@inproceedings{li-etal-2025-paraphrase,
title = "Paraphrase Makes Perfect: Leveraging Expression Paraphrase to Improve Implicit Sentiment Learning",
author = "Li, Xia and
Wang, Junlang and
Zheng, Yongqiang and
Chen, Yuan and
Zheng, Yangjia",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.245/",
pages = "3631--3647",
abstract = "Existing implicit sentiment learning methods mainly focus on capturing implicit sentiment knowledge individually, without paying more attention to the potential connection between implicit and explicit sentiment. From a linguistic perspective, implicit and explicit sentiment expressions are essentially similar when conveying the same sentiment polarity for a specific aspect. In this paper, we present an expression paraphrase strategy and a novel sentiment-consistent contrastive learning mechanism to learn the intrinsic connections between implicit and explicit sentiment expressions and integrate them into the model to enhance implicit sentiment learning. We perform extensive experiments on public datasets, and the results show the significant efficacy of our method on implicit sentiment analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-paraphrase">
<titleInfo>
<title>Paraphrase Makes Perfect: Leveraging Expression Paraphrase to Improve Implicit Sentiment Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xia</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junlang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongqiang</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangjia</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing implicit sentiment learning methods mainly focus on capturing implicit sentiment knowledge individually, without paying more attention to the potential connection between implicit and explicit sentiment. From a linguistic perspective, implicit and explicit sentiment expressions are essentially similar when conveying the same sentiment polarity for a specific aspect. In this paper, we present an expression paraphrase strategy and a novel sentiment-consistent contrastive learning mechanism to learn the intrinsic connections between implicit and explicit sentiment expressions and integrate them into the model to enhance implicit sentiment learning. We perform extensive experiments on public datasets, and the results show the significant efficacy of our method on implicit sentiment analysis.</abstract>
<identifier type="citekey">li-etal-2025-paraphrase</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.245/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>3631</start>
<end>3647</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Paraphrase Makes Perfect: Leveraging Expression Paraphrase to Improve Implicit Sentiment Learning
%A Li, Xia
%A Wang, Junlang
%A Zheng, Yongqiang
%A Chen, Yuan
%A Zheng, Yangjia
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F li-etal-2025-paraphrase
%X Existing implicit sentiment learning methods mainly focus on capturing implicit sentiment knowledge individually, without paying more attention to the potential connection between implicit and explicit sentiment. From a linguistic perspective, implicit and explicit sentiment expressions are essentially similar when conveying the same sentiment polarity for a specific aspect. In this paper, we present an expression paraphrase strategy and a novel sentiment-consistent contrastive learning mechanism to learn the intrinsic connections between implicit and explicit sentiment expressions and integrate them into the model to enhance implicit sentiment learning. We perform extensive experiments on public datasets, and the results show the significant efficacy of our method on implicit sentiment analysis.
%U https://aclanthology.org/2025.coling-main.245/
%P 3631-3647
Markdown (Informal)
[Paraphrase Makes Perfect: Leveraging Expression Paraphrase to Improve Implicit Sentiment Learning](https://aclanthology.org/2025.coling-main.245/) (Li et al., COLING 2025)
ACL