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Abstract

In recent years, numerous studies have sought
to understand the cognitive dynamics underly-
ing language processing by modeling reading
times and ERP amplitudes using computational
metrics like surprisal. In the present paper, we
examine the predictive power of surprisal, en-
tropy, and a novel metric based on semantic
similarity for N400 and P600. Our experiments,
conducted with Mandarin Chinese materials, re-
vealed three key findings: 1) expectancy plays
a primary role for N400; 2) P600 also reflects
the cognitive effort required to evaluate linguis-
tic input semantically; and 3) during the time
window of interest, information uncertainty in-
fluences the language processing the most. Our
findings show how computational metrics that
capture distinct cognitive dimensions can effec-
tively address psycholinguistic questions.

1 Introduction

Surprisal theory states that the cognitive effort
needed to process a word is proportional to the
probability of encountering such a word in a given
context (Hale, 2001; Levy, 2008). This concept
has been modeled in computational psycholinguis-
tics and Natural Language Processing (NLP) as
the surprisal, i.e., the negative logarithm of the
conditional probability of a word given its context,
which is typically computed using the probability
distribution of words provided by language models
(Hale, 2016). Several studies have found correla-
tions between the surprisal of a word and its reading
time (Smith and Levy, 2013; Frank, 2017; Salic-
chi et al., 2021), or event-related potentials (ERPs)
amplitudes (Xu et al., 2024; Frank and Aumeistere,
2024). Most efforts in ERP modeling have focused
on predicting the N400 effect, and only recently,
some attention has been given to other components,
such as P600 (de Varda et al., 2024; Krieger et al.,
2024).

Aurnhammer et al. (2021) found that N400’s

sensitivity to lexical association reduces the ex-
pectancy effect when a priming term precedes unex-
pected items. P600, on the contrary, is less sensitive
to lexical association and is elicited by unexpected
words regardless of priming context. Aurnhammer
et al. (2023) and Delogu et al. (2021) observed that
when a strong semantic association exists between
terms, implausible words do not elicit an N400 ef-
fect, instead triggering a P600 effect, with its ampli-
tude modulated by the degree of plausibility. These
observations suggest that P600 is more sensitive to
sentence-level semantics than N400, which appears
to be more influenced by local phenomena. Krieger
et al. (2024) used materials from these three stud-
ies to investigate the effectiveness of surprisal in
modeling N400 and P600 in different experimental
settings. The results showed that surprisal from
large language models (LLM) was useful in model-
ing most N400 effects, but consistently struggled
to account for P600 amplitudes. These limitations
of surprisal in modeling human cognition have led
scholars to develop alternative metrics to predict
ERPs; including approaches based on cosine simi-
larity (Michaelov et al., 2024) and noise modeling
(Li and Futrell, 2023).

In the present paper, we examine the predictive
power of surprisal, entropy, and a new metric that
combines predictability and semantics (semantic
similarity), focusing on both N400 and P600 com-
ponents. Our experiments use Mandarin Chinese
materials, making this the first study, to our knowl-
edge, to explore the interplay between these two
ERPs and computational metrics in this language.

2 Related Work

In this study, we focused on N400 and P600. N400
is a negative deflection of EEG signal detected in
the centro-parietal areas between 300 and 500 ms
after stimulus onset. It is typically associated with
semantic violations. P600 is a positive-going de-
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flection traceable in the parietal regions between
600 and 1000 ms after stimulus onset. In the classi-
cal view, it is associated with syntactic violations.
However, studies examining semantic violations,
particularly those involving thematic role viola-
tions, have frequently reported a P600 effect in-
stead of the expected N400. This has cast doubt
on the exclusively syntactic nature of P600, and
the late positive ERP was hypothesized to indicate
reanalysis/repair (Van Herten et al., 2005, 2006) or
semantic integration (Brouwer et al., 2012).

On the computational side, over the years, vari-
ous approaches have been proposed to evaluate sur-
prisal’s (and other metrics’) psychometric predic-
tive power (PP) on reading times and ERPs. Many
studies have used computational metrics in linear
mixed-effects models to assess their efficacy in ac-
counting for variations in psychometric variables.
Van Schijndel and Linzen (2018) reported that sur-
prisal and entropy were significant predictors of
reading times when used together, indicating that
they capture different cognitive phenomena of read-
ing. Wilcox et al. (2023) found that while surprisal
alone had a higher PP than entropy alone, their
joint usage yielded the best performances. Similar
results were reported by Haller et al. (2024) with
German reading materials. Frank and Aumeistere
(2024) reported that surprisal significantly influ-
enced both eye-tracking and EEG metrics in Dutch.

Michaelov et al. (2024) examined the sensitivity
of N400 to predictability and semantic similarity
between the context and target word, using sur-
prisal and cosine similarity, respectively. The latter
was computed between the embedding of the target
word and the vector representing its left context.
The investigation showed that N400 was better pre-
dicted through surprisal, highlighting the primary
role of predictability in this phase of language pro-
cessing. The same approach was followed by Xu
et al. (2024), who found that, although the best
model in predicting N400 employed both surprisal
and the context-target cosine similarity, only the
latter was statistically significant. Moreover, the
model relying on cosine similarity exclusively was
the one accounting for P600 variations. Li and
Futrell (2024)1 successfully modeled N400 and
P600, decomposing surprisal into heuristic sur-
prisal and discrepancy signal. The first element,
representing the amount of cognitive effort to create
heuristic interpretations, was based on the canon-

1see also Li and Futrell (2023); Li and Ettinger (2023)

ical surprisal formula and successfully accounted
for the N400 effect. The second component, rep-
resenting the cognitive load required to process
the veridical interpretation, included a semantic
similarity metric computed as the cosine similarity
between the heuristic interpretation of the sentence
and the real sentence. A similar approach, but in
the context of conversations and reading times, was
proposed by Giulianelli et al. (2023) with the con-
cept of information value.

All previous investigations focused on Indo-
European languages, such as English, German, and
Dutch. To our knowledge, no study focused on the
PP of computational metrics representing different
cognitive dynamics using Mandarin Chinese mate-
rials. Moreover, little computational research has
been conducted on language processing underly-
ing the P600 effect. For these reasons, adopting
the method employed in previous cognitive mod-
eling investigations, and introducing a new metric,
our goal is to explore which computational metrics
better predict N400 and P600 recorded during Man-
darin sentence comprehension, and to identify the
cognitive dynamics that take place in the 300-500
ms and 600-1000 ms time windows.

3 Method

Following previous studies, we implemented 5 lin-
ear mixed-effects models. 1) A baseline (BL)
model, employing word-level features such as num-
ber of strokes, log-unigram frequency, and position
of the word within the sentence, and, in accordance
with the setting in Frank and Aumeistere (2024),
we included the signal baseline, computed from the
same channels used for calculating N400 and P600,
in the 100ms preceding the word onset. 2) The
Surprisal (surp) model, employing the baseline
features and the surprisal computed using GPT-2.
3) The Entropy (H) model, employing the baseline
features and the contextual entropy. 4) The seman-
tic similarity (cos) model, employing the baseline
features and the expectations-driven semantic simi-
larity. 5) A model employing all the features (all):
baseline features, surprisal, entropy, and semantic
similarity. Details on these metrics are provided
below.

We then split our dataset into training and test
sets. To avoid overfitting, we performed a 10-fold
cross-validation, computing the log-likelihood of
the models on the held-out portion of data. The
PP of the models was assessed in terms of average
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log-likelihood difference (∆LL) between the tar-
get model and the baseline. The higher the ∆LL,
the greater the metric’s PP. The ∆LL values were
then subject to a t-test to determine whether each
difference was statistically different from zero at
α = 0.05.

Understanding the information represented by
the computational metrics will allow us to interpret
the performances of the models, informing us of
the type of cognitive dynamics taking place in the
two different time windows we focus on.

3.1 Computational metrics

For all the computational metrics, we employed a
Chinese version of GPT2 Large2. The decision of
employing GPT2 was twofold: on the one hand, the
autoregressive nature of GPT ensures that only the
left context influences a word’s metric or embed-
ding; on the other, recent studies investigating the
predictive power of computational metrics found
GPT2 to be a better choice than bigger and more
recent language models (Kuribayashi et al., 2023;
Haller et al., 2024).
Surprisal: representing the extent to which a word
is unexpected, given the previous context.

Surprisal(wn) = −log(P (wn|Cn−1)) (1)

Where Cn−1 is the context preceding the target
word (w0, w1, ..., wn−1) and P (wn|Cn−1) is the
conditional probability of wn provided by the lan-
guage model.
Contextual entropy: representing the level of un-
certainty about the upcoming linguistic input at
word wn.

H(wn) = −
∑
w∈Σ

P (w|Cn−1)log2(P (w|Cn−1))

(2)
Where Σ = Σ ∪ {EOS} is the Σ vocabulary of
the language model enriched with the special token
EOS indicating the end of the string.
Semantic similarity: representing the semantic
closeness between the expected word given the
context, and the actually upcoming one. The ex-
pected item is not however a unique, precise word,
but a general concept, created upon the five most

2https://huggingface.co/uer/gpt2-large-chinese-
cluecorpussmall

likely upcoming characters3.

candidate = mean(
−−−−−−−−−−−−−−−−→
argmax5

w∈ΣP (w|Cn−1))
(3)

semantic_sim.(wn) = cos(−→wn; candidate)
(4)

For each word in the vocabulary (w ∈ Σ) we com-
puted the conditional probability P (w|Cn−1) . We
selected the five words with the highest probabil-
ity (argmax5), inserted them in the context, and
extracted their contextual word embeddings using
the language model. We then computed the cen-
troid (mean) between these five vectors (i.e., the
candidate). Finally, the embedding of the word
present in the stimuli is computed, and the cosine
similarity (i.e., semantic similarity) between such
an embedding and the vector representing the most
salient expectations is computed4 (Eq. 4). This
metric represents a cognitive process at a higher
level of the local phenomena surprisal may account
for. It implies an evaluation of the semantics of the
linguistic input, its integration within the context,
and a comparison between the input’s meaning and
the expectations’ semantics. If the semantic sim-
ilarity is useful in the prediction of N400, it may
suggest an early integration of local and sentence
information; if, on the contrary, it better accounts
for the P600 effect, it means that such complex
semantic dynamics take place in later stages of
language processing.

Prior to the regression model creation, we
checked Pearson’s correlations between computa-
tional metrics through a Monte Carlo estimation.
We found a strong positive correlation (r = 0.64)
between surprisal and entropy, a weak negative cor-
relation between semantic similarity and surprisal
(r = −0.35), and a very weak correlation between
semantic similarity and entropy (r = −0.08). All
the regressors were z-transformed before fitting the
models.

3.2 Materials
We adopted the full set of items used in Jap et al.
(2024), which contains 38 participants’ ERP record-
ings while reading 280 sentences in Mandarin Chi-

3Different values have been tested, from 1 to 10 top-
prediction. The best performance was reached by comput-
ing the candidate as the centroid of the 5 top predictions, as
reported here

4As in Li and Futrell (2024), we used GPT-2 to find the
most likely tokens to appear in the given context. However,
differently from their work, we computed the cosine similarity
only between embeddings of single words, instead of vectors
representing whole sentences.
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nese. Each word was automatically and individu-
ally presented on the screen. Each sentence con-
tains about 12 to 14 words, as shown in (1).

(1) 在学校组织的郊游途中，小婷被石头
砸伤的状况让人着急。‘In a trip organized by
the school, Xiaoting’s getting hurt by a rock made
everyone worried.’

All the sentences were grammatical and without
semantic violations.
EEG data was re-referenced to the two mastoid
electrodes, and the bad channels were interpolated.
We then used a high-pass filter with a 0.1Hz cut-
off frequency for data preprocessing. N400 and
P600 were computed using a 300-500 ms and 600-
1000 ms window respectively. Following Frank
and Aumeistere (2024), we included only signals
from Cz, C3, C4, CP1, CP2, Pz, P3, and P4.

The final data included N400 and P600 ampli-
tudes for each word and each participant.

Figure 1: ∆LL values of models employing surprisal,
entropy, semantic similarity, and all the features in pre-
dicting N400 and P600. Error bars indicate 95% confi-
dence intervals. Full dots indicate a ∆LL statistically
different from zero.

4 Results

As shown in Figure 1, surprisal benefits the model
only in predicting N400, while for P600, the model
registered a negative ∆LL. The usage of entropy,
however, improved the model in predicting both
the neurocognitive indexes. The probability-driven
semantic similarity shows an opposite trend in

comparison with surprisal: while it did not out-
performed the baseline on the N400 prediction, it
is as useful as entropy in predicting the P600 effect.

In both N400 and P600, the model employing all
the features shows a positive ∆LL, meaning that
the joint usage of surprisal, entropy, and seman-
tic similarity helps predict the ERPs’ amplitudes.
However, while the all-features model had the high-
est predictive power for the N400 with a statisti-
cally significant ∆LL, it was outperformed by the
H and cos models for the P600, and the difference
between its log-likelihood and the log-likelihood
of the baseline did not reach significance.

Focusing on the features within the all model, as
shown in Figure 2, entropy accounts for the major-
ity of the ERP signal variation in both N400 and
P600, followed by surprisal for the first psychome-
tric. For N400, both surprisal and entropy had a
p−value < 0.05 within the all model, while in the
prediction of P600, only entropy gave a statistically
significant contribution. Although the semantic
similarity is more impactful in predicting P600, it
does not reach significance in such a general model.

Figure 2: Coefficients of the regression factors within
the all model, in the prediction of N400 and P600. As-
terisks indicate that the factors showed a p-value < 0.05.

5 Discussion

Our results show the suitability of surprisal in pre-
dicting N400, but not of P600. This finding is in
line with what was reported in Xu et al. (2024) and
reveals how expectancy plays a major role in this
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phase of language processing, in comparison with
later stages.

Semantic similarity, on the contrary, was not in-
fluential in modeling the N400 effect, but it was
found to significantly improve the prediction of
P600 in comparison with the baseline. Given that
our semantic similarity metric aims to represent
the closeness between the meaning of the expected
concept and the meaning of the processed word,
this finding suggests that a semantic evaluation of
the linguistic input based on expectations occurs
only in later stages of processing. This finding
supports Li and Futrell (2024) previous finding but
from a word-level perspective. Although both sur-
prisal and our semantic similarity are expectations-
based, they represent different ways of handling
unexpected items: surprisal only tell us to what ex-
tent the word being read was expected based on the
context, regardless the predictions previously made,
while the semantic similarity provides information
on how closely the expectations align with the up-
coming words. This suggests two distinguished,
although interdependent phases of semantic pro-
cessing.
The good performances of entropy as a single
model (H), together with the fact that in the joint
models for both N400 and P600 such a metric is
the factor with the largest coefficient, suggest that
the level of uncertainty plays a role through the
largest span of language processing stages. This
is not completely surprising: as Stone et al. (2022)
pointed out, a high entropy indicates a high number
of possible, equally preferred continuations of the
sentence, increasing the processing cost. On the
contrary, low entropy indicates a few, strong con-
straints, making the processing easier. Therefore,
the level of uncertainty, meaning the strength of
previous expectations, impacts the amount of cog-
nitive resources required to decide to what extent
the encountered word is expected (N400) and the
processing cost of comparing the strong (or weak)
predictions with the linguistic input (P600).

To summarize, from a general perspective of a
model of language processing, our results suggest
that:
1) Between 300 and 500 ms from the onset of the
stimulus, local phenomena, based on the condi-
tional probability of words within context, are pro-
cessed;
2) At later stages, an evaluation of the difference
in terms of semantics between expectations and
linguistic data is performed;

3) Through the whole 300-1000 ms window, the
level of uncertainty about the upcoming linguistic
information modulates the cognitive effort required
to elaborate the input.

6 Conclusions

In the present paper, for the first time in the con-
text of Mandarin Chinese, we analyzed the predic-
tive power of surprisal, entropy, and a probability-
driven semantic similarity on ERPs. Our results
confirmed previous findings and shed further light
on the cognitive dynamics characterizing different
stages of language processing. In particular, our
novel approach showed how between 600 and 1000
ms from the stimulus onset a high-level evaluation
of the input semantics is performed.

Limitations

Our work presents some limitations. First, given
the nature of the materials we conducted our tests
on (i.e., grammatical sentences without any kind of
semantic violation or manipulation), our findings
can account for general trends only; in future work,
we will apply the same approach and metrics on
experimental materials, to test if our conclusions
stand in front of lexical manipulations, prime ef-
fects, etc.

Furthermore, our study is a monolingual investi-
gation. In the future, we will repeat the same study
on other languages to test the generalizability of
our findings.
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A Appendix

A.1 Linear mixed-effects models
In this section, we will provide more details regard-
ing the linear mixed-effects models implemented
and compared.
We used Julia to create and train/validate the mod-
els.

BL = fit(MixedModel, @formula(target ~
1+baseline+word_len+word_freq+position+
(1+word_len+word_freq+position|ptpID) + (1|word_ID)), train_data)

surp = fit(MixedModel, @formula(target ~
1+baseline+word_len+word_freq+position+sur+
(1+word_len+word_freq+position+sur|ptpID) + (1|word_ID)), train_data)

H = fit(MixedModel, @formula(target ~
1+baseline+word_len+word_freq+position+H+
(1+word_len+word_freq+position+H|ptpID) + (1|word_ID)), train_data)

cos = fit(MixedModel, @formula(target ~
1+baseline+word_len+word_freq+position+semsim+
(1+word_len+word_freq+position+semsim|ptpID) + (1|word_ID)), train_data)

all = fit(MixedModel, @formula(target ~
1+baseline+word_len+word_freq+position+sur+H+semsim+
(1+word_len+word_freq+position+sur+H+semsim|ptpID) + (1|word_ID)), train_data)

Where target is either N400 or P600.
As it is possible to notice from the snippets, fol-
lowing Frank and Aumeistere (2024), the baseline
signal was a covariate of no interest. Word ID and
participant ID were used as random intercepts.
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