
Proceedings of the 31st International Conference on Computational Linguistics, pages 3778–3793
January 19–24, 2025. ©2025 Association for Computational Linguistics

3778

ReLayout: Towards Real-World Document Understanding via
Layout-enhanced Pre-training

Zhouqiang Jiang1, Bowen Wang2*, Junhao Chen1, Yuta Nakashima2

Osaka University, Japan
1{zhouqiang, junhao}@is.ids.osaka-u.ac.jp

2{wang, n-yuta}@ids.osaka-u.ac.jp

Abstract

Recent approaches for visually-rich document
understanding (VrDU) uses manually anno-
tated semantic groups, where a semantic group
encompasses all semantically relevant but not
obviously grouped words. As OCR tools are
unable to automatically identify such grouping,
we argue that current VrDU approaches are un-
realistic. We thus introduce a new variant of the
VrDU task, real-world visually-rich document
understanding (ReVrDU), that does not allow
for using manually annotated semantic groups.
We also propose a new method, ReLayout, com-
pliant with the ReVrDU scenario, which learns
to capture semantic grouping through arrang-
ing words and bringing the representations of
words that belong to the potential same seman-
tic group closer together. Our experimental re-
sults demonstrate the performance of existing
methods is deteriorated with the ReVrDU task,
while ReLayout shows superiour performance.

1 Introduction

Modern visually-rich document understanding
(VrDU), which aims at automating information
extraction from visually-rich documents, has be-
come an important research direction (Liu et al.,
2019a; Jaume et al., 2019; Xu et al., 2020b; Gar-
ncarek et al., 2021; Gu et al., 2022; Tu et al., 2023).
Visually-rich documents, such as invoices, receipts,
reports, and academic papers, not only contain a
substantial volume of text data but also encode es-
sential semantics needed for understanding them
into their structures or layout. Figure 1(top) shows
an example of such a document. People can per-
haps group up “Case type” and “Plaintiff’s counsel”
into respective semantic groups, and also associate
“Case type” and “Asbestos” as well as “Plaintiff’s
counsel” and the name and address on its right,
even though they are spatially apart from each other,
because of the knowledge on the layout (e.g., a
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Figure 1: Result of LayoutMASK (Tu et al., 2023) for
Semantic Entity Classification using different segments.

:Segment, :QUESTION, :ANSWER.

field label and its content are typically placed next
to each other). Such structural comprehension of
documents provides strong prior on the semantics
that respective layout groups have, enhancing the
accuracy of information extraction.

Early work (Hwang et al., 2019; Denk and Reis-
swig, 2019) makes use of the empirical knowledge
about layout that text flows from left to right and
top to bottom. Such flow can be represented by
global 1D positions associated with all words in
OCR text. The text flow can be more precise when
the document structure is obtained from auxiliary
sources, such as XMLs’ or PDFs’ metadata (Wang
et al., 2021). Recent studies have explored the in-
teraction between OCR text and its layout in docu-
ment images through pre-training model (Xu et al.,
2020b; Li et al., 2021a; Hong et al., 2022; Tu et al.,
2023). LayoutLM (Xu et al., 2020b) is the first
to introduce word-wise 2D bounding boxes as lay-
out embedding in the pre-training model. Simi-
larly to BERT, LayoutLM masks words extracted
by OCR but retains the corresponding layout em-
beddings, requiring the model to reconstruct the
original words. The representations learned in this
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way exhibit excellent fine-tuning performance.
Subsequent pre-training approaches have shown

that by incorporating the semantically relevant text
blocks (semantic groups) and using a common seg-
ment (segment-wise) 2D bounding box as a lay-
out embedding (Li et al., 2021a), richer seman-
tic concepts can be provided, as illustrated in Fig-
ure 1(top), thereby significantly enhancing perfor-
mance. LayoutMASK(Tu et al., 2023) further uses
segment-wise 2D bounding boxes to change the
global 1D position to an loacl 1D position within
segments, enhancing the local information of text
flow and further improving performance.

In the context of document comprehension, use
of the structural information in documents faces
an inherent challenge: semantic groups can facil-
itate automated document understanding, while
they are manually annotated, yet we aim to achieve
automated document understanding., which forms
a paradox that the costly annotation of semantic
groups and automated document understanding
cannot coexist. Prior works (Li et al., 2021a; Huang
et al., 2022; Tu et al., 2023) avoid this problem us-
ing human-annotated semantic groups during fine-
tuning (Figure 1); however, semantic groups as
accurate as human annotations are not available in
real-world scenarios. Off-the-shelf OCR can group
some spatially consecutive words (referred to as a
text segment) in a document as in Figure 1(bottom),
but they do not necessarily align with the actual
semantics that the document encompasses.

To nourish exploration toward real-world VrDU,
we propose a new VrDU task, coined ReVrDU
(Real-world VrDU), on top of existing ones, which
only allows for using information available from
off-the-shelf OCR tools for both pre-training and
fine-tuning, i.e., words, global 1D positions, word-
wise 2D bounding boxes, and text segments, so
that VrDU can be evaluated in alignment with real-
world scenarios.

We also propose a new pre-training model for
ReVrDU, referred to as ReLayout (Real-world
Layout-enhanced pre-training), use simple global
1D positions and word-wise 2D bounding boxes as
layout input. In addition to the masked language
modeling (MLM) strategy, ReLayout adopts 1D
Local Order Prediction (1-LOP) and 2D Text Seg-
ment Clustering (2-TSC) strategies. The former
reconstructs word order within each text segment.
Through this task, a model learns local informa-
tion about text flow as well as relationships cross
text segments as it needs to predict where a text

segments starts and ends in the masked global 1D
positions. With the latter, a model learns to com-
plete potential semantic groups information from
text segments in a self-supervised manner. We ex-
perimentally show that pre-training a model with
ReLayout demonstrates excellent downstream per-
formance in both ideal and real-world scenarios.

2 Related Work

2.1 Multimodal Pre-training

Multimodal self-supervised pre-training models
(Hong et al., 2022; Wang et al., 2022; Xu et al.,
2020b,a; Powalski et al., 2021; Jiang et al., 2023;
Appalaraju et al., 2021; Xu et al., 2021; Li et al.,
2021c; Lee et al., 2022; Huang et al., 2022; Peng
et al., 2022), due to their successful application
across document layout, text, and visual modal-
ities, have propelled rapid advancements in the
field of VrDU. LayoutLM (Xu et al., 2020b) first
introduces each token’s 2D bounding box as lay-
out embedding to enhance MLM. On top of Lay-
outLM, BROS (Hong et al., 2022) proposes a more
challenging MLM task that masks larger regions.
StructurelLM (Li et al., 2021a) pre-trains a model
by predicting positions of equally-sized regions in
a document. These pre-training tasks jointly model
the relationships between text and the layout in
documents.

Given the richness of visual cues in image at-
tributes such as fonts, colors, logos, and divid-
ing lines in tables, many works incorporate the
visual modality pre-training tasks (Gu et al., 2021;
Li et al., 2021b; Xu et al., 2020a; Huang et al.,
2022; Gu et al., 2023; Wang et al., 2023), includ-
ing masked visual-language modeling (Xu et al.,
2020a), masked image modeling (Huang et al.,
2022), word-patch alignment (Huang et al., 2022),
text-image alignment (Xu et al., 2020a), text-image
match (Xu et al., 2020a), and visual contrastive
learning (Gu et al., 2023). These tasks exploit the
knowledge in visual components, providing addi-
tional performance boosts in the VrDU tasks.

ReLayout, however, exclusively uses text and
layout modalities to evaluate the performance of
models in ideal and real-world scenarios.

2.2 Layout Information

How to handle layout information is crucial for
VrDU. LayoutLM first introduces spatial layout in-
formation into VrDU using word-level 2D bound-
ing boxes. BROS proposes to encode relative
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spatial relationships of word-wise 2D bounding
boxes with a BERT-based model. StructureLM uti-
lizes segment-wise 2D bounding boxes rather than
word-wise to represent layout, showing promising
performance improvements. LayoutMASK (Tu
et al., 2023) introduces a strong prior about layout
through local 1D positions and segment-wise 2D
bounding boxes. It uses segment-wise 2D bound-
ing boxes to identify semantic groups and local 1D
positions to guide the model in scanning tokens
in the correct order. This method achieved SOTA
performance on downstream tasks with manually
annotated semantic groups, but obtaining semantic
groups in real-world scenarios is impractical.

ReLayout does not use complete semantic
groups, which is practically unavailable, but sup-
plies text segments that are automatically obtained
with common OCR tools and do not necessar-
ily align with actual semantic groups during pre-
training. Pre-training strategy in ReLayout is de-
signed to handle such text segments by learning to
merge semantically similar text segments.

3 Task Definition: ReVrDU

Our ReVrDU task is built on top of existing VrDU
tasks that supply human-annotated semantic groups
as input (Jaume et al., 2019; Park et al., 2019).

Formally, traditional VrDU tasks typically pro-
vide a set W = {wl}Ll=1 of words, a set O =
{ol}Ll=1 of the corresponding global 1D positions
ol ∈ Z≥0, where Z≥0 is the set of non-negative
integers, semantic groups Strue = {struek }Kk=1,
where struek is the k-th semantic group that con-
tains all words in the group (i.e., struek ⊂ W),
and a set B = {bl}Ll=1 of word-wise bounding
boxes. Word wl is associated with word-wise
bounding box bl ∈ R4, represented by its top-left
and bottom-right corners’ positions. The semantic
groups serves as a strong cue for understanding the
semantics.

ReVrDU provides data in the same format, but to
align with real-world scenarios, all data come from
OCR results, For example, there may be missing or
incorrect words and bounding boxes, and a seman-
tic group is replaced with just a set of consecutive
words in a line (i.e., a text segment), which can be
obtained from OCR tools. For more details, see
Appendix A.2. We denote a set of text segments
by S = {sk}Kk=1, where sk ⊂ W is the k-th text
segment.

4 Method: ReLayout

The unavailability of accurate semantic grouping
in ReVrDU hinders the naive application of exist-
ing methods tailored for VrDU. Our ReLayout, a
layout-enhanced multimodal pre-training model,
effectively incorporates structural information in
documents by pre-training a model to strengthen
the understanding of local layout structures and
relationships and learn semantic grouping via our
proposed 1-LOP and 2-TSC strategies.

As shown in Figure 2, we use a vanilla Trans-
former encoder (Vaswani et al., 2017) architecture
as the backbone of our model.

4.1 Tokenizers
We use byte-pair encoding (Sennrich et al., 2015)
to tokenize W into a set T = {tn}Nn=1 of tokens tn.
We also reassign the global 1D positions according
to O and the tokenization result. We denote the
reassigned set of the global 1D positions as O′ =
{o′n}Nn=1, where o′n ∈ Z≥0. We also remap the
bounding boxes {bl} to {b′l} and the text segments
so that tokens derived from the same word have the
same bounding box and are included in the same
text segment, as shown in Figure 2.

4.2 Embeddings
For tokens, we use a token embedding layer, de-
noted by et

n = TE(tn). The global 1D positions,
represented by non-negative integers, are encoded
with 1D position embedding layer, denoted by
eo
n = PE1D(o′n). The bounding box b′n is repre-

sented by 2D position embedding eb
n = PE2D(b′n)

The n-th input embedding en to the backbone net-
work is the sum of these embeddings, i.e.,

en = et
n + eo

n + eb
n. (1)

4.3 Pre-training Tasks
We employ three pre-training tasks, i.e., MLM, 1-
LOP, and 2-TSC pre-training tasks.

4.3.1 Masked Language Modeling
MLM is utilized to enable the model to learn mul-
timodal representations of text-layout interactions
by combining text and layout cues. We randomly
mask tokens at the word level with given probabil-
ity PMLM, where tokens to be masked are replaced
with [mask] token.

The all embeddings e are then fed into the model,
and the output representations pass through a non-
linear MLM Head layer, obtaining logits for each
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Figure 2: Architecture of ReLayout: MLM masks word-level tokens and reconstructs the original tokens. 1-LOP
masks global 1D positions at the text segment and reconstructs local 1D positions. 2-TSC uses self-supervised
techniques to adaptively cluster the representations of text segments that belong to the same semantic group.

masked token. With softmax, we compute the re-
constructed probability pj of the j-th masked to-
kens over the vocabulary (j = 1, . . . , J). The loss
function is thus defined as:

LMLM = − 1

J

J∑
j=1

log pj (2)

4.3.2 1D Local Order Prediction

Local 1D positions in each semantic group give
a model some ideas about how the words are ar-
ranged in the document. As semantic grouping is
not available in ReVrDU, we instead predict them
within each text segment through the 1-LOP pre-
training task. This design choice is not optimal as
text segments do not necessarily correspond to se-
mantic groups; we still consider that they can serve
as a good proxy of semantic groups for learning
local structure.1 By learning when to increment the
position value and reset it to 1, our model grasps
both within- and cross-segment local structures.

As shown in Figure 2, we randomly select some
text segments with probability P1-LOP and mask
all global 1D positions within all selected text seg-
ments. The output representations from the model
then go through a non-linear 1-LOP head to predict
the local 1D positions in the text segments. Letting
M be the number of masked tokens in total and
qm the probability of the correct local position, the

1We experimentally validate this assumption.

loss is defined as:

L1-LOP = − 1

M

M∑
m=1

log qm. (3)

4.3.3 2D Text Segment Clustering

The 1-LOP pre-training task uses less accurate text
segments provided by an OCR tool. A model pre-
trained with such text segments may not be fully
consistent with actual semantic groups, resulting
in fragmented representations, as shown in Figure
1(top). We thus wish a model to be more aware
of semantic grouping. For this, we make the mild
assumption that a semantic group consists of words
(or text segments) that are semantically relevant
and are spatially close to each other in the doc-
ument. Under this assumption, we propose the
2-TSC pre-training task to help the model learn
semantic grouping.

We borrow the idea from SimSiam (Chen and
He, 2021), a type of contrastive learning that do
not require negative samples, to let text segment
representations belonging to the potential same
semantic group close to each other, where a text
segment representation is the average pooling of
the token representations in a text segment.

Let Rk = {rki}Ii=1 denote the set of represen-
tation vectors for the i-th token in the k-th text
segment sk. We represent the semantics of sk by
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average-pooling its token representations, i.e.:

vk =
1

|Rk|

I∑
i=1

rki. (4)

We can find a set K = {(k, k′)} of semantically
close text segment indices k and k′, which satis-
fies the following two conditions with predefined
thresholds θdis and θsim:

Dist(sk, sk′) < θdis, Sim(vk, vk′) > θsim. (5)

Dist(sk, sk′) gives the Euclid distance between the
centers of bounding boxes that encompasses all to-
kens in sk and sk′ , which can be computed based on
the merged bounding box in the k-th text segment.
Sim gives the cosine similarity. Given (k, k′) ∈ K,
vk and vk′ should be close to each other. We thus
introduce a predictor (Chen and He, 2021) to map
vk to the same dimensional space as

zk =
1

|Rk|

I∑
i=1

f(rki), (6)

and bring them closer by

L2-TSC = −Sim(zk, stopgrad(vk′)), (7)

With the above three pre-training objectives, the
model is pre-trained with the following loss:

Ltotal = LMLM + αL1-LOP + γL2-TSC (8)

where α and γ are hyper-parameters. L2-TSC is
used only in the final epoch of pre-training.

5 Experiments

5.1 Pre-training Settings
We pre-train ReLayout on the IIT-CDIP Test Col-
lection (Lewis et al., 2006), which contains over 11
million scanned document pages. We extract words
and global 1D positions, word-wise 2D bounding
boxes, and text segments from document page im-
ages with an open-source OCR tool, PaddleOCR.

ReLayout’s model architecture is almost the
same as RoBERTa (Liu et al., 2019b) but with an
additional 2D embedding layer. All parameters,
except for the 2D embedding layer, are initialized
with RoBERTa’s parameters. We use AdamW opti-
mizer (Loshchilov, 2017) with a batch size of 32 for
5 epochs. The base learning rate is set to 5e-5, with

1https://github.com/PaddlePaddle/PaddleOCR

weight decay of 1e-2 and (β1, β2) = (0.9, 0.999).
The learning rate changes with a linear decay strat-
egy. We evaluated two variants based on RoBERTa
variants, i.e., ReLayoutBase and ReLayoutLarge. The
former has 12 layers with 16 heads; the latent di-
mensionality is 768. The latter has 24 layers with
16 heads where the latent dimensionality is 1024.

As for the hyper-parameters, PMLM = 20% and
P1-LOP = 30%. For L2-TSC, the thresholds are
θdis = 120 and θsim = 0.9. The coefficients for
balancing the objectives are α = 0.5 and γ = 0.5.

5.2 Fine-tuning Settings
FUNSD and CORD. FUNSD (Jaume et al., 2019)
and CORD (Park et al., 2019) are used for seman-
tic entity classification tasks in complex forms and
receipt documents, aiming to classify words into
a set of predefined semantic entities. The FUNSD
dataset contains 199 documents with annotations
for 9,707 semantic entities, which are among “ques-
tion,” “answer,” “header,” and “other”. The training
and test splits contain 149 and 50 samples, respec-
tively. CORD is a dataset for information extrac-
tion in receipts with 30 semantic labels in 4 cate-
gories. It contains 1,000 receipts, 800 for training,
100 for validation, and 100 for test. For these two
datasets, we use BIO tags (Xu et al., 2020b) and for-
malize semantic entity classification as a sequential
labeling task.

We fine-tune ReLayout for 1,000 steps with
learning rate of 4.5e-5 and batch size of 64 for
FUNSD, while learning rate of 7e-5 and batch size
of 32 for CORD. Similarly to the existing meth-
ods, we use officially-provided OCR annotations
(including words, word-wise bounding boxes, and
global 1D positions) on the training set and report
word-level F1 scores on the test set. For models that
use manually annotated semantic groups, which
are used to set segment-wise bounding boxes as the
model’s 2D position input (shaded rows in Table 1),
we also report their performance when semantic
groups are replaced by text segments by Microsoft
Read API (MSR)2.
DocVQA. Visual question answering on document
images requires a model to take a document image
(if need), OCR annotations, and a question as in-
put and output an answer. The DocVQA dataset
(Mathew et al., 2021) offers 10,194/1,286/1,287
images and 39,463/5,349/5,188 questions in train-
ing/validation/test splits, respectively. We formal-

2https://learn.microsoft.com/en-us/azure/
ai-services/computer-vision/concept-ocr

https://github.com/PaddlePaddle/PaddleOCR
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/concept-ocr
https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/concept-ocr
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Method #Params Mod. FUNSD(F1↑) CORD(F1↑) DocVQA(ANLS↑)

BERTBase (Devlin et al., 2018) 110M T 60.26 89.68 63.72
RoBERTaBase (Liu et al., 2019b) 125M T 66.48 93.54 66.42
UniLMv2Base (Bao et al., 2020) 125M T 68.90 90.92 71.34
LayoutLMBase (Xu et al., 2020b) 160M T+L+I 79.27 - 69.79
LayoutLMv2Base (Xu et al., 2020a) 200M T+L+I 82.76 94.95 78.08
DocFormerBase (Appalaraju et al., 2021) 183M T+L+I 83.34 96.33 -
BROSBase (Hong et al., 2022) 110M T+L 83.05 95.73 71.92
LiLTBase (Wang et al., 2022) - T+L 88.41 96.07 -
LayoutLMv3Base (Huang et al., 2022) 133M T+L+I 81.61† 94.64† 74.56†

LayoutLMv3Base (Huang et al., 2022) 133M T+L+I 90.29 96.56 78.76
LayoutMaskBase (Tu et al., 2023) 182M T+L 73.97† 82.37† 70.79†

LayoutMaskBase (Tu et al., 2023) 182M T+L 92.91 96.99 -
ReLayoutBase (Ours) 125M T+L 84.64 96.82 76.02
BERTLarge (Devlin et al., 2018) 340M T 65.63 90.25 67.45
RoBERTaLarge (Liu et al., 2019b) 355M T 70.72 93.80 69.52
UniLMv2Large (Bao et al., 2020) 355M T 72.57 92.05 77.09
LayoutLMLarge (Xu et al., 2020b) 343M T+L 77.89 - 72.59
LayoutLMv2Large (Xu et al., 2020a) 426M T+L+I 84.20 96.01 83.48
DocFormerLarge (Appalaraju et al., 2021) 536M T+L+I 84.55 96.99 -
BROSLarge (Hong et al., 2022) 340M T+L 84.52 97.40 74.70
StructuralLMLarge (Li et al., 2021a) 355M T+L 85.14 - 83.94‡

LayoutLMv3Large (Huang et al., 2022) 368M T+L+I 84.13† 96.88† 78.26†

LayoutLMv3Large (Huang et al., 2022) 368M T+L+I 92.08 97.46 83.37
LayoutMaskLarge (Tu et al., 2023) 404M T+L 78.12† 84.67† 74.06†

LayoutMaskLarge (Tu et al., 2023) 404M T+L 93.20 97.19 -
ReLayoutLarge (Ours) 355M T+L 86.11 97.42 80.14

Table 1: Comparison of existing models on the FUNSD, CORD, and DocVQA datasets. T/L/I denotes the
"text/layout/image" modality. Grids in indicate that the model uses manually-annotated semantic groups. The
superscript † indicates that the model uses text segments provided by Microsoft Read API. The superscript ‡

indicates that the model was trained with additional QA data to achieve higher scores, it isn’t directly comparable.

ize this task as an extractive QA problem, wherein
a model predicts the start and end positions with
binary classifiers. We fine-tune models on the
training set and report ANLS (average normal-
ized Levenshtein similarity), a commonly-used
edit distance-based metric, on the test set. Un-
fortunately, the OCR annotations provided in this
dataset are of low quality. We thus use the MSR
to extract words, word-wise bounding boxes, and
global 1D positions. For models that use segment-
wise bounding boxes, we employ text segments’
bounding boxes by MSR (marked with † in Ta-
ble 1). We fine-tune all models for 40 epochs with
learning rate of 2e-5 and batch size of 32.

Besides the experiments above, the scores of all
other models come from previous papers (Huang
et al., 2022; Tu et al., 2023).

5.3 Results

As shown in Table 1, when officially-providedOCR
annotations are used (and so the task is VrDU), Re-
Layout surpasses all models that do not use man-
ually annotated semantic groups. The models that
use manually annotated semantic groups (referred

to as segment-dependent models, shaded rows in
Table 1) yielded higher scores. Their performance
significantly drop if semantic groups are replaced
with text segments provided by a commercial OCR
tool (e.g., the performance of LayoutLMv3Base and
LayoutMASKBase drop by −8.68 and −18.94 re-
spectively on FUNSD.). This implies that segment-
dependent models heavily rely on manually anno-
tated semantic groups to capture semantic struc-
tures in documents, which may contradict the ini-
tial purpose of automated document understanding.
Also, the results reinforce the necessity to reexam-
ine the choice of semantic grouping in the VrDU
tasks, which is previously proven to be a shortcut
(Li et al., 2021a).

For the DocVQA dataset, it is fair to compare
ReLayout with LayoutLMv3 and LayoutMASK
in the ReVrDU setting (i.e., without manually an-
notated semantic grouping, marked with † in the
DocVQA column of Table 1), and ReLayout out-
performs them. Yet, it consistently falls behind
LayoutLMv2. We believe this gap primarily stems
from the absence of the visual modality, as Lay-
outLMv2 additionally leverages a visual encoder.
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Our LMv2 LMv3 LayoutMASK

FUNSD 84.64 82.76 90.29 92.91

-M 83.13 80.13 81.46 73.61

-P 82.87 78.69 80.27 71.15

CORD 96.82 94.95 96.56 96.99

-M 96.23 93.78 94.37 82.33

-P 95.92 92.24 93.87 81.47

DocVQA - 78.08 78.76 -

-M 76.02 76.33 74.56 70.79

-P 64.25 63.73 63.26 60.81

-O 74.19 72.56 71.17 69.96

Table 2: Comparison in the ReVrDU setting with dif-
ferent OCR parsing results. M and P respectively in-
dicate that the OCR parsing results are from MSR and
PaddleOCR. O is the officially provided OCR parsing
results by an OCR tool (not manually annotated).

5.4 Comparison with Different OCR Tools

To evaluate how differences in real-world OCR
tools affect the ReVrDU performance, we used
both open-source and commercial OCR tools to ex-
tract OCR parsing results to create revised datasets.
We assess ReLayout, LayoutLMv2 (LMv2), Lay-
outLMv3 (LMv3), and LayoutMASK (all of them
are the base variant) over multiple OCR parsing re-
sults on the FUNSD, CORD, and DocVQA dataset,
where the models are fine-tuned on the revised
training sets and evaluated on the revised test sets.
Table 2 summarizes the scores.

On the FUNSD-M and FUNSD-P datasets,
segment-dependent models, i.e., LayoutLMv3 and
LayoutMASK, show a significant performance
drop, especially LayoutMASK. As we discussed in
the previous section, manually annotated semantic
groups offer a strong cue to capture the seman-
tics in the document as the text within each group
is complete (as shown in Figure 1(top)), casting
the word-level semantic entity classification into
segment-level classification. When text segments
provided by OCR tools are used, the models strug-
gle to understand the semantic structure spanned
over multiple text segments, leading to classifica-
tion failures. The models that do not rely on man-
ually annotated semantic groups, like ReLayout
and LayoutLMv2, show only a slight performance
drop. The smaller performance decline of ReLay-
out demonstrates its robustness against imperfect
layout information provided by various OCR tools.

On the CORD-M and CORD-P datasets, the four

:menu.nm

:menu.sub_nm

:menu.cnt

:menu.unitprice

:menu.price

:sub_total.subtotal_price :sub_total.tax_price

:sub_total.service_price :total.total_price

:total.cashprice:total.changeprice

Figure 3: Two examples document images from CORD.

(a) MLM and 1-LOP (b) MLM, 1-LOP and 2-TSC

Figure 4: Visualization of pre-trained representations.

models respectively show performance declines.
ReLayout still maintains the best robustness with
real-world layout input. LayoutLMv3 shows an
acceptable performance drop, while LayoutMASK
still experiences a significant decline. The visual
modality may serve as a beneficial complement
when semantic grouping is inaccurate. Overall, the
performance declines on CORD are smaller com-
pared to FUNSD, possibly because the semantic
ststructures receipts are basically complete in a
single line as shown in Figure 3, which is much
simpler than those in the FUNSD.

For DocVQA, the scores in the first row of the
table originate from the original reports in the
LayoutLMv2 and LayoutLMv3 papers (Xu et al.,
2020a; Huang et al., 2022), while LayoutMASK
was not evaluated on this dataset. We evaluate the
models on DocVQA in the ReVrDU setting with
three types of automatically acquired OCR parsing
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#
Pre-training Setting Datasets

MLM 1-LOP 2-TSC FUNSD CORD DocVQA FUNSD-P CORD-P DocVQA-P
1

√
81.55±0.06 95.45±0.03 73.85±0.12 79.96±0.06 94.65±0.02 62.97±0.10

2
√ √

83.84±0.18 96.43±0.15 74.30±0.07 82.94±0.08 95.49±0.13 63.17±0.04
3

√ √
81.73±0.05 95.82±0.07 74.07±0.05 81.52±0.03 95.68±0.10 62.44±0.17

4
√ √ √

84.37±0.12 96.64±0.12 74.82±0.05 83.15±0.05 95.91±0.06 63.58±0.08

Table 3: Ablation experiments of different pre-training methods.

results. ReLayout shows the best performance on
the revised datasets (the -P and -O variants) with
poorer OCR quality, but when using the commer-
cial MSR, ReLayout performs slightly lower than
LayoutLMv2. This still demonstrates ReLayout’s
robustness in extracting semantically meaningful
structural information even in complex documents
and potentially erroneous OCR. We acknowledge
that integrating the visual modality is effective in
enhancing performance on the ReVrDU task.

6 Ablation Study

We ablate newly added pre-training losses which
learn comprehensively layout information in the
VrDU and ReVrDU setting.
Quantitative analysis. Table 3 shows the per-
formance scores for all possible combinations of
losses (the masked language model loss cannot be
removed as it is the basis for pre-training). The
use of 1-LOP significantly enhances model perfor-
mance, particularly on the FUNSD dataset. This
is because forms contain densely packed local text
structures, and using 1-LOP not only helps the
model enhance the comprehension of the text flow
but also aids in capturing cross-segment relation-
ships. Comparison between the first and third rows
shows that 2-TSC can bring a certain, though lim-
ited, performance improvement. The combination
of 2-TSC and 1-LOP improves the performance by
a larger margin. We can guess that 2-TSC hardly
stand by itself as it mainly relies on the local layout
information of tokens when determining relevant
local text segments to bring closer. The 1-LOP loss
may give ideas about the local layout information,
ending up with better representations that helps 2-
TSC. This is also why we only add the 2-TSC loss
in the final epoch.
Qualitative analysis. To evaluate whether the 2-
TSC pre-training task can effectively learn seman-
tic groups, we input words, global 1D positions,
and word-wise 2D bounding boxes from official
annotations of a FUNSD form into the MLM and

1-LOP pre-training models with/without the 2-TSC
loss. For the document shown in Figure 4(top), we
visualize the respective models’ token representa-
tions using UMAP (McInnes et al., 2018). The
document has six (manually annotated) semantic
groups, identified by boxes in different colors. Fig-
ure 4a displays the representations without 2-TSC,
while Figure 4b shows those with 2-TSC (Repre-
sentations learned solely from MLM pre-training
can be seen in the Appendix A.). The representa-
tions with MLM and 1-LOP form reasonable clus-
ters, though the green, blue, orange, and purple
semantic groups overlap to some extent. This may
be because the 1-LOP loss introduces strong local
layout information into the representations (as we
also visualize the representations using only the
MLM loss under the same input, which showed
a very chaotic distribution, but due to space lim-
itations, we did not display it). The 2-TSC loss
leads to more clear-cut clusters, without using man-
ually annotated semantic groups. This difference
does not directly explain the better performance
of the model with 2-TSC, but it still demonstrates
that 2-TSC can be a reasonable proxy of manually
annotated semantic grouping.

7 Conclusion

This paper introduces the ReVrDU task that align
more with real-world scenarios compared to the
original VrDU tasks, shedding light on the problem
of using manually annotated semantic grouping for
document understanding. Our experimental results
showed that the existing models worsen perfor-
mance scores when accurate semantic groups are
unavailable. We also propose pre-training losses, 1-
LOP and 2-TCS, to aid the lack of semantic group-
ing, showing superior performance compared to
the existing models but the reliance on semantic
grouping removed. We believe the ReVrDU task
brings a new dimension of challenge into document
understanding and contributes its progress.
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8 Limitation and Future Work

Introducing the visual modality: Incorporating
information from the visual modality through a vi-
sual encoder is a common approach to enhance doc-
ument understanding models. This requires consid-
ering the interactions between the three modalities:
text, layout, and image. Future work will explore
compatible ways to introduce visual modality in-
formation, further improving the performance of
document understanding models.
Dependency on OCR tools: Most state-of-the-art
pre-trained document understanding models rely
on OCR annotations, and our model is no excep-
tion. However, this two-stage data processing ap-
proach means that the performance of OCR can
significantly affect the subsequent model’s results.
Therefore, exploring effective OCR-free models is
an important direction to reduce accumulated er-
rors, speed up processing, and lower computational
costs.

9 Ethics Statement

After careful consideration, we believe that our pa-
per does not introduce additional ethical concerns.
We declare that our work complies with the ACL
Ethics Policy.
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A Appendix

A.1 Visualization of Representations
In Table 5, we visualize the representations learned
from different pre-training task combinations.

A.2 Visualization of VrDU and ReVrDU
Figures 6-8 display OCR annotation visualizations
on the FUNSD sample, categorizing bounding
boxes into word-wise and segment-wise types, and
annotations also are classified into three types:
manual, MSR, and PaddleOCR annotations. In
Figure 9, the images, questions, and answers from
the DocVQA sample are visualized.

A.3 BIO Tags
The BIO tagging scheme is a method used for mark-
ing up text in sequence labeling tasks, commonly
applied in Named Entity Recognition (NER) and
other forms of linguistic annotation. In this scheme,
each token of the text is tagged with one of three
prefixes: "B-" (Beginning), "I-" (Inside), and "O"
(Outside). The "B-" prefix indicates the beginning
of an entity, "I-" marks the continuation of an en-
tity, and "O" denotes a token that does not belong
to any entity. This method helps in clearly differ-
entiating the boundaries of entities within the text,
making it easier for models to recognize and cat-
egorize text segments accurately. For example, in
the entity "New York," "New" would be tagged as
"B-Location" and "York" as "I-Location," clearly
identifying the entire phrase as a geographical en-
tity.

Therefore, learning to use 1-LOS to learn the lo-
cal reading order is beneficial for the model to solve
entity classification tasks based on BIO tagging.



3789

(a) MLM (b) MLM and 1-LOP (c) MLM, 1-LOP and 2-TSC

Figure 5: Visualization of representations learned under different pre-training tasks.
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(a) Manually annotated words and word-wise bounding boxes.

(b) Manually annotated words and segment-wise bounding boxes.

Figure 6: Visualization of the VrDU Task on the FUNSD Sample.
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(a) MSR-automatically annotated words and word-wise bounding boxes.

(b) MSR-automatically annotated words and segment-wise bounding boxes.

Figure 7: Visualization of the ReVrDU Task on the FUNSD Sample with MSR.
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(a) PPOCR-automatically annotated words and word-wise bounding boxes.

(b) PPOCR-automatically annotated words and segment-wise bounding boxes.

Figure 8: Visualization of the ReVrDU Task on the FUNSD Sample with PPOCR.
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Q: how many points are there in modifications to readout instrumentation?
GT: 5

Q: what is the name of the tobacco company?
GT: rj reynolds tobacco company

Figure 9: Visualization of DocVQA samples
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