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Abstract
Traditional methods for detecting rumors on so-
cial media primarily focus on analyzing textual
content, often struggling to capture the com-
plexity of online interactions. Recent research
has shifted towards leveraging graph neural net-
works to model the hierarchical conversation
structure that emerges during rumor propaga-
tion. However, these methods tend to overlook
the temporal aspect of rumor propagation and
may disregard potential noise within the prop-
agation structure. In this paper, we propose
a novel approach that incorporates temporal
information by constructing a weighted prop-
agation tree, where the weight of each edge
represents the time interval between connected
posts. Drawing upon the theory of structural
entropy, we transform this tree into a coding
tree. This transformation aims to preserve the
essential structure of rumor propagation while
reducing noise. Finally, we introduce a recur-
sive neural network to learn from the coding
tree for rumor veracity prediction. Experimen-
tal results on two common datasets demonstrate
the superiority of our approach.

1 Introduction

Social media has increasingly become a fertile
ground for the generation and dissemination of ru-
mors, which can have significant adverse impacts
on society. Detecting rumors on social media is not
only a pressing public concern but also a complex
and multifaceted challenge. As the flood of false
and misleading information continues, extensive
efforts have been devoted to automating the process
of rumor detection. Traditional methods for identi-
fying rumors often rely on textual analysis (Castillo
et al., 2011; Yang et al., 2012; Yu et al., 2017). Re-
cent studies have highlighted the significance of
utilizing rumor-spreading patterns, represented as
propagation trees, in discerning rumors from non-
rumors (Ma et al., 2018; Bian et al., 2020). As
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Figure 1: Example of a rumor propagation tree related
to the Ferguson event.

illustrated in Figure 1, a propagation tree is formed
by a central claim and relevant posts. This tree
encapsulates the dynamics of rumor spreading on
social media, where the original claim initiates a
cascade of reactions and interactions as it dissemi-
nates through the network. Therefore, understand-
ing these propagation trees is crucial for effective
rumor detection.

Researchers have explored leveraging deep learn-
ing models to extract structural representations
from propagation trees, employing methods such
as Long Short-Term Memory (LSTM) networks
(Kochkina et al., 2017), Recursive Neural Networks
(RvNN) (Ma et al., 2018), and Transformer net-
works (Khoo et al., 2020). With the rapid pro-
liferation of Graph Neural Networks (GNNs) in
contemporary research, there is a growing trend
towards adopting Graph Convolutional Networks
(GCN) (Bian et al., 2020; Wei et al., 2021; Wu et al.,
2024b) and Graph Attention Networks (GAT) (Lin
et al., 2021; Chen et al., 2024). However, these
methods tend to overlook the temporal structure
inherent in information propagation, despite evi-
dence suggesting its advantages for rumor detec-
tion (Cheng et al., 2021). Also, they often assume
that the observed structure of the propagation tree
is completely accurate, disregarding the presence
of potential noise, such as inaccurate relations (Wei
et al., 2021).
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Figure 2: The Empirical Cumulative Distribution Func-
tion (ECDF) plots of the time delay distributions since
the initial claim was posted for posts responding to true,
false, and unverified rumors in the Germanwings crash
event1 from the PHEME (Zubiaga et al., 2016) dataset.

The temporal structure of rumor propagation in-
volves the sequence and intervals of posts along the
timeline originating from the central claim (Huang
et al., 2020). Figure 2 shows statistically signif-
icant differences in the time delay distributions
among the three categories of rumors (p < 0.001,
Anderson-Darling test). Wei et al. (2019) observed
temporal variations in stance distributions across
posts discussing different categories of rumors.
These findings underscore the critical need to incor-
porate temporal information when predicting the
veracity of rumors. While previous research (Khoo
et al., 2020) utilized the time delay of rumor propa-
gation as the transformer’s position embedding, it
overlooked the hierarchical structure that emerges
during rumor propagation. To comprehensively
consider both the structural and temporal aspects
of rumor propagation, we propose constructing a
weighted propagation tree, with each edge assigned
a weight corresponding to the time interval between
connected posts. This approach facilitates a deeper
understanding of the temporal dynamics involved
in rumor propagation, including the speed and effi-
ciency of information flow.

Drawing upon the theory of structural entropy
(Li and Pan, 2016), which quantifies the structural
complexity and organization of graphs, we derive a
coding tree from the propagation tree. The coding
tree is a refined version of the original propaga-
tion tree that preserves the essential structure of
propagation dynamics while reducing noise. In

1Distributions for more events are available in Figure A4.

pursuit of the optimal coding tree, we design a
greedy algorithm aimed at minimizing structural
entropy. To effectively leverage the enriched in-
formation within the coding tree, we introduce a
recursive neural network for representation learn-
ing, referred to as CT-RvNN. CT-RvNN employs
an efficient bottom-up message-passing scheme,
iteratively propagating information from leaf nodes
to the root node. Finally, we create a comprehen-
sive representation of the coding tree through a
hierarchical readout strategy, encapsulating criti-
cal information for rumor veracity prediction. In
comparison to current state-of-the-art methods, CT-
RvNN demonstrates superior performance while
consuming fewer computational resources. Overall,
our contributions can be summarized as follows:

• We demonstrate the significance of temporal
information in predicting the veracity of ru-
mors through statistical analysis. We incor-
porate temporal characteristics to construct
time-weighted propagation trees, capturing
the temporal dynamics of rumor propagation.

• We derive coding trees from the weighted
propagation trees through structural entropy
minimization. These coding trees preserve
the essential structure of rumor propagation
while reducing noise. We then employ recur-
sive neural networks to effectively learn rumor
representations from these coding trees.

• Experimental results on two widely used
datasets demonstrate the effectiveness and effi-
ciency of our approach. Additionally, in-depth
analyses underscore the benefits of incorporat-
ing temporal information and the efficacy of
the coding tree transformation.

2 Related Work

Rumor Detection. Rumor detection on social
media has emerged as a prominent and rapidly
evolving research field in recent years. Early
studies primarily focused on detecting rumors
through handcrafted features extracted from vari-
ous sources, including post contents (Castillo et al.,
2011), user profiles (Yang et al., 2012), and patterns
of information propagation (Kwon et al., 2013).
Ma et al. (2015) introduced a time series model de-
signed to capture the temporal evolution of social
context information. Wu et al. (2015) and Ma et al.
(2017) employed Support Vector Machines (SVM)
with various kernel functions for rumor detection.
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However, these approaches relied heavily on fea-
ture engineering, which is both time-consuming
and labor-intensive.

In more recent times, researchers have explored
the application of deep learning methods in the
domain of rumor detection. Yu et al. (2017) lever-
aged Convolutional Neural Networks (CNN) to
extract essential features from input sequences and
capture high-level interactions among these fea-
tures. Ma et al. (2016) adopted Recurrent Neural
Networks (RNN) to acquire representations that
encapsulate the evolving contextual information of
relevant posts over time. Yu et al. (2020) divided
lengthy threads into shorter subthreads and utilized
a hierarchical Transformer framework to learn both
local and global interactions among them.

In order to extract informative patterns from both
textual content and propagation structures, Ma et al.
(2018) introduced an RvNN-based model designed
to uncover hidden patterns in tweets organized as
propagation trees. Khoo et al. (2020) incorporated
a self-attention mechanism to model long-distance
interactions within propagation trees. Recent ad-
vancements in this field have also seen the incor-
poration of GNNs. Wei et al. (2019) combined
structural characteristics and temporal dynamics in
the context of rumor propagation using GCN and
RNN. Lin et al. (2021) represented conversation
threads as undirected interaction graphs and em-
ployed post- and event-level graph attention mech-
anisms to extract multi-level rumor-indicative fea-
tures. Bian et al. (2020) focused on both top-down
propagation and bottom-up dispersion dynamics
among nodes in propagation trees for rumor de-
tection. Wei et al. (2021) considered the inherent
uncertainty in propagation structures, adaptively
adjusting weights of unreliable relations to cap-
ture robust structural features. Liu et al. (2022)
proposed utilizing two shared channels for extract-
ing task-invariant textual and structural features,
alongside two task-specific graph channels aimed
at enhancing structural features. Chen et al. (2024)
introduced an attention mechanism to capture in-
teraction information among subthreads, incorpo-
rating a stance-rumor interaction network that inte-
grates users’ stance information with rumor verifi-
cation. Luo et al. (2024) employed a graph trans-
former to concurrently acquire structural and se-
mantic information. Additionally, they utilized a
partition filter network to explicitly model rumor-
and stance-specific features, as well as shared in-
teractive features. Wu et al. (2024b) developed a

multi-view fusion framework that leverages GCN
to encode each conversation view, complemented
by a CNN to harness consistent and complementary
information across all views. Despite the extensive
research dedicated to rumor detection, there has
been a notable lack of focus on integrating both
the structural and temporal aspects of information
propagation into the analysis. In addition, the po-
tential influence of noise within the propagation
structure has largely been overlooked.

Structural Entropy. Structural entropy (Li and
Pan, 2016) is an extension of Shannon entropy for
structured systems, providing a measure of their
structural complexity. In recent years, structural
entropy has been successfully applied to various
domains, including community structure deception
(Liu et al., 2019), graph classification (Wu et al.,
2022b), graph pooling (Wu et al., 2022a), graph
contrastive learning (Wu et al., 2023, 2024a), graph
structure learning (Zou et al., 2023), and text classi-
fication (Zhang et al., 2022; Zhu et al., 2023, 2024).

3 Preliminaries

3.1 Problem Statement

Rumor detection aims to determine the veracity
of a claim. Formally, we consider a set of con-
versation threads on social media platforms, de-
noted by C =

{
c1, . . . , c|C|

}
. Each thread con-

sists of a central claim and a series of relevant
posts sorted chronologically: ci =

{
pi1, . . . , p

i
ni

}
,

where pi1 is the original claim, and ni is the num-
ber of posts in thread ci. Each post in the thread
is represented as pij =

(
xij , t

i
j , r

i
j

)
, where xij is

the textual content of the post, tij is the publica-
tion time of the post, and rij is the index of the
post that pij responds to. The propagation pro-
cess, starting from the original claim, forms a
tree-structured graph denoted as Gi =

(
V i, E i

)
,

where V i represents the set of posts in thread ci

and E i =

{(
pi
rij
, pij

)
| j ∈ [2, ni]

}
denotes the

edges between posts and their responses.
Each claim ci is associated with a ground-truth

label yi ∈ Y , which indicates its veracity. The label
set Y = {TR,FR,UR} corresponds to the cate-
gories of true rumor, false rumor, and unverified
rumor, respectively. The primary objective is to
learn a classifier f : C → Y capable of accurately
determining the veracity of a claim by analyzing
its textual semantics and propagation structure.
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Figure 3: Overview of our approach.

3.2 Structural Entropy

Li and Pan (2016) introduced the concept of the
coding tree of a graph, which serves as a lossless
encoding of the graph, with its leaf nodes corre-
sponding to nodes in the graph. They define the
structural entropy of a graph G = (V,E) with
respect to a coding tree T as follows:

HT (G) = −
∑
vα∈T

gα
vol (G)

log2
vol (vα)
vol

(
v−α

) . (1)

In the equation above, vα represents a non-root
node in the tree T , corresponding to a node subset
Vα ⊂ V , which comprises the leaf nodes in the sub-
tree of T rooted at vα. v−α refers to the ancestor of
vα in T and gα = |E (V ′

α, Vα)| represents the num-
ber of edges from the complement of Vα (denoted
as V ′

α) to Vα. In the case of weighted graphs, gα is
the sum of the weights of all the edges between Vα

and V ′
α. The terms vol (G), vol (vα), and vol (v−α )

refer to the total (weighted) degrees of nodes in V ,
Vα, and V −

α , respectively.
The structural entropy of the graph G is then

defined as the minimum value of HT (G) over all
possible coding trees:

H (G) = min
T

{
HT (G)

}
. (2)

While identifying the optimal coding tree is im-
portant, there are scenarios where decoding a pre-
defined hierarchy for the original graph is more
advantageous. In such cases, a coding tree with a
predetermined height becomes preferable. To this
end, the K-dimensional structural entropy is em-
ployed to decode the optimal coding tree with a
specific height K:

HK (G) = min
∀T : Height (T )=K

{
HT (G)

}
. (3)

4 Methodology

Figure 3 provides an overview of our approach. In
Section 4.1, we leverage the structural and temporal
characteristics of rumor propagation to construct
time-weighted propagation trees. Next, we devise
an algorithm to derive an optimal coding tree from
a propagation tree through structural entropy min-
imization (Section 4.2). Following this, we intro-
duce our representation learning model, which is
designed to acquire meaningful representations of
rumors from the coding trees (Section 4.3). Finally,
we classify the veracity of rumors (Section 4.4).

4.1 Time-weighted Propagation Tree
Construction

In the context of rumor detection, comprehending
the propagation structure of a rumor is critical for
assessing its veracity. Following contemporary re-
search practices, our initial step involves construct-
ing a propagation tree. This tree plays a pivotal
role in capturing how a claim spreads within a so-
cial media platform, with nodes representing the
original claim, its subsequent responses, and re-
sponses to those responses, collectively forming a
hierarchical structure.

In reality, individuals require time to process
and evaluate incoming information before deciding
whether to share or endorse a rumor. Therefore,
a temporal dimension exists that should be fac-
tored into our analysis. To achieve this, we assign
weights to the edges of the propagation tree. These
weights indicate the time difference between the
publication of the connected posts, reflecting the
duration it took for the information to propagate
from one post to another. Specifically, the weight
wjk of an edge connecting a post pj and its re-
sponse pk is calculated as wjk = tk − tj . As a
result, the adjacency matrix of the weighted propa-
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gation tree is defined as Ai =
{
wi
jk

}ni×ni

, where

wi
jk =

{
tik − tij , if post pik responses to post pij ,

0, otherwise.

4.2 Coding Tree Construction
After constructing the time-weighted propagation
tree, the next step involves transforming it into a
coding tree for structure optimization. To achieve
this, we propose a greedy algorithm for minimiz-
ing the K-dimensional structural entropy, thereby
generating the optimal coding tree with a specified
height of K. To start, we define essential member
functions for the tree data structure.

Definition 1. Given the root node vλ and two of
its descendants vj and vk in a tree, the function
join (vj , vk) inserts a new node vβ between the
node vλ and the nodes vj and vk:

vβ.descendants = {vj , vk},
vλ.descendants += vβ,

vλ.descendants −= {vj , vk}.

Definition 2. Given an internal node (i.e., a node
that is neither the root nor a leaf) vβ in a tree, the
function trim (vβ) removes the node vβ from the
tree and integrates its descendants into its ances-
tor’s descendants:

vβ.ancestor.descendants += vβ.descendants,

vβ.ancestor.descendants −= vβ.

Definition 3. Given a non-root node vα in a tree,
the function pad (vα) inserts a new node vβ be-
tween the node vα and its ancestor:

vβ.descendants = {vα},
vα.ancestor.descendants += vβ,

vα.ancestor.descendants −= vα.

In Algorithm 1, we outline the coding tree con-
struction process based on the three functions de-
fined above. Initially, we start with a tree structure
that comprises only root and leaf nodes, with each
leaf node associated with a node in the propaga-
tion tree. We then expand this initial structure into
a full-height binary tree using a greedy strategy.
This strategy involves iteratively merging two de-
scendant nodes of the root node to form a new
division, aiming to minimize structural entropy at
each step. Once we have constructed the full-height
binary tree, we proceed to compress it to the pre-
scribed height. This compression is achieved using

Algorithm 1 Coding Tree Construction via Struc-
tural Entropy Minimization

Input: Graph G = (V,E); coding tree height K
Output: Coding tree T = (VT , ET ) of height K
that minimizes the structural entropy of the graph
G

1: Create a tree T of height 1 with a root node
vλ and leaf nodes, where each leaf node corre-
sponds to a node in V ;
{Expand the tree into a full-height binary tree}

2: while |vλ.descendants| > 2 do
3: Select vj and vk from vλ.descendants by

argmax
(vj ,vk)

{
HT (G)−HT.join (vj ,vk) (G)

}
;

4: T.join (vj , vk);
5: end while

{Compress the tree to the specific height K}
6: while Height (T ) > K do
7: Select an internal node vβ from the tree T

by argmin
vβ

{
HT.trim (vβ) (G)−HT (G)

}
;

8: T.trim (vβ);
9: end while

{Align the depths of all leaf nodes in the tree
to K}

10: for vα ∈ T do
11: if Height (v−α )− Height (vα) > 1 then
12: T.pad (vα);
13: end if
14: end for
15: return T ;

a similar greedy strategy, where internal nodes are
iteratively removed while minimizing the increase
in structural entropy, until the desired height limit
is reached. After the compression process, the re-
sulting coding tree may feature leaf nodes with
varying depths. To ensure all leaf nodes attain
a consistent depth K for effective representation
learning, the function pad introduces internal nodes
as needed. Proposition 1 demonstrates that the pad
operation does not impact structural entropy. Fi-
nally, our algorithm yields the optimal coding tree
at the specified height, denoted as T = (VT , ET ).
Here, V (0)

T = V , where V
(0)
T denotes the nodes

of height 0 in the coding tree T (i.e., leaf nodes).
To facilitate understanding of the coding tree con-
struction algorithm, illustrations of the join, trim,
and pad operations, along with the expansion and
compression processes, as well as the complexity
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analysis, are provided in Appendix A.

Proposition 1. For two nodes vj and vk in a coding
tree T such that vj is the ancestor of vk, we have
HT (G) = HT.pad (vk) (G).

Proof. See Appendix B.

4.3 Rumor Representation Learning
In this section, based on the temporal information
incorporation and the coding tree transformation,
we present our model for rumor representation
learning. The coding tree serves as a condensed
representation of the original propagation struc-
ture, preserving essential elements of the rumor-
spreading process while reducing data redundancy
and noise. Our model is designed to progressively
acquire node representations in the coding tree,
layer by layer, ultimately culminating in a com-
prehensive representation of the entire coding tree
through a hierarchical readout strategy.

Leaf Node Encoding. The leaf nodes in the cod-
ing tree correspond to posts in the respective con-
versation thread. We obtain post representations
using a sentence encoder:

{g1, . . . , gn} = SentenceEncoder ({x1, . . . , xn}) ,
(4)

where n is the number of posts in the thread.
Next, we initialize the leaf node representations

with the corresponding post representations:

h
(0)
j = gj , ∀j ∈ [1, n] . (5)

Tree Positional Encoding. To capture the hier-
archical structure of nodes in the coding tree, we
introduce a positional encoding mechanism to en-
able the model to distinguish nodes at different
depths. We define the positional embedding s(l) for
nodes at height l as follows:

s(l) = PositionEncoder (l) , (6)

where PositionEncoder (·) generates unique em-
beddings for each layer of the coding tree.

Bottom-Up Message Passing. To facilitate effec-
tive learning from the coding tree, we introduce a
recursive neural network. This network employs
an efficient bottom-up message passing scheme,
iteratively propagating information from leaf nodes
to the root node. As iterations proceed, the model
progressively learns representations for each non-
leaf node by aggregating the representations of its

descendants, eventually deriving the representation
for the root node. In this context, we employ the
Gated Recurrent Unit (GRU) (Chung et al., 2014)
as the aggregate function. Consequently, the rep-
resentation of a non-leaf node at height l in the
coding tree is computed as:

h̄(l)v =
∑

u∈D(v)

h(l−1)
u ,

r(l) = σ
(
Wrs

(l) +Urh̄
(l)
v

)
,

z(l) = σ
(
Wzs

(l) +Uzh̄
(l)
v

)
,

h̃(l)v = tanh
(
Whs

(l) +Uh

(
r(l) ⊙ h̄(l)v

))
,

h(l)v =
(
1− z(l)

)
⊙ h̄(l)v + z(l) ⊙ h̃(l)v ,

(7)

where D (v) represents the set of descendants of
node v in the coding tree, h(l−1)

u denotes the rep-
resentation of a descendant node u at the previous
layer, and ⊙ denotes element-wise multiplication.

Tree Representation Readout. The representa-
tion hT of the entire coding tree is generated by
combining the representations from each layer in
the tree. This is achieved by pooling the representa-
tions of nodes at each layer and then concatenating
the resulting representations across all layers:

hT =

K

∥
l=0

Pool
({

h(l)v | v ∈ V
(l)
T

})
, (8)

where ∥ denotes concatenation, V (l)
T refers to the

nodes at height l in the coding tree T , and Pool (·)
represents a pooling operation such as summation,
averaging, or maximization.

4.4 Classification and Model Training
The entire coding tree’s representation is fed into a
fully connected layer, followed by a softmax func-
tion to compute the predicted label probabilities:

ŷ = softmax (WhT + b) . (9)

For model training, we adopt the cross-entropy
loss as the objective function:

LC = − 1

|C|

|C|∑
i=1

|Y|∑
j=1

yij log ŷ
i
j + η∥θ∥2, (10)

where yij denotes the ground truth probability dis-
tribution for the i-th sample in C.
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5 Experiments

5.1 Experimental Setup
Datasets. We conduct experiments using two
publicly available datasets: PHEME (Zubiaga
et al., 2016) and Rumoreval (Derczynski et al.,
2017). These datasets consist of real-world data
collected from Twitter and are widely used in ru-
mor detection. We adopt a leave-one-event-out
cross-validation approach for the PHEME dataset,
as established in previous studies (Wei et al., 2019,
2021; Liu et al., 2022; Luo et al., 2024; Chen et al.,
2024; Wu et al., 2024b). The Rumoreval dataset is
evaluated using its official division. Both datasets
exhibit imbalances in class distribution. To ensure
a comprehensive evaluation of model performance,
we prioritize Macro-F1 as the primary evaluation
metric and supplement it with Accuracy. Key statis-
tics for both datasets are summarized in Table A1.

Implementation Details. To align with prior re-
search (Bian et al., 2020; Wei et al., 2021; Wu et al.,
2024b), we use TF-IDF as the sentence encoder to
represent posts as 5000-dimensional vectors based
on their textual content. The pooling operation is
performed using a summation function. For posi-
tional encoding, we employ randomly initialized
embeddings, which are further adapted during the
model training process. In our experiments on the
PHEME and Rumoreval datasets, we set the coding
tree height to 7 and 5, respectively.

Baselines. In our evaluation, we compare our
model against several state-of-the-art rumor detec-
tion methods. These methods can be broadly cate-
gorized into two groups: sequence-based methods
and structure-based methods. For sequence-based
methods, we consider BranchLSTM (Kochkina
et al., 2017), HiTPLAN (Khoo et al., 2020), and
Hierarchical Transformer (Yu et al., 2020). For
structure-based methods, we consider TD-RvNN
(Ma et al., 2018), Hierarchical GCN-RNN (Wei
et al., 2019), Bi-GCN (Bian et al., 2020), ClaHi-
GAT (Lin et al., 2021), EBGCN (Wei et al., 2021),
STL-GT(Liu et al., 2022), MTL-SMI(Liu et al.,
2022), SSRI-Net(Chen et al., 2024), Luo et al.
(2024), and GMVCN (Wu et al., 2024b).

5.2 Main Results
Table 1 provides an extensive performance com-
parison of various methods on the PHEME and
Rumoreval datasets. Our model consistently out-
performs all baseline methods in terms of both

Method PHEME Rumoreval

Macro-F1 Accuracy Macro-F1 Accuracy

BranchLSTM 0.259 0.314 0.491 0.500
TD-RvNN 0.264 0.341 0.509 0.536
Hierarchical GCN-RNN 0.317 0.356 0.540 0.536
HiTPLAN 0.361 0.438 0.581 0.571
Hierarchical Transformer 0.372 0.441 0.592 0.607
Bi-GCN* 0.316 0.442 0.607 0.617
ClaHi-GAT* 0.369 0.556 0.539 0.536
EBGCN* 0.375 0.521 0.639 0.643
STL-GT 0.359 0.430 0.618 0.607
MTL-SMI† 0.409 0.468 0.685 0.679
SSRI-Net† 0.483 0.568 0.743 0.750
Luo et al. (2024)† 0.448 0.479 0.754 0.767
GMVCN 0.441 0.647 0.721 0.721

CT-RvNN (Ours) 0.486 0.794 0.792 0.786

Table 1: Performance comparison of various methods on
the PHEME and Rumoreval datasets. The best result for
each metric is highlighted in bold, with the second-best
result underlined. Results marked with * are reported in
Wu et al. (2024b). Methods marked with † are multi-task
frameworks that additionally utilize stance information.

Macro-F1 and Accuracy metrics. Specifically, our
model achieves a Macro-F1 of 48.6% and an Ac-
curacy of 79.4% on the PHEME dataset. For the
Rumoreval dataset, it attains a Macro-F1 of 79.2%
and an Accuracy of 78.6%. A deeper analysis re-
veals that the notable improvement in Accuracy
on the PHEME dataset is primarily driven by en-
hanced performance in identifying false rumors,
which plays a key role in the overall boost.

In comparing various methods, those leverag-
ing GNNs to model conversation structures gener-
ally demonstrate superior performance compared
to methods relying on sequential models. This su-
periority stems from GNNs’ ability to capture com-
plex dependencies and interactions among nodes in
the propagation tree. Notably, Bi-GCN, EBGCN,
and GMVCN leverage multiple directed views of
conversation threads, integrating both top-down
and bottom-up information flows to better capture
the underlying patterns of rumor propagation and
dispersion. Despite the prowess of these GNN-
based methods, our model surpasses them in perfor-
mance, demonstrating its superior ability to effec-
tively leverage the specific characteristics of rumor
propagation. Even when compared to methods that
use rumor stance classification as an auxiliary task
to enhance rumor veracity prediction, our model
still achieves better performance.

Unlike TD-RvNN, which applies the recursive
neural network directly to the original propagation
tree, our proposed CT-RvNN employs the recursive
neural network on the coding tree derived from the
time-weighted propagation tree. This adaptation
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Method PHEME Rumoreval

Macro-F1 Accuracy Macro-F1 Accuracy

CT-RvNN 0.486 0.794 0.792 0.786
CT-RvNN (Unweighted) 0.465 0.772 0.751 0.750
CT-RvNN (Random) 0.421 0.703 0.687 0.714
CT-RvNN (Linear) 0.436 0.727 0.734 0.750

Table 2: Ablation study results.

leads to significant performance improvements, un-
derscoring the advantages of incorporating tempo-
ral information and the efficacy of the coding tree
transformation. We further analyze the specific
performance enhancements provided by these two
components in the subsequent analysis.

5.3 Ablation Study

In this section, we conduct an ablation study to
analyze the impact of various modifications to our
model, with the results presented in Table 2.

To assess the impact of incorporating tempo-
ral weights into the propagation tree, we construct
unweighted propagation trees before the coding
tree construction and perform experiments, de-
noted as CT-RvNN (Unweighted). This mod-
ification results in a performance decrease on
both datasets. Specifically, the Macro-F1 score
decreases to 46.5% on PHEME and 75.1% on
Rumoreval, while accuracy drops to 77.2% on
PHEME and 75.0% on Rumoreval. This under-
scores the significance of considering temporal dy-
namics in the modeling process.

Next, we investigate the effects of our coding
tree construction algorithm. The CT-RvNN (Ran-
dom) variant randomly generates a coding tree of
height K. The results show a noticeable reduction
in performance, attributed to the random partition-
ing of nodes during coding tree construction, which
disrupts the inherent structural information. In con-
trast, the coding tree constructed by minimizing
structural entropy retains the essential structure of
the original propagation tree, thereby enhancing
the effectiveness of the learning process.

In the CT-RvNN (Linear) variant, we employ
a linear layer to aggregate information from de-
scendants instead of using the GRU. This adjust-
ment aims to investigate the effects of incorporating
the GRU for feature aggregation. The Macro-F1
score for this variant is 47.0% on PHEME and
74.4% on Rumoreval, with corresponding accura-
cies of 70.0% and 75.0%. Compared to this vari-
ant, the GRU-based recursive neural network not
only demonstrates superior performance but also

2 4 6 8 10
Coding tree height

45

46

47

48

M
ac

ro
-F

1 
(%

)

PHEME

2 4 6 8 10
Coding tree height

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

PHEME

2 4 6 8 10
Coding tree height

72

74

76

78

80

M
ac

ro
-F

1 
(%

)

Rumoreval

2 4 6 8 10
Coding tree height

72

74

76

78

Ac
cu

ra
cy

 (%
)

Rumoreval

Figure 4: Performance analysis results on the PHEME
and Rumoreval datasets in terms of coding tree height.

exhibits remarkable efficiency advantages through
cross-layer weight sharing, especially when the
height of the coding tree is high.

5.4 Performance Analysis

Impact of Coding Tree Height. Coding trees
of varying heights capture distinct hierarchical in-
formation, thereby influencing the extraction and
utilization of information from the leaf nodes. In
Figure 4, we present an analysis of our model’s
performance across different coding tree heights
on the two datasets. It becomes evident that setting
the coding tree height to 2 results in poor perfor-
mance. This decline in performance can be at-
tributed to the compression of the intricate rumor
propagation structure into a coding tree of height
2, which results in the loss of valuable information.
To preserve critical details within the propagation
structure, a higher coding tree height is essential.
For the PHEME dataset, we find that setting the
coding tree height to 7 yields the best macro-F1
score of 48.6%. However, in terms of accuracy, the
optimal coding tree height is 5. Conversely, for the
Rumoreval dataset, our model demonstrates opti-
mal performance when the coding tree height is set
to 5, achieving a macro-F1 score of 79.2% and an
accuracy of 78.6%. In summary, selecting an ap-
propriate coding tree height significantly enhances
model performance and ensures the effective uti-
lization of information derived from the original
claim and the propagation structure.

Early Rumor Detection. Early rumor detection
aims to identify rumors at their inception, well
before they gain widespread traction on social me-
dia platforms, enabling timely and appropriate re-
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Figure 5: Early rumor detection performance analysis
results for four distinct events from the PHEME dataset.

sponses. To assess our model’s effectiveness in
early rumor detection, we follow the approach out-
lined in Bian et al. (2020). Specifically, we estab-
lish various detection deadlines relative to the pub-
lication time of the original claim, considering only
posts preceding these deadlines to evaluate model
performance. Our evaluation is conducted on the
PHEME dataset, focusing on folds that use conver-
sation threads related to Ottawa Shooting, Sydney
siege, Ferguson, and Germanwings crash events for
testing. We compare our model against three base-
line models: Bi-GCN, EBGCN, and GMVCN. The
results of our evaluation are presented in Figure 5.

It is worth noting that the performance of each
model generally improves as the detection deadline
is extended. This trend is expected, as a longer
observation window allows for the accumulation
of more available information. Notably, at each
deadline, our model, CT-RvNN, consistently out-
performs the baseline models. In summary, our
model excels not only in long-term rumor detec-
tion but also significantly enhances the ability to
identify rumors in their early stages.

Efficiency Analysis. In this section, we conduct
an efficiency analysis by comparing the parameter
counts of various models, including our proposed
CT-RvNN and three baseline models: Bi-GCN,
EBGCN, and GMVCN. As illustrated in Figure 6,
CT-RvNN exhibits remarkable efficiency in terms
of parameter count compared to the baseline mod-
els. This showcases its ability to operate with fewer
computational resources while still achieving sig-
nificant performance improvements. Notably, as a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
# of Parameters (M)

CT-RvNN

GMVCN

EBGCN

Bi-GCN

Figure 6: Comparison of the parameter counts of various
models.

recursive neural network founded upon the GRU
architecture, CT-RvNN maintains a consistent pa-
rameter count regardless of the coding tree height.

In comparison, Bi-GCN, EBGCN, and GMVCN
follow the GCN paradigm. EBGCN and GMVCN,
in particular, extend the bidirectional GCN frame-
work introduced by Bi-GCN by constructing two di-
rected graphs to represent rumor propagation: one
top-down and the other bottom-up. This dual graph
construction results in a doubling of the parameter
count. Additionally, Bi-GCN and EBGCN aug-
ment the node features in the propagation tree with
those of the root node. While this augmentation
enhances the utilization of information from the
original claim and improves model performance, it
also introduces additional parameters.

6 Conclusion

In this paper, we use statistical analysis to under-
score the significance of temporal information in
predicting the veracity of rumors. By leveraging
the structural and temporal characteristics of rumor
propagation, we construct a time-weighted propa-
gation tree. This tree is then refined into a coding
tree through structural entropy minimization, effec-
tively preserving the essential structure of rumor
propagation while reducing noise. Finally, we in-
troduce a recursive neural network to learn rumor
representation from the coding tree. Experimen-
tal results demonstrate that our proposed approach
outperforms current state-of-the-art methods while
consuming fewer computational resources. Further-
more, in-depth analyses highlight the advantages
of incorporating temporal information and the effi-
cacy of the coding tree transformation.

Limitations

In line with prior research, we utilize TF-IDF as
the sentence encoder. However, the performance
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of CT-RvNN with alternative sentence encoders,
such as static word embeddings, pre-trained lan-
guage models, or large language models, remains
unexplored.

Recent studies have shown that Transformers
can effectively handle tree-structured data. Despite
this, we chose to use RvNN over Transformers in
this work. While Transformers may offer perfor-
mance improvements, they introduce significantly
more parameters, which conflicts with our primary
goal—validating the effectiveness of our method
design rather than optimizing performance through
a more complex architecture. Additionally, using
Transformers would complicate comparisons with
prior research that uses RvNN. Nevertheless, inte-
grating Transformers remains a promising direction
for future research.

Moreover, previous studies have highlighted the
benefits of incorporating rumor stance classifica-
tion as an auxiliary task within multi-task learning
frameworks to enhance rumor detection. These
multi-task frameworks have demonstrated signifi-
cant improvements over their corresponding single-
task ablations (Wei et al., 2019; Yu et al., 2020;
Liu et al., 2022; Luo et al., 2024). Despite con-
sistently outperforming these multi-task models,
our CT-RvNN holds untapped potential for further
development in multi-task learning. In future work,
we plan to integrate stance information into our
model to enhance its performance.
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(a) Joining two descendants vj and vk of the root node vλ.

(b) Expanding the initial tree into a full-height binary tree.

Figure A1: Illustration of the join operation and the
expansion process.

A Supplement to Algorithm 1

Coding Tree. A coding tree of a graph G = (V,E)
is defined as a rooted tree T that satisfies the fol-
lowing properties:

• Each non-leaf node vγ ∈ T corresponds to a
non-empty subset of V , denoted as Vγ , which
comprises the leaf nodes in the subtree of T
rooted at vγ . Specifically, the root node vλ of
T corresponds to the entire set V .

• Each leaf node vζ ∈ T corresponds to a
unique node in V . That is, the subset Vζ cor-
responding to a leaf node vζ is a singleton,
containing exactly one node from V .

• If vβ1 , vβ2 , · · · , vβk
are descendants of a

non-leaf node vγ ∈ T , then the sets
{Vβ1 , Vβ2 , · · · , Vβk

} form a partition of Vγ .
This means the sets are disjoint and collec-
tively cover all elements of Vγ .

Illustrations. The join operation is illustrated in
Figure A1(a). In this operation, a new node vβ is
inserted between the root node vλ and its two de-
scendants, vj and vk. As a result, vj and vk become
the descendants of vβ , while vβ itself becomes a de-
scendant of vλ. The selection of vj and vk is aimed
at minimizing structural entropy. By iteratively se-
lecting nodes vj and vk and performing the join
operation, the initial tree (of height 1) is expanded
into a full-height binary tree. This expansion pro-
cess is illustrated in Figure A1(b), corresponding
to Lines 2-5 in Algorithm 1.

The trim operation, as illustrated in Figure A2(a),
involves removing an internal node vα from the

(a) Trimming an internal node vβ .

(b) Compressing the tree to a specific height.

Figure A2: Illustration of the trim operation and the
compression process.

Figure A3: Padding a non-root node vα.

coding tree and adopting its descendants to its an-
cestor. The selection of vα aims to minimize the
increase in structural entropy. Through an itera-
tive process of selecting node vα and executing
the trim operation, the tree achieves the prescribed
height. This compression process is illustrated in
Figure A2(b), corresponding to Lines 6-9 in Algo-
rithm 1.

The pad operation, depicted in Figure A3, en-
tails inserting a new node vβ between a non-root
node vα and its ancestor. We iteratively select vα
such that Height (v−α ) − Height (vα) > 1 and ap-
ply the pad operation until all leaf nodes attain a
consistent depth, facilitating the subsequent coding
tree representation learning.

Complexity Analysis. The time complexity
of the coding tree construction algorithm is
O (2 |V |+ hmax (|E| log |V |+ |V |)), where
hmax is the height of the full-height binary tree.
It is worth noting that the algorithm tends to
construct balanced coding trees, ensuring that
hmax is at most log (|V |). Additionally, in typical
scenarios, graphs tend to have more edges than
nodes, i.e., |E| ≫ |V |, which implies that the
runtime of the algorithm scales almost linearly
with the number of edges.
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B Proof for Proposition 1

Proof. According to Equation (1), HT (G) is the
summation of HT

vα = − gα
vol (G) log2

vol (vα)
vol (v−α )

for

all non-root node vα in T . That is, HT (G) =
HT

vj + HT
vk

+ . . .. Denote the structural en-
tropy after padding vk as HT.pad (vk)(G). Like-
wise, HT.pad (vk)(G) = HT.pad (vk)

v′j
+HT.pad (vk)

vβ +

HT.pad (vk)
v′k

+ . . .. Here, vβ is the inserted internal
node between vj and vk, while v′j and v′k corre-
spond to vj and vk after the pad operation. The
following equations hold:

HT.pad (vk)
v′k

= −
g′k

vol (G)
log

vol (v′k)
vol (v′k

−)

= −
g′k

vol (G)
log

vol (v′k)
vol (vβ)

= −
g′k

vol (G)
log

vol (v′k)
vol (v′k)

= 0, (A1)

HT.pad (vk)
vβ

= −
gβ

vol (G)
log

vol (vβ)
vol (v−β )

= − gk
vol (G)

log
vol (vk)
vol (vj)

= − gk
vol (G)

log
vol (vk)
vol (v−k )

= HT
vk
, (A2)

HT.pad (vj)
v′j

= −
g′j

vol (G)
log

vol (v′j)

vol (v′j
−)

= − gj
vol (G)

log
vol (vj)
vol (v−j )

= HT
vj . (A3)

Thus, we have HT (G) = HT.pad (vk) (G).

C Detailed Experimental Setup

Datasets. The PHEME dataset comprises 2402
conversation threads related to nine events. To
ensure robust results, we adopt a leave-one-event-
out cross-validation approach following established
practices. In each fold of the cross-validation, we
use the conversation threads associated with one
event for testing, while the conversation threads
related to the remaining eight events are used for
training.

Statistic PHEME Rumoreval

# of users 18813 3859
# of posts 32925 5568
# of authors 1024 203
# of claims 2402 325
# of true rumors 1067 145
# of false rumors 638 74
# of unverified rumors 697 106
Avg. # of posts 13.7 17.1
Avg. depth of the propagation tree 2.8 3.4
Avg. rumor lifespan (hours) 8.7 23.3

Table A1: Statistics of datasets.

The Rumoreval dataset contains 325 conversa-
tion threads, officially divided into training, vali-
dation, and test sets. These conversation threads
are related to ten events, and the test set covers
two events that are not present in the training and
validation sets.

Each claim in both datasets is categorized into
one of three classes: true rumor, false rumor, or
unverified rumor.

Implementation Details. For model training, we
use the AdamW optimizer and implement a linear
learning rate scheduler with a 6% warmup and
a maximum learning rate of 0.001. Additionally,
we apply an L2 regularization weight penalty of
0.0005 to mitigate potential overfitting.

Baselines. In our evaluation, we compare our
model against the following competitive baselines:

• BranchLSTM (Kochkina et al., 2017) is an
LSTM-based sequential model designed to
capture the conversation structure of a claim
and its associated posts.

• TD-RvNN (Ma et al., 2018) is a top-down
tree-structured model that utilizes recursive
neural networks to model the propagation lay-
out of rumors.

• Hierarchical GCN-RNN (Wei et al., 2019)
utilizes a GCN to encode conversation struc-
tures for stance classification and an RNN to
capture the temporal dynamics of stance evo-
lution for veracity prediction.

• HiTPLAN (Khoo et al., 2020) is a structure-
aware self-attention network that incorporates
propagation structural information into the
Transformer model.
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Figure A4: The ECDF plots of the time delay distributions since the initial claim was posted for posts responding
to true, false, and unverified rumors for Charlie Hebdo, Ferguson, and Ottawa shooting events from the PHEME
dataset.

• Hierarchical Transformer (Yu et al., 2020)
generates conversation thread representations
by dividing each long thread into shorter sub-
threads and employing BERT to separately
represent each subthread.

• Bi-GCN (Bian et al., 2020) applies two
GCNs on the top-down directed graph and
the bottom-up directed graph to learn patterns
of rumor propagation and dispersion.

• ClaHi-GAT (Lin et al., 2021) employs a
claim-guided hierarchical attention mecha-
nism at both post- and event-level to attend to
informative posts.

• EBGCN (Wei et al., 2021) extends Bi-GCN
by handling uncertainty in the propagation
structure with a Bayesian method, adaptively
adjusting weights of unreliable relations.

• STL-GT (Liu et al., 2022) utilizes two shared
channels to extract task-invariant textual and
structural features.

• MTL-SMI (Liu et al., 2022) extends STL-
GT by incorporating two task-specific graph
channels for multi-task learning.

• SSRI-Net (Chen et al., 2024) utilizes an at-
tention mechanism to capture interaction de-
tails among subthreads and a stance-rumor
interaction network to integrate users’ stance
information with rumor verification.

• Luo et al. (2024) employs a graph transformer
to concurrently gather structural and semantic
information and a partition filter network to
explicitly model rumor- and stance-specific
features.

• GMVCN (Wu et al., 2024b) is a multi-view
fusion framework that utilizes a GCN and a
CNN to encode and capture complementary
information from various conversation views.

D Explanations for Figures 2 and A4

In Figures 2 and A4, statistically significant dif-
ferences consistently appear in the time delay dis-
tributions among the three categories of rumors.
Specifically, noteworthy disparities are evident in
the distributions of true and false rumors across
all four events. During the Charlie Hebdo and Ot-
tawa shooting events, the distribution of unverified
rumors closely resembles that of true rumors. How-
ever, in the remaining two events, the distribution
of unverified rumors diverges significantly from
the other two distributions. This observation high-
lights the critical role of temporal information in
predicting the veracity of rumors.
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