledge evidence, generate the correct
sqlite SQL query for the question.

<examples>
# Question: Among all the customers, what is the percentage of the customer’s nation

being Germany?
# Knowledge Evidence: DIVIDE(COUNT(c_custkey when n_name = ’GERMANY’), COUNT(

c_custkey)) as percentage;
# Gold SQL: SELECT CAST(SUM(IIF(T2.n_name = ’GERMANY’, 1, 0)) AS REAL) * 100 / COUNT

(T1.c_custkey) FROM customer AS T1 INNER JOIN nation AS T2 ON T1.c_nationkey =
T2.n_nationkey
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# Question: Among the schools whose donators are teachers, what is the percentage of
schools that are in Brooklyn?

# Knowledge Evidence: donors are teachers refers to is_teacher_acct = ’t’; Brooklyn
is school_city; percentage = Divide(Count(school_city-’Brooklyn’),Count(
school_city))*100

# Gold SQL: SELECT CAST(SUM(CASE WHEN T1.school_city LIKE ’Brooklyn’ THEN 1 ELSE 0
END) AS REAL) * 100 / COUNT(T1.teacher_acctid) FROM projects AS T1 INNER JOIN
donations AS T2 ON T1.projectid = T2.projectid WHERE T2.is_teacher_acct = ’t’

...
</examples>

### SQLite SQL tables, with their properties:
# molecule ( molecule_id, label )
# bond ( bond_id, molecule_id, bond_type )
#
# bond.molecule_id = molecule.molecule_id

### The type and description of each column:
# [molecule]
- molecule_id (text): unique id of molecule
- label (text): whether this molecule is carcinogenic or not

# [bond]
- bond_id (text): unique id representing bonds
- molecule_id (text): identifying the molecule in which the bond appears
- bond_type (text): type of the bond

### Sample rows of each table in csv format:
# [molecule]
molecule_id,label
TR000,+
TR001,+
TR002,-

# [bond]
bond_id,molecule_id,bond_type
TR000_1_2,TR000,-
TR000_2_3,TR000,-
TR000_2_4,TR000,-

### Question: Among all chemical compounds identified in the database, what percent
of compounds form a triple-bond.

### Knowledge Evidence: triple bond refers to bond_type = ’#’;

You need to not only create the SQL, but also provide the detailed reasoning steps
required to create the SQL. Your answer should strictly follow the following
json format:

{
"reasoning": "", // The reasoning steps for generating SQL.
"sql": "", // The final generated SQL.

}

### Your Answer:

B.4 Prompt for SQL Selection

### When a DB schema, a question, and a knowledge evidence are given, and up to
three SQLite queries expressing the question are given, please choose the most
accurate SQL based on the Checklist.

<examples>
# Question: Among all the customers, what is the percentage of the customer’s nation

being Germany?
# Knowledge Evidence: DIVIDE(COUNT(c_custkey when n_name = ’GERMANY’), COUNT(

c_custkey)) as percentage;
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# Gold SQL: SELECT CAST(SUM(IIF(T2.n_name = ’GERMANY’, 1, 0)) AS REAL) * 100 / COUNT
(T1.c_custkey) FROM customer AS T1 INNER JOIN nation AS T2 ON T1.c_nationkey =
T2.n_nationkey

# Question: Among the schools whose donators are teachers, what is the percentage of
schools that are in Brooklyn?

# Knowledge Evidence: donors are teachers refers to is_teacher_acct = ’t’; Brooklyn
is school_city; percentage = Divide(Count(school_city-’Brooklyn’),Count(
school_city))*100

# Gold SQL: SELECT CAST(SUM(CASE WHEN T1.school_city LIKE ’Brooklyn’ THEN 1 ELSE 0
END) AS REAL) * 100 / COUNT(T1.teacher_acctid) FROM projects AS T1 INNER JOIN
donations AS T2 ON T1.projectid = T2.projectid WHERE T2.is_teacher_acct = ’t’

...
</examples>

### SQLite SQL tables, with their properties:
# molecule ( molecule_id, label )
# bond ( bond_id, molecule_id, bond_type )
#
# bond.molecule_id = molecule.molecule_id

### The type and description of each column:
# [molecule]
- molecule_id (text): unique id of molecule
- label (text): whether this molecule is carcinogenic or not

# [bond]
- bond_id (text): unique id representing bonds
- molecule_id (text): identifying the molecule in which the bond appears
- bond_type (text): type of the bond

### Sample rows of each table in csv format:
# [molecule]
molecule_id,label
TR000,+
TR001,+
TR002,-

# [bond]
bond_id,molecule_id,bond_type
TR000_1_2,TR000,-
TR000_2_3,TR000,-
TR000_2_4,TR000,-

### Question: Among all chemical compounds identified in the database, what percent
of compounds form a triple-bond.

### Knowledge Evidence: triple bond refers to bond_type = ’#’;

### Candidate SQLs:
1. SELECT CAST(COUNT(CASE WHEN bond_type = ’#’ THEN 1 ELSE NULL END) AS REAL) * 100

/ COUNT(*) FROM bond
2. SELECT CAST(COUNT(DISTINCT CASE WHEN bond_type = ’#’ THEN molecule_id ELSE NULL

END) AS REAL) * 100 / COUNT(DISTINCT molecule_id) FROM bond

### Checklist:
1. The SQL should accurately represent the question.
2. The SQL should accurately use the given knowledge evidence.
3. The SELECT clause should not include any additional columns that are not included

in the question.
4. The order of columns in the SELECT clause must be the same as the order in the

question.
5. Check if the operations are being performed correctly according to the column

type.

### Instruction:
- If the first SQL satisfies all the conditions of the checklist, please choose the
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first SQL. If not, move on to the next SQL.
- If there’s no SQL that satisfies all the requirements on the checklist, just

choose the first SQL.
- Provide a detailed step-by-step explanation following the order of the checklist

when checking whether each SQL satisfies the checklist.
- Your answer should strictly follow the following json format.
{{

"reasoning": "", // The reasoning steps for choosing the best SQL.
"sql": "", // The final chosen SQL.

}}

### Your Answer:


