
Proceedings of the 31st International Conference on Computational Linguistics, pages 3924–3935
January 19–24, 2025. ©2025 Association for Computational Linguistics

3924

Parameter-Efficient Fine-Tuning of Large Language Models via
Deconvolution in Subspace

Jia-Chen Zhang1, Yu-Jie Xiong1*, Chun-Ming Xia1, Dong-Hai Zhu1, He-Xi Qiu1

1School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,
333 Longteng Road, Songjiang District, Shanghai, China

Correspondence: xiong@sues.edu.cn

Abstract

Large language model (LLM) is considered a
milestone towards achieving Artificial General
Intelligence (AGI). With its advanced emer-
gent capabilities, it adapt to a wide range of
specific applications. Fine-tuning LLMs for
various downstream tasks has become a new
paradigm. Low-Rank Adaptation (LoRA) is
well-known for its parameter efficiency. It can
reduce the number of parameters needed to
fine-tune LLMs by several orders of magni-
tude. However, LoRA-based approaches en-
counter a significant limitation due to the bot-
tleneck imposed by rank one decomposition.
As the parameters count in LLMs increase,
even rank one decomposition might surpass
the number of parameters truly necessary for
handling more downstream tasks. In this pa-
per, we propose a new method for Parameter-
Efficient Fine-Tuning (PEFT) via deconvolu-
tion in subspace, dubbed as DCFT. We inno-
vatively use deconvolution to complete details
and enhance knowledge in subspace incremen-
tal matrices, and dynamically control parame-
ters by adjusting the kernel size, unconstrained
by rank-one decomposition. Extensive exper-
iments are conducted to validate the effective-
ness of DCFT. Results show that compared
to LoRA, DCFT achieve an 8× reduction in
parameters, and still achieves highly impres-
sive performance. Our code is available here:
https://github.com/Godz-z/DCFT.

1 Introduction

LLMs are considered a potential spark for AGI
(Xi et al., 2023). Due to their excellent situational
adaptability and language comprehension abilities,
LLMs have become the cornerstone of NLP tasks
(Devlin et al., 2019; Liu et al., 2021; He et al.,
2021; Radford et al., 2019). The success of GPT-
3.5 has mainstreamed the development of LLMs
towards larger parameter counts (Ouyang et al.,

*Corresponding author.

2024). Over the past few years, the parameter scale
of pretrained language models has increased by
thousands of times; for example, PaLM (Chowdh-
ery et al., 2023) contains up to 540 billion parame-
ters, while GPT-4 (OpenAI, 2023) contains up to
100 trillion parameters. Nevertheless, due to the
knowledge boundaries of LLMs, their abilities in
some downstream tasks are still limited. To expand
these knowledge boundaries, it remains necessary
to fine-tune LLMs on downstream tasks (Qiu et al.,
2020; Liu et al., 2021).

However, the time and resource costs required
to fine-tune all parameters are prohibitive. Var-
ious methods for parameter-efficient fine-tuning
have been proposed to reduce these costs. The
PEFT methods are divided into two categories
based on whether the pretrained parameters are
frozen (Lialin et al., 2023). Considering the poten-
tial issues of catastrophic forgetting and reduced
generalization ability that may arise from modify-
ing model parameters and architecture, LoRA (Hu
et al., 2022) has become one of the most widely
applied PEFT methods. LoRA introduces incre-
mental updates to pretrained weights via the prod-
uct of two low-rank matrices. It reduces training
overhead by up to 70% and achieves comparable
or superior performance to fine-tuning.

Nonetheless, due to the constraints of rank-one
decomposition, LoRA-based approaches (Zhang
et al., 2023b; Ding et al., 2023; yang Liu et al.,
2024) have limitations in parameter efficiency.
With the increasing parameter counts in LLMs,
even rank one decomposition may exceed the nec-
essary number of parameters for managing more
complex models. Many researchers are dedicated
to breaking this limitation. LoRA-FA (Zhang et al.,
2023a) reduces trainable parameters and memory
further by freezing the matrix A in LoRA. NOLA
(Koohpayegani et al., 2024) decomposes LoRA’s
matrix A and B further into several small random
matrices. Yet, these methods consistently follow

mailto:xiong@sues.edu.cn
https://github.com/Godz-z/DCFT


3925

LoRA

(Low Rank Adaptation)

𝑃𝑎𝑟𝑎𝑚𝑠𝑚𝑖𝑛 = 2𝐷

𝒜

𝑅

ℬ

𝑑

DCFT

(Deconvolution Fine-Tuning)

𝑃𝑎𝑟𝑎𝑚𝑠𝑚𝑖𝑛 ≈
2𝐷

𝑑

. . .

Input

. . .

𝐷

Output

. . .

Input

. . .

𝐷

Output

1 2
3 4

1
2

1
2

3
4

3
4

1
2

3
4

1
2

3
4

(A) (B)

Subspace low-rank 

approximation

Deconvolution 

fine-tuning

Figure 1: An illustration of the differences between LoRA and DCFT. The parameter calculation results represent
the model’s parameters when r = 1. D represents the dimension of the pretrained weights, and d represents the
dimension of the convolution kernel.

the fundamental architecture of LoRA, encounter-
ing the persistent issue that parameter variations
are contingent upon the size of R. Additionally,
they have frozen some parameters, significantly
constraining the model’s capacity to learn from
new data.

In this paper, we innovatively combine the fea-
ture reconstruction ability of deconvolution and the
efficiency of subspace learning, dubbed as Decon-
volution Fine-Tuning (DCFT). Deconvolution is a
kind of CNN that performs upsampling by trans-
posing the convolution kernel matrix (Zeiler et al.,
2010). It is widely used in the fields of image pro-
cessing and computer vision, commonly applied
to tasks such as image reconstruction, semantic
segmentation, and feature enhancement (Dumoulin
and Visin, 2018; Zeiler and Fergus, 2014). For
the first time, we apply deconvolution to the fine-
tuning of large models, restoring and enhancing
features learned from incremental matrices through
deconvolution. We first learn a set of low-rank in-
cremental matrices for LLMs within the subspace.
Subsequently, by integrating orthogonal projection
theory, we apply orthogonal constraints to maxi-
mize the learning space of these matrices. Then,
we enhance and complete the matrices learned in
the subspace through deconvolution to adapt them
to the dimensions of the incremental matrices. By
setting the stride equal to the convolution kernel
size, we simplify the computation while better pre-
serving the knowledge learned in the subspace and
enhancing the stability of models.

Extensive experiments are conducted on various

tasks and models to demonstrate the effectiveness
of DCFT. Specifically, natural language understand-
ing GLUE (Wang et al., 2018) is evaluated using
DeBERTa and RoBERTa (He et al., 2021, 2023;
Liu et al., 2021). The findings, including qualita-
tive and quantitative results, indicate that DCFT
outperforms existing methods. The contributions
of this paper are as follows:

• We propose Deconvolution Fine-Tuning
(DCFT), a novel method employing decon-
volution to reconstruct subspace features in
incremental matrices. Compared to LoRA,
DCFT achieves improved performance while
using only 14% of the parameters.

• We significantly reduce the computational
complexity of DCFT and improve the fine-
tuning efficiency through a series of meth-
ods including low-rank matrices, equal kernel
stride, and larger convolution kernels.

• Extensive experiments are conducted to vali-
date the effectiveness of our method. Notably,
our model consistently surpasses parameter-
efficient baselines, achieving superior perfor-
mance with fewer parameters across a broad
spectrum of downstream tasks.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning
PEFT is a technique for adapting LLMs by op-
timizing a small set of parameters while keeping
most of the pre-trained parameters unchanged. This



3926

approach effectively reduces memory and com-
putational costs, allowing large models to be ap-
plied in resource-constrained environments. Com-
mon PEFT techniques include Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022), Mixture of Experts
(MoE), and Adaptable Embeddings (Adapters)
(Houlsby et al., 2019; Li and Liang, 2021). These
methods enhance the performance of the model on
specific tasks by updating only a small part of the
model while keeping the majority of the weights
fixed, thus preserving the pre-trained knowledge.

2.2 LoRA-based approach

Due to the high cost of full-parameter fine-tuning of
LLMs, numerous parameter-efficient methods have
been introduced. Among these, LoRA (Hu et al.,
2022) stands out by updating only a small subset of
the model’s parameters, thereby reducing memory
overhead while maintaining performance on par
with full-parameter fine-tuning. As Equation 3
shows, LoRA adds a low-rank adapter to the frozen
pre-trained weights to learn incremental matrices.

W = W (0) +∆ = W (0) + BA, (1)

where ∆ ∈ Rdin×dout, A ∈ Rr×dout, and B ∈
Rdin×r, with r ∈ (din, dout). The dimensions
of din and dout are the same as those of the pre-
trained matrix W . During fine-tuning, only A and
B are updated. The rank r is chosen to be much
smaller than the dimension of W . With less than
0.5% additional trainable parameters, the training
overhead can be reduced up to 70%.

Building on this, AdaLoRA (Zhang et al., 2023b)
introduces an adaptive mechanism for pruning,
LoRA-FA (Zhang et al., 2023a) freezes the param-
eters of matrix A, and NoLA (Koohpayegani et al.,
2024) further decomposes matrix AB into the sum
of multiple random matrices. DoRA (yang Liu
et al., 2024) trains an additional set of parameters
by decomposing the pre-trained weights. However,
all these methods are based on the LoRA architec-
ture, which leads to a significant issue: the number
of trainable parameters is controlled by the rank
r, which can only increase in multiples, and there
exists a bottleneck in rank-one decomposition.

2.3 Convolution and Deconvolution

Convolution is a fundamental operation in many
areas of signal processing and deep learning, es-
pecially in the context of Convolutional Neural
Networks (CNNs) (Lecun et al., 1998). It involves

sliding a filter (or kernel) over the input data to
produce a feature map, which captures important
spatial hierarchies in the data. Mathematically, the
convolution operation for a 2D input can be ex-
pressed as:

Y (i, j) =
∑
m

∑
n

X(i+m, j + n) ·W, (2)

where Y (i, j) represents the output feature map, X
is the input feature map, W is the filter or kernel.
The operation essentially involves multiplying the
filter with corresponding input values and summing
them to obtain the output at each spatial position.
Convolution is widely used for tasks such as image
recognition, object detection, and segmentation due
to its ability to extract meaningful features from
raw data.

Deconvolution (Zeiler et al., 2010), also known
as transposed convolution or upsampling, is the
reverse operation of convolution. While convolu-
tion reduces the spatial dimensions of the input,
deconvolution aims to increase them, making it
a crucial operation in tasks requiring output with
higher spatial resolution, such as image generation
and semantic segmentation. The deconvolution
operation can be mathematically represented as:

X(i, j) =
∑
m

∑
n

Y (i− sm, j − sn) ·W, (3)

where X(i, j) is the reconstructed input, Y is the
output feature map from the previous layer, W is
the filter or kernel, and sm and sn denote the strides
in the spatial dimensions. The transposed nature of
this operation is reflected in the indices i− sm and
j − sn, where the input is effectively expanded.

Deconvolution is not merely the inversion of the
convolution process but involves a more complex
transformation where the spatial resolution of the
feature map is increased, often leading to more re-
fined and higher-quality outputs. This operation is
critical in tasks where the generation or reconstruc-
tion of detailed spatial information is necessary.

3 Our Method

In this section, we provide a detailed description
of the DCFT method’s design, which enables flex-
ible control over fine-tuning parameters and over-
comes the constraints of rank one decomposition.
Additionally, we introduce the optimization for ef-
ficiency employed in our method.



3927

3.1 Deconvolution Fine-Tuning

The overall pipeline of DCFT is depicted in Fig-
ure 1. We first train a set of low-rank matrices A
and B in the subspace. Orthogonal constraints are
applied to matrix A and B to maximize the learning
space:

R(A,B) =
∥∥ATA− I

∥∥2
F
+
∥∥BBT − I

∥∥2
F
, (4)

where equation 4 enhances the orthogonality of ma-
trix A and B by approximating ATA = BBT = I .
Then, by applying the deconvolution operation, we
upscale the knowledge learned in the subspaces,
increasing the spatial dimensions of the incremen-
tal matrix. By leveraging the existing knowledge
in the subspaces, we predict missing parts. This
step allows us to obtain the incremental matrix with
minimal parameters. Moreover, because deconvo-
lution can learn the mapping from the subspace to
the parent space, the incremental matrix obtained
through deconvolution exhibits smoother and more
precise details of implicit knowledge compared to
that derived directly from the product of low-rank
matrices.

As shown in Equation 5, the sub-feature matrix
F , obtained by multiplying the low-rank matrices,
is subsequently multiplied by the transpose of the
convolution kernel matrix CT

s . This step completes
and enhances the knowledge learned in the sub-
space. Ultimately, an incremental matrix of the
same dimension as the frozen pretrained weights
is obtained. The parameter increment matrix is
added to the pretrained parameters to adapt to var-
ious downstream tasks, offering a plug-and-play
capability. Our forward propagation process is as
follows:

ConvT (F) = CT
s · F = CT

s · (B · A), (5)

W = W (0) +∆ = W (0) + ConvT (F), (6)

where ∆ ∈ R(din×dout), F ∈ R( din
d

× dout
d

), The
dimensions of din and dout are the same as those
of the pre-trained matrix W . ConvT (∗) denotes
the deconvolution operation. s represents the stride
of the transposed convolution. All of our trainable
parameters are initialized randomly. We summarize
the detailed algorithm in Algorithm 1.

3.2 Optimization for Efficiency

In this section, we introduce our approaches for
optimizing computational efficiency. Compared

Algorithm 1 Algorithm of DCFT

1: Input: Dataset D;total step T ; Kernel size d;
stride s.

2: Create matrix A,B, Cd;
3: for t = 1, . . . , T do
4: Sample a mini-batch from D;

//Subspace low-rank approximation
5: Compute input matrix F = A ∗ B;

//Deconvolution fine-tuning
6: Set stride s = kernel size d;
7: Reshape matrix Cd → matrix CT

s ;
8: Deconvolution reconstruction ConvT (F);
9: Compute incremental matrix ∆ as 6;

10: Add to the pre-trained weights.
11: end for

to LoRA, which involves only two matrix multi-
plications, deconvolution operations significantly
increase computational complexity. To address
this challenge, we have implemented the following
three principal measures to reduce the computa-
tional complexity of DCFT.

3.2.1 Low-Rank Matrice
We employed the LoRA methodology to decom-
pose the initial matrix F into the product of A ∗ B.
As shown in equation 5, where A ∈ R(k× dout

d
)

and B ∈ R( din
d

×k). In this paper, we set k = 1.
By using low-rank matrices, we have reduced the
parameters by an order of magnitude, effectively
enhancing parameter efficiency and training speed.
The change in the number of parameters after adopt-
ing the low-rank matrix is shown in Equations 7
and 8.

Paramsbefore = (
dout
d

× dout
d

) · layers, (7)

Paramsafter = (
dout
d

+
dout
d

) · layers. (8)

3.2.2 Equal Kernel Stride
DCFT sets the stride equal to the dimension of
the convolution kernel, ensuring that there is no
overlap between the outputs of each convolution
operation. This means that each input element is
computed only once. This significantly reduces
redundant calculations and prevents instability and
unpredictability caused by overlapping computa-
tions. Under the condition that the output matrix
dimensions are fixed, the Equation for the input
matrix is as follows:

Din =
(Dout −K + 2P )

S
+ 1, (9)



3928

where K represents the kernel size, P represents the
padding size, and S represents the stride. When K
equals S, the equation simplifies to:

Din =
Dout

S
. (10)

Therefore, setting the stride equal to the dimen-
sion of the convolution kernel can effectively re-
duce the requirements for the input matrix, maxi-
mize the capability of deconvolution feature com-
pletion, and further reduce the computation and
parameters.

3.2.3 Convolution kernel size
DCFT can control the number of parameters by
adjusting the size of the convolution kernel. When
a larger convolution kernel (d = 8) is used, the net-
work architecture is further simplified, leading to a
more uniform distribution of computations, effec-
tively eliminating checkerboard artifacts, and en-
hancing the quality of upsampling. Moreover, the
adoption of a larger kernel significantly reduces the
number of parameters in the deconvolution input
matrix. This reduction in parameter gradient com-
putations accelerates model convergence, thereby
enhancing the fine-tuning efficiency of DCFT.

When a smaller convolution kernel (d = 2) is
used, the network is better able to capture the local
features of the input data, allowing the model to bet-
ter understand and extract local information, which
aids in the model’s generalization ability on new
data. Detailed experimental validation is provided
in Section 4.4.

4 Experiments

In this section, we conduct a comprehensive eval-
uation of our method through a series of exper-
iments. We implement DCFT for fine-tuning
DeBERTaV3-base (He et al., 2023), DeBERTaV2-
xxl and RoBERTa-large (Liu et al., 2021), we as-
sess the effectiveness of the proposed algorithm on
natural language understanding (NLU) and ques-
tion answering (QA).

4.1 Experimental Settings
Implementation Details. We implement all
algorithms using PyTorch (Paszke et al., 2019).
Our implementation is based on the publicly
available code-base of Huggingface Transformers3
(Wolf et al., 2020). Experiments involving the
DeBERTaV3-base (He et al., 2021) are performed
on an NVIDIA 2080-ti GPU and experiments

about RoBERTa-large (Liu et al., 2021) and
DeBERTaV2-xxl are conducted on NVIDIA A800
GPU. Due to the bottleneck of rank one in the
LoRA-base model, we compare the results of rank
one with DCFT.
Baselines. Our baselines include full-parameter
fine-tuning and other widely recognized parameter-
efficient methods, including Bitfit (Zhang
et al., 2022) , Adapter tuning (Houlsby et al.,
2019; Pfeiffer et al., 2021), LoRA (Hu et al.,
2022), AdaLoRA (Zhang et al., 2023b), LoRA-FA
(Zhang et al., 2023a), and SoRA (Ding et al., 2023).

4.2 Natural Language Understanding
Models and Datasets. We fine-tune DeBERTaV3-
base, DeBERTaV2-xxl (He et al., 2023) and
RoBERTa-large (Liu et al., 2021) and adopt the
GLUE benchmark (Wang et al., 2018) for eval-
uation. It’s a widely recognized benchmark for
natural language understanding, including CoLA
(Warstadt et al., 2019), SST-2 (Socher et al., 2013),
MRPC (Dolan and Brockett, 2005), QQP (Wang
et al., 2018), STS-B (Wang et al., 2018), MNLI
(Williams et al., 2018), QNLI (Rajpurkar et al.,
2016) and RTE (Dagan et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2011). Dataset details
are summarized in Appendix A.1.
Main results. We first evaluate the task of Natu-
ral Language Understanding based on the GLUE
benchmark. Two results for DCFT are reported:
the one with the highest training efficiency and the
one with the strongest performance. The experi-
mental performance of DCFT and other baselines
is shown in Table 1. To ensure the fairness of the ex-
periments, we used the same hyperparameters and
ensured that the parameters were closely matched.
The results show that on the base model, DCFT
outperforms the baselines in most tasks, and the
trainable parameters are significantly fewer than
those of the baselines. For example, in the RTE
task, the accuracy of DCFT reached 88.45%, which
is 5.43% higher than that of SoRA. This demon-
strates that for some simple tasks, even if the pa-
rameters are set to r = 1, the trainable parameters
still far exceed the requirements. On the RoBERTa-
large and DeBERTaV2-xxl models, due to the ex-
pansion of the dimensionality of the incremental
parameter matrix, the issue of parameter redun-
dancy caused by rank-one decomposition is further
enhanced. This results in more significant perfor-
mance improvements for DCFT in most tasks. For



3929

Model Method #Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

DeBV 3
base Fine-Tune 184M 69.21 95.64 89.22 91.10 91.59 89.98/89.95 93.78 82.49 87.82

DeBV 3
base

Bitfit 0.1M 68.70 94.38 87.16 86.68 89.71 87.45/87.45 91.90 76.12 85.18

HAdapter 0.31M 67.65 95.41 89.25 90.18 91.31 90.10/90.02 93.52 83.39 87.60

PAdapter 0.3M 69.06 94.72 89.71 90.01 91.38 89.89/90.06 93.87 84.48 87.90

LoRA 0.17M 68.60 94.95 88.24 89.79 91.41 90.09/90.28 93.35 81.29 87.23

SoRA 0.12M 70.24 95.14 89.22 90.13 91.41 90.08/90.41 93.43 83.02 87.85

LoRA-FA 0.12M 70.24 95.14 89.22 90.13 91.41 90.08/90.41 93.43 83.02 87.85

DCFT∆(ours) 0.024M 71.07 95.53 90.93 89.20 91.56 89.40/89.63 93.59 88.45 88.73

DCFT†(ours) 0.079M 70.43 96.10 91.42 89.60 91.76 89.97/90.12 94.14 88.45 88.99

RoBlarge Fine-Tune 335M 68.0 96.4 90.9 92.2 92.4 90.2 94.7 86.6 88.93

RoBlarge

HAdapter 0.8M 66.3 96.3 87.7 91.5 91.5 90.3 94.7 72.9 86.40

PAdapter 0.8M 67.8 96.6 89.7 91.7 91.9 90.5 94.8 83.8 88.35

LoRA 0.8M 68.0 96.2 90.2 91.1 91.9 90.0 94.4 86.3 88.51

LoRA-FA 3.7M 68.0 96.0 90.0 91.1 92.0 90.1 94.4 86.1 88.46

DCFT∆(ours) 0.06M 68.5 96.0 90.9 90.6 92.2 90.1 94.2 87.0 88.69

DCFT†(ours) 0.21M 69.3 96.4 90.7 91.5 92.2 90.5 95.1 89.9 89.31

Table 1: Test results of DCFT and other baselines on the GLUE benchmark are presented. We report both matched
and mismatched accuracies for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy
for other tasks. DCFT∆ represents the most efficient results, while DCFT† denotes the optimal results. Higher
scores indicate better performance for all metrics. We employ consistent hyperparameters, detailed in Appendix A.1.
Optimal values are used as the final results. The best result is highlighted in bold, and the second best is underlined.

instance, in the CoLA task, DCFT uses only 0.21M
and 0.18M trainable parameters, leading LoRA by
1.3% and 0.6%, respectively, and surpassing other
LoRA-based approaches.

Method #Params CoLA SST-2 STS-B QNLI
Fine-Tune 1.5B 72.0 97.2 92.9 96.0

LoRA 4.7M 72.4 96.9 93.0 96.0
DCFT∆(ours) 0.18M 73.0 96.8 93.1 96.2

Table 2: Results of DCFT fine-tuned on four different
datasets on DeBERTaV2-xxl. Only the results with the
best training efficiency are reported. The best result is
highlighted in bold.

4.3 Question Answering
Models and Datasets. We fine-tune DeBERTaV3-
base (He et al., 2023) on two question answer-
ing (QA) datasets: SQuAD v1.1 (Rajpurkar
et al., 2016) and SQuAD v2.0 (Rajpurkar et al.,
2018). The Stanford Question Answering Dataset
(SQuAD) is a key NLP resource featuring over
100,000 questions on Wikipedia articles for train-
ing question-answering models. Dataset details are
summarized in Appendix A.2.
Main results. To evaluate the effectiveness of
DCFT fine-tuning for QA tasks, we fine-tuned the
DeBERTaV3-base model and assessed its perfor-

Model Method #Params SQuADv1.1 SQuADv2.0

DeBV 3
base Fine-Tune 184M 86.0 / 92.7 85.4 / 88.4

DeBV 3
base

HAdapter 0.08% 84.4 / 91.5 83.4 / 86.6
PAdapter 0.08% 84.4 / 91.7 84.2 / 87.2
LoRA 0.08% 86.6 / 92.9 83.6 / 86.7
DCFT(ours) 0.04% 87.3 / 93.4 84.7 / 87.7

Table 3: Test results of DCFT and other baselines on
the SQuAD benchmark are presented. We report EM
and F1. Higher scores indicate better performance for
all metrics. We employ consistent hyperparameters,
detailed in Appendix A.2. The best result is highlighted
in bold.

mance on the SQuAD dataset, with results detailed
in Table 3. We employed identical hyperparame-
ters across our training processes. The outcomes
reveal that DCFT surpasses baseline models on two
SQuAD datasets, while only necessitating half the
parameter count of these baselines. Specifically,
on the SQuAD v2.0 benchmark, DCFT achieved
scores of 84.7% and 87.7% on two key evaluation
metrics: exact match (EM) and F1 score, marking
an enhancement of 1.1% and 1.0% over LoRA.

4.4 Kernel Sizes Analysis

For a fixed model, adapting to different down-
stream tasks is undoubtedly challenging. Some



3930

Method&# Param Metric SST-2 CoLA QNLI RTE MRPC STS-B Avg.

Full FT Acc 95.63 69.19 94.03 83.75 89.46 91.60 87.28

DCFT(d = 2) Acc 96.10 70.43 94.14 88.45 91.42 91.76 88.72
0.079M Time 9.57h 0.97h 13.67h 1.63h 1.25h 0.97h 4.68h

DCFT(d = 4) Acc 95.76 69.24 93.76 88.45 90.20 91.80 88.20
0.041M Time 7.32h 0.68h 12.27h 1.47h 1.27h 0.79h 3.97h

DCFT(d = 6) Acc 95.07 70.69 93.65 86.28 89.95 91.73 87.90
0.029M Time 6.97h 0.64h 12.16h 1.45h 1.24h 0.77h 3.87h

DCFT(d = 8) Acc 95.53 71.07 93.59 88.45 90.93 91.56 88.52
0.024M Time 5.01h 0.54h 10.19h 1.08h 0.98h 0.63h 3.16h

DCFT(d = 12) Acc 95.76 67.87 93.57 84.12 89.46 91.73 87.09
0.023M Time 5.43h 0.62h 11.45h 1.28h 1.05h 0.72h 3.43h

Table 4: The results of DCFT with different convolution kernel sizes were tested on six datasets from GLUE
benchmark, and we reported the accuracy and time efficiency. d represents the dimension of the convolutional
kernel. We use the same hyperparameters, with only the convolution kernel size varying.

parameters contribute minimally to the final out-
comes, not only failing to enhance the model’s ca-
pabilities but also impacting the convergence speed.
Therefore, adaptively adjusting the parameter bud-
get according to needs is crucial. In this section,
we have presented the results and training times
of DCFT with different convolutional kernel sizes
on six different tasks, as shown in Table 4. The
analysis reveals that the model trains fastest and
achieves suboptimal overall results when using a
kernel size of (d = 8). Moreover, when the pa-
rameter budget was increased, most tasks showed
improved outcomes. When using a kernel size
of (d = 2), the model achieves the best average
results due to the small convolutional kernel’s abil-
ity to perceive details. However, for the smaller
dataset task of CoLA, increasing the parameter bud-
get actually resulted in decreased performance. It is
noteworthy that using larger convolutional kernels
(d = 12) leads to a significant decline in model per-
formance. The primary reason is likely that the en-
larged receptive field enables the model to capture
excessive irrelevant information, while overlooking
critical details, ultimately resulting in deteriorated
outcomes.

4.5 Step Analysis

In this section, we conduct an ablation experiment
on DCFT with different step sizes. We fix the
convolution kernel size at eight and keep other hy-
perparameters consistent. The accuracy (Acc) and
training time (Time) for step sizes of 1, 2, 4, and 8
across four tasks are recorded. We do not consider
cases where the step size exceeds the convolution
kernel size, as this would result in parameters not

participating in the computation, which contradicts
the principles of PEFT. The results are shown in
Table 5. From the analysis, it can be concluded
that when the step size equals the kernel size, the
model achieves the optimal results with the short-
est training time. As the step size decreases, the
training time progressively increases. When the
step size = 1, the model attains the second-best
results but incurs nearly three times the training
time compared to a step size of 8. We believe
the main issue arises when the step size is 4 or 6,
as the model is affected by checkerboard artifacts,
leading to knowledge overlap and offset. However,
with a step size of 1, although the model is still
impacted by checkerboard artifacts, the increase
in parameter count compensates for this due to
enhanced learning capacity, at the expense of sig-
nificantly prolonged training time. Therefore, the
results indicate that setting the step size equal to
the convolution kernel size is an effective approach.

Method&Params Metric CoLA MRPC STS-B RTE

DCFT(step= 1) Acc 70.96 90.69 91.48 88.45
165.5K Time 1.99h 1.22h 1.71h 1.62h

DCFT(step= 2) Acc 70.04 90.44 91.37 88.09
85K Time 0.89h 0.99h 0.89h 1.14h

DCFT(step= 4) Acc 65.97 88.97 90.73 87.36
44.9k Time 1.03h 0.99h 0.86h 1.11h

DCFT(step= 8) Acc 71.07 90.93 91.50 88.45
24.6k Time 0.54h 0.98h 0.63h 1.08h

Table 5: DCFT uses results with different step sizes,
while we adopt the same convolution kernel size (d = 8)
and ensure that other hyperparameters remain consistent.
The best results are highlighted in bold.



3931

COLA RTE MRPC QNLI

Ti
m

e

0.54

1.08
0.98

10.19

0.22

0.53

1.05

12.33

DCFT
LoRA

Figure 2: Illustration of the total training time for DCFT
and LoRA on four datasets: COLA, RTE, MRPC, and
QNLI.

10000 20000 30000 40000 50000
0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

0 10000 20000 30000 40000 50000

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

LoRA Acc DCFT Acc LoRA Loss DCFT Loss

Figure 3: Accuracy and loss results of DCFT and LoRA
on the SST-2 dataset.

4.6 Efficiency Analysis

In this section, we compare the training efficiency
of DCFT and LoRA. Operating under the same
computational infrastructure and with a batch size
of 32, we calculate the total training time for four
tasks, as shown in Figure 2. The results indicate
that on smaller tasks like CoLA and RTE, DCFT’s
training efficiency is lower than LoRA’s. However,
as the task size increases, DCFT’s training effi-
ciency surpasses that of LoRA, particularly on the
QNLI task, where it is 17.36% faster than LoRA.

Analysis shows that due to the high computa-
tional overhead of the deconvolution operation,
DCFT performs slower than LoRA on small
datasets. However, as the size of the task dataset
increases, this complexity becomes negligible com-
pared to the overall data processing load, and fewer
parameters mean faster checkpoint storage and re-
trieval. Additionally, the advantage of fewer pa-
rameters in DCFT results in significantly reduced
gradient computations at each step. Over long pe-
riods of computation, this difference accumulates,
ultimately leading to a substantial reduction in train-
ing time. Furthermore, as shown in Table 2, DCFT
converges faster than LoRA due to having fewer pa-
rameters. Therefore, with the trend towards larger
models and fine-tuning datasets, the computational
efficiency of DCFT will be further amplified.

Method #Params CoLA MRPC STS-B RTE

DCFT(Q,K) 6k 64.99 87.25 90.55 83.03
DCFT(Q,V ) 6k 64.50 89.95 91.43 83.03
DCFT(Q,K,V ) 9k 65.31 88.97 91.24 84.12
DCFT(Q,K,V,O) 18.4k 68.37 89.95 91.50 85.92
DCFT(ALL) 24k 71.06 90.93 91.56 88.45

Table 6: The results of applying DCFT across vari-
ous layers are presented. The term ALL denotes the
outputs from the query(Q), key(K), value(V ), output
matrix(O), and feed-forward layers.

4.7 Applying DCFT to Different layers

Notably, performance may fluctuate when apply-
ing parameter-efficient fine-tuning to different po-
sitions within the model. In this section, we apply
DCFT to weight matrices at various positions to
determine how to achieve optimal performance on
downstream tasks. Using the DeBERTaV3-base
model, we fine-tuned on the CoLA, MRPC, STS-B,
and RTE datasets. As shown in Table 6, although
DCFT is not primarily designed with parameter
budget in mind, applying it to all weight matrices
achieves the best results. Applying it specifically
to the matrices Q,K, V,O follows closely in effec-
tiveness, achieving the best results on the STS-B
dataset. This suggests that, applying DCFT to all
weight matrices is effective, and omitting the feed-
forward layers result in a significant performance
decline.

5 Conclusion

We propose a method named DCFT, which in-
novatively combines the reconstruction capabili-
ties of deconvolution with the learning abilities
of incremental matrices. This method enhances
and completes the details of knowledge learned in
subspaces and allocates parameter budgets based
on the size of convolution kernels, free from the
constraints of rank one decomposition. Addition-
ally, we have implemented three principal mea-
sures to reduce the computational complexity of
DCFT. This effectively lowers the model’s compu-
tational complexity, allowing it to achieve better
training efficiency on large datasets compared to
LoRA. We conducted extensive experiments in nat-
ural language processing and question answering.
The results show that DCFT achieves improved
performance while reducing parameters by approx-
imately 8×.



3932

Acknowledgements

This work was supported in part by the Science and
Technology Commission of Shanghai Municipality
under Grant (21DZ2203100), in part by the Na-
tional Natural Science Foundation of China under
Grant (62006150), in part by Shanghai Local Ca-
pacity Enhancement project (21010501500) and in
part by Science and Technology Innovation Action
Plan of Shanghai Science and Technology Com-
mission for social development project under Grant
(21DZ1204900).

References
Luisa Bentivogli, Peter Clark, Ido Dagan, and et al.

2011. The seventh pascal recognizing textual entail-
ment challenge. Theory and Applications of Cate-
gories.

David Bindel, James Demmel, William Kahan, and et al.
2002. On computing givens rotations reliably and
efficiently. Association for Computing Machinery
Transactions on Mathematical Software, pages 206–
238.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
and et al. 2023. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Re-
search, pages 1–113.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and et al.
2019. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings
of the Conference of the North American Chapter of
the Association for Computational Linguistics, pages
4171–4186.

Ning Ding, Xingtai Lv, Qiaosen Wang, and et al. 2023.
Sparse low-rank adaptation of pre-trained language
models. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
4133–4145.

Bill Dolan and Chris Brockett. 2005. Automatically
constructing a corpus of sentential paraphrases. In
Proceedings of the International Workshop on Para-
phrasing.

Vincent Dumoulin and Francesco Visin. 2018. A guide
to convolution arithmetic for deep learning. Preprint,
arXiv:1603.07285.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, and et al.
2023. On the effectiveness of parameter-efficient
fine-tuning. In Proceedings of the Association for the

Advancement of Artificial Intelligence Conference on
Artificial Intelligence, pages 12799–12807.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and et al. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
DeBERTav3: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embed-
ding sharing. In Proceedings of the International
Conference on Learning Representations.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and et al.
2021. Deberta: Decoding-enhanced bert with disen-
tangled attention. In Proceedings of the International
Conference on Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
and et al. 2019. Parameter-efficient transfer learn-
ing for NLP. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
2790–2799.

Edward Hu, Yelong Shen, Phillip Wallis, and et al. 2022.
Lora: Low-rank adaptation of large language models.
In Proceedings of the International Conference on
Learning Representations.

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa
Nooralinejad, and et al. 2024. NOLA: Compressing
lora using linear combination of random basis. In
The Twelfth International Conference on Learning
Representations.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 4582–4597.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A
guide to parameter-efficient fine-tuning. Preprint,
arXiv:2303.15647.

Zhuang Liu, Wayne Lin, Ya Shi, and et al. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the Chinese National
Conference on Computational Linguistics, pages
1218–1227.

OpenAI. 2023. GPT-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, and et al. 2024. Train-
ing language models to follow instructions with hu-
man feedback. In Proceedings of the 36th Interna-
tional Conference on Neural Information Processing
Systems, page 15.

https://api.semanticscholar.org/CorpusID:5791809
https://api.semanticscholar.org/CorpusID:5791809
https://api.semanticscholar.org/CorpusID:15247456
https://api.semanticscholar.org/CorpusID:15247456
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://link.springer.com/content/pdf/10.1007/11736790_9
https://link.springer.com/content/pdf/10.1007/11736790_9
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2023.emnlp-main.252
https://aclanthology.org/2023.emnlp-main.252
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
https://doi.org/10.1609/aaai.v37i11.26505
https://doi.org/10.1609/aaai.v37i11.26505
https://aclanthology.org/W07-1401
https://aclanthology.org/W07-1401
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2303.15647
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://arxiv.org/abs/2303.08774
https://dl.acm.org/doi/10.5555/3600270.3602281
https://dl.acm.org/doi/10.5555/3600270.3602281
https://dl.acm.org/doi/10.5555/3600270.3602281


3933

Adam Paszke, Sam Gross, Francisco Massa, and
et al. 2019. PyTorch: an imperative style, high-
performance deep learning library.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503.

XiPeng Qiu, TianXiang Sun, YiGe Xu, and et al. 2020.
Pre-trained models for natural language processing:
A survey. Science China Technological Sciences,
page 1872–1897.

Alec Radford, Jeffrey Wu, Rewon Child, and et al. 2019.
Language models are unsupervised multitask learn-
ers.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392.

Richard Socher, Alex Perelygin, Jean Wu, and et al.
2013. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642.

Alex Wang, Amanpreet Singh, Julian Michael, and et al.
2018. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 353–355.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, pages 625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, and et al.
2020. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 38–45.

Zhiheng Xi, Wenxiang Chen, Xin Guo, and et al. 2023.
The rise and potential of large language model based
agents: A survey. Preprint, arXiv:2309.07864.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, and et al.
2024. DoRA: Weight-decomposed low-rank adap-
tation. In Forty-first International Conference on
Machine Learning.

Matthew D. Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Com-
puter Vision – ECCV 2014, pages 818–833, Cham.
Springer International Publishing.

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor,
and Rob Fergus. 2010. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 2528–
2535.

Longteng Zhang, Lin Zhang, Shaohuai Shi, and et al.
2023a. Lora-fa: Memory-efficient low-rank adapta-
tion for large language models fine-tuning. Preprint,
arXiv:2308.03303.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
and et al. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In Proceedings of
the International Conference on Learning Represen-
tations.

Qingru Zhang, Simiao Zuo, Chen Liang, and et al. 2022.
Platon: Pruning large transformer models with upper
confidence bound of weight importance. In Proceed-
ings of the 39th International Conference on Machine
Learning, pages 26809–26823.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
http://www.sciengine.com/publisher/Science China Press/journal/SCIENCE CHINA Technological Sciences/63/10/10.1007/s11431-020-1647-3
http://www.sciengine.com/publisher/Science China Press/journal/SCIENCE CHINA Technological Sciences/63/10/10.1007/s11431-020-1647-3
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf#:~:text=This%20paper%20shows%20that%20language%20models%20can
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf#:~:text=This%20paper%20shows%20that%20language%20models%20can
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://aclanthology.org/Q19-1040
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/CVPR.2010.5539957
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://proceedings.mlr.press/v162/zhang22ao.html
https://proceedings.mlr.press/v162/zhang22ao.html


3934

A Datasets

A.1 NLU Datasets
For evaluation, we adaopt the GLUE benchmark
(Wang et al., 2018), including CoLA (Warstadt
et al., 2019), SST-2 (Socher et al., 2013), MRPC
(Dolan and Brockett, 2005), QQP (Wang et al.,
2018), STS-B (Wang et al., 2018), MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016) and
RTE (Dagan et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2011). We present the dataset
statistics of GLUE in the following table 7.

Dataset Metric #Train #Valid #Test #Label

CoLA Mcc 8.5k 1,043 1,063 2

SST-2 Acc 67k 872 1.8k 2

MRPC Acc 3.7k 408 1.7k 2

QQP Acc/F1 364k 40.4k 391k 2

STS-B Corr 5.7k 1.5k 1.4k 1

MNLI Acc(m/mm) 393k 20k 20k 3

QNLI Acc 105k 5.5k 5.5k 2

RTE Acc 2.5k 277 3k 2

Table 7: Dataset Sizes and Evaluation Metrics in the
GLUE Benchmark. "Mcc," "Acc," "F1," and "Corr" de-
note the Matthews correlation coefficient, accuracy, F1
score, and Pearson correlation coefficient, respectively.
"Acc(m/mm)" indicates accuracy results for matched
and mismatched datasets within MNLI.

A.2 QA Datasets
For evaluation, we adaopt (QA) datasets: SQuAD
v1.1 (Rajpurkar et al., 2016) and SQuAD v2.0 (Ra-
jpurkar et al., 2018). We present the dataset statis-
tics of GLUE in the following table 8.

Dataset Metric #Train #Valid

SQuAD v1.1 EM/F1 87,599 10,570

SQuAD v2.0 EM/F1 130,319 11,873

Table 8: Dataset Sizes and Evaluation Metrics in the
SQuAD Benchmark. "EM," and "F1," denote the Exact
Match and F1 Score.

B Sparse Regularization Theory

By using progressive projection matrices, we fur-
ther increase the compression ratio p of the pa-
rameters. Additionally, this enhances the stability

of the fine-tuning process. equations 11(Fu et al.,
2023) theoretically demonstrate the role of sparsity
in model stability. As the compression ratio p de-
creases, the upper bound also decreases. Therefore,
a sparser model implies better stability.

ES,i∼U(n)[|ℓ(A(Si), zi)− ℓ(A(S), zi)|]

≤ 2ρ2

(Λmin + 2(1− p))n
, (11)

ES,i∼U(n)[·] is Pointwise Hypothesis Stability
(PHS) (Bindel et al., 2002) which focuses on ana-
lyzing the change of model output after a training
sample is removed. Λmin = min{Λ1, . . . ,Λm}.
ℓ(·) represents the loss function. The variable ρ
represents this measure of stability, reflecting the
maximum impact of input variations on the output
in the loss function.

C Orthogonal Projection Theory

It is a fundamental concept in linear algebra with
applications across various fields including ma-
chine learning, statistics, and computer graphics.
This theory revolves around the idea of projecting a
vector onto a subspace in a way that minimizes the
distance between the vector and the subspace, ef-
fectively finding the closest approximation within
that subspace.

Mathematically, consider a vector u in Rn and
a subspace V spanned by vectors {v1, v2, . . . , vk}.
The orthogonal projection of u onto V, denoted as
PV(u), is given by:

PV(u) =

k∑
i=1

u · vi

vi · vi
vi. (12)

This design allows each Low Rank block to cap-
ture information in different dimensions, thereby
reducing information overlap and increasing the
overall efficiency and effectiveness of the model.
Additionally, the orthogonal training strategy helps
prevent overfitting, making the model more robust
when faced with new data.

D Checkerboard Artifacts

Checkerboard artifacts, commonly encountered in
image generation or upsampling tasks using Con-
volutional Neural Networks (CNNs), are often as-
sociated with the use of strided or transposed con-
volutions. These operations can lead to uneven



3935

Task learning rate batch size r Epochs Dropout γ init_warmup ∆T

CoLA 5e-4 32 8 25 0.5 0.1 800 10
SST-2 8e-4 32 8 24 0.1 0 6,000 100
MRPC 1e-3 32 8 30 0.1 0 600 1
QQP 8e-4 32 8 20 0.1 0.15 8,000 100
STS-B 2.2e-3 32 8 25 0.1 0.2 800 10
MNLI 5e-4 32 8 7 0.1 0.15 8,000 100
QNLI 1.2e-3 32 8 6 0.1 0.1 2,000 100
RTE 1.2e-3 32 8 50 0.3 0.2 600 1

Table 9: Hyper-parameters setup of DCFT for GLUE benchmark.

Task learning rate batch size r Epochs γ init_warmup ∆T tf

AQuAD v1.1 1e-3 16 10 25 0.1 5,000 100 25000
AQuAD v2.0 1e-3 16 12 24 0.1 5,000 100 50000

Table 10: Hyper-parameters setup of DCFT for AQuAD benchmark.

coverage in the output images, resulting in visible
grid-like patterns.

The formation of checkerboard artifacts can be
described by the following equations. Suppose
f(x, y) represents the generated image and k(x, y)
is the convolutional kernel, applied with stride s
during upsampling. Each pixel p(x, y) in the gener-
ated image can be obtained through the convolution
operation:

p(x, y) =
∑
i,j

f(i, j) · k(x− si, y − sj), (13)

where i and j traverse all valid pixel coordinates.
When the stride s is greater than 1, k(x, y) may not
cover some positions in x or y completely, causing
discontinuities at these points in the output p(x, y)
and forming a checkerboard pattern.

To mitigate this issue, researchers have devel-
oped various strategies, such as replacing strided
convolutions with interpolation methods (like bi-
linear interpolation) or optimizing the design of
convolution kernels to avoid uneven overlaps. An-
other approach involves adjusting the relationship
between stride and kernel size to ensure uniform
influence on each output pixel. For instance, frac-
tionally strided convolutions can be utilized, where
the formula is modified to:

p(x, y) =
∑
i,j

f(i, j) · k
(x
s
− i,

y

s
− j

)
. (14)

Through these methods, checkerboard artifacts can
be reduced or eliminated to enhance image quality.

E Hyperparameters

Regarding hyperparameters, We tune the learn-
ing rate and pick the best learning rate for every
method. For each dataset, the batch size is set as
identical for every method. The majority of hyper-
parameters used in evaluating DCFT on Natural
Language Understanding and Question Answering
are shown in Table 9 and 10.


	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning
	LoRA-based approach
	Convolution and Deconvolution

	Our Method
	Deconvolution Fine-Tuning
	Optimization for Efficiency
	Low-Rank Matrice
	Equal Kernel Stride
	Convolution kernel size


	Experiments
	Experimental Settings
	Natural Language Understanding
	Question Answering
	Kernel Sizes Analysis
	Step Analysis
	Efficiency Analysis
	Applying DCFT to Different layers

	Conclusion
	Datasets
	NLU Datasets
	QA Datasets

	Sparse Regularization Theory
	Orthogonal Projection Theory
	Checkerboard Artifacts
	Hyperparameters

