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Abstract

Making analogies is fundamental to cognition.
Proportional analogies, which consist of four
terms, are often used to assess linguistic and
cognitive abilities. For instance, completing
analogies like “Oxygen is to Gas as <blank> is
to <blank>” requires identifying the semantic
relationship (e.g., “type of”) between the first
pair of terms (“Oxygen” and “Gas”) and finding
a second pair that shares the same relationship
(e.g., “Aluminum” and “Metal”). In this work,
we introduce a 15K Multiple-Choice Question
Answering (MCQA) dataset for proportional
analogy completion and evaluate the perfor-
mance of contemporary Large Language Mod-
els (LLMs) in various knowledge-enhanced
prompt settings. Specifically, we augment
prompts with three types of knowledge: ex-
emplar, structured, and targeted. Our results
show that despite extensive training data, solv-
ing proportional analogies remains challenging
for current LLMs, with the best model achiev-
ing an accuracy of 55%. Notably, we find that
providing targeted knowledge can better assist
models in completing proportional analogies
compared to providing exemplars or collec-
tions of structured knowledge. Our code and
data are available at: https://github.com/
Thiliniiw/KnowledgePrompts/

1 Introduction

The ability to form analogies enables humans to
transfer knowledge from one domain to another,
making it a core component of human cognition
(Hofstadter, 2001; Holyoak et al., 2001; Minsky,
1988). Specifically, in analogy-making, the em-
phasis is on the relations among objects, as it is
the system of relations that is compared across
domains rather than the specific objects and their
attributes (Gentner, 1983). Researchers have iden-
tified several types of analogies within the domain

*Work does not relate to position at Meta.
†Work does not relate to position at Amazon.

of NLP, such as proportional analogies (analogies
among word/term pairs) (Brown, 1989; Chen et al.,
2022; Ushio et al., 2021; Szymanski, 2017; Drozd
et al., 2016), sentence-analogies (Jiayang et al.,
2023; Afantenos et al., 2021; Zhu and de Melo,
2020; Wang and Lepage, 2020) and analogies of
longer text (Sultan and Shahaf, 2022; Sultan et al.,
2024). Proportional analogies, which is the focus
of this paper, are presented in the form A:B::C:D,
meaning A is to B as C is to D. These analogies
involve four terms, where the relationship between
the first pair of terms (A and B) is similar to the
relationship between the second pair of terms (C
and D).

Generative Artificial Intelligence (GenAI) mod-
els, particularly those recognized for their capac-
ity to generate high-quality textual outputs1, have
emerged as a focal point of research in contempo-
rary Natural Language Processing. The capabilities
of these models are typically evaluated through
a range of tasks, including question answering
(Arora et al., 2022; Kasai et al., 2023), reasoning
(Zhang et al., 2024), paraphrasing (Witteveen and
Andrews, 2019), sentiment analysis (Kheiri and
Karimi, 2023) and, more recently, analogical rea-
soning (Bhavya et al., 2024; Wijesiriwardene et al.,
2023). Notably, Wijesiriwardene et al. (2023) have
demonstrated that SAT-style2 Proportional analo-
gies pose significant challenges for LLMs, partic-
ularly when solved using intrinsic distance-based
similarity measures. Conversely, Webb et al. (2023)
have shown that GPT-3 can surpass human perfor-
mance in solving proportional analogies, though
these findings were based on a dataset with limited
size (774 data points) and a narrow range of dis-

1In this work, Generative AI models refer to Large Lan-
guage Models (LLMs) capable of producing high-quality tex-
tual content. Therefore, we use the term “GenAI Models” and
LLMs interchangeably.

2SAT is a US college admission test where proportional
analogies were used to assess linguistic and cognitive abilities
of examinees.

mailto:thilini@sc.edu
https://github.com/Thiliniiw/KnowledgePrompts/
https://github.com/Thiliniiw/KnowledgePrompts/
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Types of Knowledge Prompting Techniques

Targeted Knowledge Prompting
(TKP)

Structured Knowledge
Prompting (SKP)

Few-shot Prompting 
(One-shot & Five-shot)

Zero-shot PromptingNo Knowledge

         Exemplar Knowledge

          Structured Knowledge

        Targeted Knowledge

Model

Question
Oxygen : Gas :: ?

Answer Choices
1. Cobra : Venom
2. Doctor : Hospital
3. Aluminum : Metal
4. Airplane : Cloud

3. Aluminum : Metal

Figure 1: Knowledge-enhanced Prompting. An illustration of our knowledge-enhanced prompting approach with
types of knowledge and prompting techniques. The question consists of two terms (“Oxygen” and “Gas”), and
answer choices consist of term pairs that are analogous to the question term pair. Each model is queried using the
prompting techniques illustrated.

tinct semantic relations among term pairs (seven
semantic relation types). Motivated by the need
to broaden the scope of research, we scale up the
evaluation by assessing a diverse set of GenAI mod-
els on a larger, more comprehensive proportional
analogy dataset. Additionally, we employ various
prompting techniques enhanced with multiple types
of knowledge to understand model capabilities in
completing proportional analogies.

Our primary contribution lies in conducting a
comprehensive evaluation of nine GenAI models,
specifically assessing their performance in solv-
ing proportional analogies presented in a multiple-
choice format. Considering the limitations of exist-
ing proportional analogy datasets, which typically
comprise fewer than a thousand data points and
a restricted range of relation types, we present a
substantially larger dataset. Our dataset contains
15K proportional analogies with 236 distinct rela-
tion types. We evaluate the nine GenAI models
on the 15K dataset using four distinct prompting
techniques: (i) Zero-shot Prompting, where no ad-
ditional knowledge is incorporated into the prompt,
(ii) Few-shot Prompting, where exemplar knowl-
edge in the form of examples from the dataset is in-
cluded in the prompt, (iii) Structured Knowledge
Prompting (SKP), where the prompt is augmented
with structured knowledge in the forms of lexi-
cal, commonsense, and world knowledge drawn
from WordNet (McCrae et al., 2019), Concept-
Net (Speer et al., 2017), and Wikidata (Vrandečić
and Krötzsch, 2014) respectively and (iv) Targeted
Knowledge Prompting (TKP), which integrates
targeted knowledge in the form of specific seman-
tic relationships necessary for solving proportional
analogies, along with the cognitive process behind

such reasoning. To the best of our knowledge, this
study is the first to explore knowledge-enhanced
prompting strategies for solving proportional analo-
gies.

Our findings indicate that completing propor-
tional analogies is highly challenging for current
LLMs and incorporating targeted knowledge sig-
nificantly enhances model performance, with the
best-performing model showing an improvement
of approximately +21% compared to prompts with-
out any knowledge, and around +45% relative to
prompts enhanced with structured knowledge. The
underperformance of SKP relative to Zero-shot
Prompting suggests that the mere inclusion of rel-
evant knowledge may not always improve model
performance.

2 Related Work

In this section, we introduce related literature
on the main topics of our paper: proportional
analogies and LLMs, prompting techniques, and
knowledge-enhancement in LLM prompting.

2.1 Proportional Analogies and LLMs

One of the earliest methods for solving propor-
tional analogies was Latent Relational Analysis
(LRA), introduced by Turney (2005). LRA de-
termines analogy by measuring the similarity in
semantic relationships shared between word pairs,
considering them analogous if they exhibit a high
degree of relational similarity. With the advent
of neural networks, vector difference-based meth-
ods (Vylomova et al., 2016; Allen and Hospedales,
2019; Mikolov et al., 2013) were used to address
proportional analogies. As LLMs based on the
Transformer architecture (Vaswani et al., 2017a)
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gained prominence, researchers began investigat-
ing the potential of LLMs, particularly Generative
Artificial Intelligence (GenAI) models, for solving
proportional analogies (Brown, 2020; Ushio et al.,
2021; Webb et al., 2023). Specifically, Webb et al.
(2023) demonstrated strong performance using a
single model (GPT-3) on four relatively small pro-
portional analogy datasets. Our study extends this
work by scaling up the evaluation to a substantially
larger dataset and by assessing nine contemporary
GenAI models across six distinct prompting ap-
proaches. Additionally, we introduce a novel ex-
ploration of the impact of incorporating various
types of knowledge when evaluating GenAI mod-
els on proportional analogies.

2.2 Prompting and Knowledge-enhanced
Prompting

GenAI models are built on LLMs that are trained on
extensive datasets and optimized for various tasks,
including question-answering. This training im-
plies that these models encapsulate the knowledge
in the data, allowing them to effectively answer
natural language queries (Roberts et al., 2020; Zhu
and Li, 2023). Prompting involves transforming
an input query into a structured natural language
statement (prompt) and presenting it to the model,
which then guides the output generation process
of the model. (Schulhoff et al., 2024; Hadi et al.,
2023; Liu et al., 2023). Generating outputs through
prompting requires only forward passes during in-
ference time, without any weight updates. Prompts
can be created either manually (Wei et al., 2022;
Schulhoff et al., 2024) or automatically (Ye et al.,
2023; Reynolds and McDonell, 2021; Deng et al.,
2022); in this work, we employ the more intuitive
manual approach.

Prompts can be categorized based on the con-
text they provide. Zero-shot prompts (Brown,
2020) contain only instructions related to solv-
ing a specific task, whereas Few-shot prompts
(Brown, 2020) include both the instructions and
one or more examples. Providing examples when
querying models is a paradigm broadly known as
In-context Learning (ICL) (Brown, 2020). Chain-
of-Thought (CoT) Prompting is designed to guide
models through the reasoning process required to
solve a task by presenting an exemplar that includes
the question, reasoning path, and correct answer
(Wei et al., 2022) or by just incorporating a thought-
inducing phrase such as “Let’s think step by step”
(Kojima et al., 2022) (Zero-shot-CoT). Unlike con-

ventional CoT prompting, which often includes an
exemplar, our adaptation termed TKP does not pro-
vide an exemplar. Instead, it enhances the prompt
with the targeted knowledge specific to solving
proportional analogies. As a result, TKP is more
akin to Zero-shot-CoT (Kojima et al., 2022) than
to traditional CoT (Wei et al., 2022).

The enhancement of LLM performance through
the integration of external knowledge, both unstruc-
tured and structured, has been extensively studied
(Yu et al., 2022). Some approaches transform ex-
ternal knowledge from multiple documents into
graph structures and utilize these graphs to enhance
LLM querying (Wang et al., 2024). Additionally,
some methods directly employ structured knowl-
edge (Baek et al., 2023). Retrieval-augmented gen-
eration (RAG) has recently emerged as an umbrella
term encompassing all these techniques, where
user queries are enriched with content retrieved
from external sources to enhance model perfor-
mance (Lewis et al., 2020; Ding et al., 2024; Mi-
alon et al., 2023; Schulhoff et al., 2024). In this
work, we utilize multiple types of knowledge, in-
cluding targeted and structured knowledge (from
three sources), to assess the impact on LLM per-
formance in solving proportional analogies. To
the best of our knowledge, this is the first study
to explore the capabilities of LLMs in solving pro-
portional analogies using knowledge-enhancement
approaches.

3 Approach

As illustrated in Figure 1, given a proportional
analogy MCQ where the question consists of a
single term pair (e.g., “Oxygen” and “Gas”),
the GenAI model is required to provide the cor-
rect answer choice from five, four or three choices.
Zero-shot Prompting, only include the MCQ and
a simple instruction on how to produce the out-
put without any knowledge enhancement added
to the prompt. Next, we enhance the Zero-shot
Prompt with exemplars of solved MCQs from the
dataset. We consider this approach as enhanc-
ing the prompt with “exemplar knowledge” and
refer to this prompting technique as Few-shot
Prompting. We experiment with one exemplar
(One-shot Prompting) and five exemplars (Five-
shot Prompting). Then a combination of lexi-
cal, commonsense, and world knowledge from
structured sources—WordNet, ConceptNet, and
Wikidata, respectively—is added to the Zero-shot
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Prompts for knowledge enhancement, resulting in
what we call SKP. Finally, the zero-shot prompt
is enhanced with targeted knowledge and we iden-
tify this prompting technique as TKP. Targeted
knowledge is composed of, the semantic relation-
ship shared between the question term pair and the
cognitive process behind solving the proportional
analogy. We detail the prompting techniques in
Section 3.3.

3.1 Dataset Creation

We introduce a 15K dataset of proportional analo-
gies containing 5-way, 4-way and 3-way MCQs.
Table 1 presents the dataset statistics along with
examples from the dataset. We generate 14K
questions out of the 15K based on the work by
(Yuan et al., 2023). Yuan et al. (2023) introduced
an automatically generated million-scale analogy
knowledge base based on ConcepNet and Wiki-
data knowledge graphs. Yuan et al. (2023) acquire
analogies of the same relations directly utilizing
the concept pairs in the above-mentioned knowl-
edge graphs. To acquire analogies of analogous
relations (analogies consisting of two concept pairs
with two relations that are analogous to each other)
Yuan et al. (2023) utilize the in-context learning
abilities of LLMs. We adopt this resource (specif-
ically the analogies of same relations) to develop
n-way (n=[3, 4, 5]) MCQs as follows. A single
n-way MCQ consist of a pair of terms represent-
ing the question and n term pairs representing the
answer choices, among which only one term pair
is the correct answer. The semantic relationship
between the term pair in the question is the same as
the semantic relationship shared between the term
pair which is the correct answer. The rest of the
incorrect answer choices consist of term pairs with
different semantic relationships among them.

Thousand data points out of the 15K are bor-
rowed from work by Ushio et al. (2021); Tur-
ney and Littman (2003); Boteanu and Chernova
(2015)3 and contain 5-way, 4-way and 3-way
MCQs. We highlight that, compared to previous
proportional analogy MCQ datasets used for re-
search (Webb et al., 2023; Ushio et al., 2021), the
current dataset provides a significant increase in
question quantity (∼15-times) and diversity (with

3Unlike the 14K MCQs created based on AnalogyKB,
these 1K data points do not provide the semantic relationship
shared between the question term pair explicitly, therefore we
employ two NLP researchers to discuss and manually identify
the shared semantic relationship.

respect to the diversity of semantic relations be-
tween terms). Our dataset also includes the se-
mantic relationship shared by the question term
pair compared to other datasets that do not in-
clude this information (Ushio et al., 2021; Turney
and Littman, 2003; Boteanu and Chernova, 2015).
Our dataset contains 59 semantic relationship types
with more than 10 instances each. The distribution
of these relationships (focusing on the top 59 types)
is depicted in Figure 2.

3.2 Model Details
GenAI models are designed to generate content that
are often indistinguishable from human-produced
output. Current state-of-the-art GenAI models
are largely based on the Transformer architecture
(Vaswani et al., 2017b). In this work we compare
the following popular open-source and proprietary
GenAI models for their ability to solve propor-
tional word analogy MCQs by incorporating vari-
ety of knowledge: (i) Falcon, a causal decoder-only
model (Almazrouei et al., 2023), (ii) FlanT5 (Long-
pre et al., 2023), a T5 (Raffel et al., 2020a) based
model trained on the Flan collection of datasets,
(iii) GPT2 (Radford et al., 2019a), the first series of
models to popularize in-context instructions, (vi)
Mistral (Jiang et al., 2023), leveraging transformers
architecture (Vaswani et al., 2017b) with several
new introductions such as sliding window attention
and pre-fill chunking, (v) Orca (Mukherjee et al.,
2023), based on LLaMA model family (Touvron
et al., 2023) and fine-tuned on complex explanation
traces obtained from GPT-4 (Achiam et al., 2023),
(vi) Zephyr (Tunstall et al., 2023), a fine-tuned
version of Mistral trained on public datasets and
optimized with knowledge distillation techniques.
(vii) CodeT5 (Wang et al., 2021c), a unified pre-
trained encoder-decoder transformer model lever-
aging code semantics and finally (viii) CodeParrot
(Jain, 2023), a model based on GPT-2 and trained
to generate python code (ix) GPT-3.5-Turbo 4. Fur-
ther details of the models used are presented in
Appendix A.

3.3 Prompting Techniques
Currently, the most popular approach to Multiple
Choice Question Answering (MCQA) is via cloze-
style prompting (Brown, 2020; Robinson et al.,
2023) where each answer choice is concatenated to
the question separately and scored independently

4https://platform.openai.com/docs/models/
gpt-3-5-turbo

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
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Figure 2: Distribution of Semantic relations. The distribution of the top 59 semantic relations (these are the
frequencies of semantic relations between the question word pair )

Questions Relations

Question Type (MCQ) 5-way 4-way 3-way Top 5 Relation Types # Data Points

Example

Question: Tenable: Indefensible
Choices:
(1) Unique : Unprecedented
(2) Dire : Pressing
(3) Bleak : Desolate
(4) Theoretical : Concrete
(5) Recondite : Scholarly

Question: Haiku: Poem
Choices:

(1) Song : Musician
(2) Novel : Book
(3) Artist : Painting
(4) Page : Typeface

Question:Ancient: Old
Choices:

(1) Crazy : Unhealthy
(2) Delicious : Tasty
(3) Smart : Intelligent

part of 1030
is a 702
at location 518
follows 376
producer 374

Amount 14386 610 4 Total # relation types 236

Table 1: Dataset statistics. The dataset consist of 15K MCQs that share 236 semantic relation types among them.

by the language model (LM). This style of prompt-
ing is problematic since it prevents the LM from
comparing and contrasting all available options si-
multaneously. Additionally, it is computationally
expensive, as it requires multiple forward passes
through the LM to identify the correct answer
(Robinson et al., 2023). To address these limita-
tions, we adopt the prompt phrasing introduced by
Robinson et al. (2023) with task-specific modifi-
cations. Specifically, the question and its symbol-
enumerated candidate answers are provided to the
model as a single prompt. Robinson et al. (2023)
do not include specific instructions in the prompt
for the model to output only the choice symbol. But
we observe that adding such specific instructions
reduce the model hallucinations. Therefore we use
specific, non-ambiguous language to instruct the
model to only output the relevant choice symbol.
The prompting techniques are detailed below (See
example prompts in appendix D).

3.3.1 Zero-shot Prompting

In Zero-shot Prompting, the question, all multiple
choice answers and the instructions are provided in
natural language (no knowledge is provided).

3.3.2 Few-shot Prompting
We demonstrate the task to the model by providing
several exemplars in the form of question, answer
choices and the correct answer choice. Then the
actual question and answer choices are provided
requiring the model to choose the correct answer
choice. We employ one-shot and five-shot prompt-
ing under the few-shot prompting strategy where
one example and five examples are provided re-
spectively. We select these quantities of exemplars
to strike a balance between the models’ maximum
accepted context length and the computational re-
sources required. To obtain the exemplars, we em-
ploy a semantic similarity based filtering mech-
anism as follows. We encode each proportional
analogy MCQ in the dataset using a SOTA sen-
tence encoding transformer model5, and identify
the most semantically similar single example/ five
examples based on Cosine similarity.

3.3.3 Structured Knowledge Prompting (SKP)
We retrieve knowledge from structured sources,
filter it, and then integrate the resulting refined
knowledge into the prompts. We detail this process

5https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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in the subsequent sections.

Knowledge Retrieval. We leverage the follow-
ing widely-used large knowledge sources to obtain
three types of knowledge: (i) Wikidata (Vrandečić
and Krötzsch, 2014), which provides world knowl-
edge in the form of explicit information about spe-
cific instances, encompassing billions of nodes
and edges (Wang et al., 2021a); (ii) ConceptNet
(Speer et al., 2017), a general-domain common-
sense knowledge graph with 799,273 nodes and
2,487,810 edges; and (iii) WordNet (McCrae et al.,
2019), a lexical database for the English language
containing 161,338 words, 120,135 synsets, and
415,905 semantic relations.

We retrieve knowledge from above sources as
follows. Since analogies focus on relations oppose
to entities or entity attributes (Gentner, 1983), when
retrieving knowledge from knowledge sources we
focus on path finding approaches oppose to sub-
graph extraction approaches. To extract both world
and commonsense knowledge, we utilize the path-
finding approach by Lin et al. (2019) that identifies
connections between each term pair (in both the
question and answer choices). Specifically, we
extract paths of length k6 from ConceptNet and
Wikidata. When retrieving lexical knowledge from
WordNet, we extract the shortest path between term
pairs.

Knowledge Filtering. For each term pair in the
question and answer choices, multiple knowledge
paths may be retrieved. To ensure the prompts stay
within the maximum context length limit of the
evaluated language models, we filter the retrieved
paths and retain a single path for Wikidata and Con-
ceptNet (See Figure 3). Filtering is not performed
on WordNet since a single path (shortest) is always
retrieved.

The filtering mechanisms we employ are as
follows: (i) Random Filtering, where one path
is randomly selected from the list of available
paths; and (ii) Semantic Filtering, which selects
the path most semantically similar to the term
pairs. The term pairs (in question and answer
choices) are formatted to “term pair sentences”
in the following form <TERM_1> IS SEMANTI-
CALLY RELATED TO <TERM_2> and returned
paths are also formatted to “path sentences” in the
form of [<NODE1_NAME> <RELATION1_NAME>

6k is set to 2 for Wikidata and 3 for ConceptNet, as longer
paths tend to introduce excessive noise and reduce efficiency.

   or

Knowledge Sources

ConceptNet WikiData

Term 1 Term 2

Selected Knowledge Path

Random

"Term 1 semantically
related to Term 2"

Semantic Similarity

Knowledge
Retrieval

Retrieved Paths

Semantic

Figure 3: An illustration of the knowledge filtering
approach. “Random” indicates Random Filtering and
“Semantic” indicates Semantic Filtering.

<NODE2_NAME>, <NODE2_NAME> <RELA-
TION2_NAME> <NODE3_NAME>, ...]. Both term
pair sentences and path sentences are then en-
coded using a SOTA sentence encoding transformer
model7 and the path sentence with the highest co-
sine similarity to term pair sentence is filtered as
relevant knowledge and referred to as knowledge
paths8.

Generating Prompt. The filtered knowledge
paths are appended to the zero-shot prompt after the
question and the answer choices to create the SKP
and the model is instructed to use the knowledge if
necessary. Based on the knowledge filtering mech-
anism SKP can be referred to as SKP[random] or
SKP[semantic].

3.3.4 Targeted Knowledge Prompting (TKP)

When solving proportional analogies, humans typi-
cally examine the question term pair, identify the
semantic relationship between the two terms, and
select the answer pair that shares the same or a sim-
ilar relationship. Inspired by this cognitive process,
we modify the traditional Chain-of-Thought (CoT)
prompting technique (Wei et al., 2022) to provide
the model with “targeted knowledge” in the form
of (i) semantic relationship shared by the question
term pair (ii) cognitive process used by humans
when evaluating such analogies, via the prompt.

7https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

8specific format of Wikidata knowledge paths is
[<node1_name> <relation1_name> <node2_name>,
<node2_name> <relation2_name> <node3_name>]
and ConceptNet knowledge path is [<node1_name>
<relation1_name> <node2_name>, <node2_name>
<relation2_name> <node3_name>, <node3_name>
<relation3_name> <node4_name>]

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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4 Experimental Setting

We have conducted a comprehensive set of experi-
ments across nine GenAI models over six prompt
variants on a 15K dataset, totalling to 54 (9X6) ex-
periments. The implementation details are included
in Appendix B

5 Results and Discussion

Proportional analogy multiple-choice questions
(MCQs) are presented to each GenAI model using
the previously described prompts. The model’s re-
sponse is extracted from the generated output, and
accuracy is measured using Exact Match Accuracy
(EMA) (Rajpurkar et al., 2016). While more flex-
ible evaluation metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) are com-
monly used to assess GenAI-generated outputs, we
employ EMA because MCQs are inherently evalu-
ated in a binary manner, where partial correctness
is not rewarded. We report EMA as a percentage
for each model and prompt variant. The results are
presented in Table 2.

5.1 Model Performance and Prompting
Techniques

The highest overall performance was attained by
GPT-3.5-Turbo, achieving an EMA of 55.25%.
This result underscores the challenge that pro-
portional analogies pose for current state-of-the-
art GenAI models. This accuracy was obtained
through Targeted Knowledge Prompting where the
prompt was enhanced with targeted knowledge
(See Figure 5). Interestingly, the same model,
when enhanced with structured knowledge, un-
derperformed with an accuracy of 38% (EMA
for SKP[random] is 38.29% and SKP[semantic] is
38.79%), compared to Zero-shot prompting (EMA
45.7%). This suggests that simply adding knowl-
edge, even from diverse sources, may not be benefi-
cial for cognitively demanding tasks such as propor-
tional analogy completion. Out of the nine models
four (Falcon, Flan, Mistral and GPT-3.5-Turbo)
performs the best when prompted with Targeted
Knowledge Prompts and two (GPT2 and Orca) per-
forms the best with Zero-shot prompts with no
knowledge enhancement. CodeT5 performs the
best with one-shot prompts and Zephyr and Code-
Parrot performs the best with five-shot prompts.
We also observe that models trained specifically on
code generation such as CodeT5 and CodeParrot
(specially CodeParrot) perform at the lower end

of the spectrum despite the demonstrated abilities
of them to perform well on other MCQ datasets
Robinson et al. (2023). We believe this is due to
the challenging nature of the proportional analogy
completion task.

5.2 Role of Structured Knowledge in Model
Performance

Although enhancing prompts with structured
knowledge does not consistently improve model
performance compared to other prompting tech-
niques, SKP[semantic] leads to slight increases
in EMA values (ranging from 0.01% to 1.32%)
compared to SKP[random], across all models ex-
cept GPT-2 and Mistral (see Table 2). We identi-
fied a subset of MCQs (19.96%) where all three
types of knowledge were available and conducted
additional experiments to evaluate the individual
contribution of each knowledge type to EMA (we
employed SKP[semantic ] prompting). Our results
show (see Figure 4, for complete results, see table 4
in Appendix C) that incorporating each of the three
knowledge types separately into prompts leads to
very similar EMA values (when averaged across
all nine models). Specifically, prompts enhanced
only with Wikidata knowledge resulted in an aver-
age EMA of 14.57%, while using only WordNet or
only ConceptNet yielded average EMAs of 14.41%
and 14.34%, respectively.

We also observed that incorporating all three
types of knowledge simultaneously into the
prompts, compared to using them individually,
produced varying results. For example, Falcon,
CodeT5 and GPT-3.5-Turbo perform marginally
better when a single knowledge type is incorpo-
rated into the prompt, compared to including all
three knowledge types simultaneously (see Fig-
ure 4). Providing FlanT5 with a single knowledge
type compared to all three knowledge types con-
tributes to significant increases of percentage points
in EMA (WordNet +18.51 , ConceptNet +15.96
and WikiData +7.44). In contrast, GPT-2, Mis-
tral, and Orca perform better when all knowledge
types are integrated into the prompt. Notably, Orca
demonstrates an average EMA increase of +11.14
percentage points compared to using only a single
knowledge source.

5.3 Exemplar Quantity vs. Model
Performance

Brown (2020) demonstrated that the accuracy of
large language models improves with an increase
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Model Name Zero-shot Prompting Few-shot Prompting Structured Knowledge Prompting Targeted Knowledge Prompting
One-shot Five-shot Random Semantic

Falcon 24.17 23.21 22.61 24.75 25.01 25.4
FlanT5 36.47 40.09 38.07 14.43 14.62 44.26
GPT2 22.65 22.49 7.19 6.29 6.17 21.64
Mistral 26.59 26.22 27.34 24.58 24.42 27.37
Orca 24.54 23.28 14.11 18.48 18.81 24.2
Zephyr 29.46 34.05 35.87 16.13 17.22 15.83
CodeT5 20.64 24.33 0 16.15 17.47 21.64
CodeParrot 0 10.11 12.6 0 0.01 2.09
GPT-3.5-Turbo 45.7 31.79 41.21 38.29 38.79 55.25

Table 2: MCQ Performance of models. Performance is reported in EMA percentage. Best performance of each
model is indicated in bold and the second best performance is indicated by underline.

One-shot Five-shot Random Semantic
1 Falcon (vilsonrodrigues/falcon-7b-instruct-sharded) 24.17 23.21 22.61 24.75 25.01 25.4
2 FlanT5 (philschmid/flan-t5-xxl-sharded-fp16) 36.47 40.09 38.07 14.43 14.62 44.26
3 GPT2 (GPT-2 XL is the 1.5B parameter version of GPT-2) 22.65 22.49 7.19 6.29 6.17 21.64
4 Mistral (mistralai/Mistral-7B-Instruct-v0.1) 26.59 26.22 27.34 24.58 24.42 27.37
5 Orca (psmathur/orca_mini_7b) 24.54 23.28 14.11 18.48 18.81 24.2
6 Zephyr (anakin87/zephyr-7b-alpha-sharded) 29.46 34.05 35.87 16.13 17.22 15.83
7 CodeT5 (Salesforce/codet5-large) 20.64 24.33 0 16.15 17.47 21.64
8 CodeParrot (codeparrot/codeparrot) 0 10.11 12.6 0 0.01 2.09
9 GPT3.5 (Turbo) 45.7 31.79 41.21 38.29 38.79 55.25

LLM Name WD knowledge only CN knowledge only WN knowledge only All knowledge available Semantic-all Semantic-abalation
1 Falcon 25.14 25.38 25.04 24.14 25.01 24.14
2 FlanT5 19.63 28.15 30.7 12.19 14.62 12.19
3 GPT2 4.11 2.4 1 5.84 6.17 5.84
4 Mistral 22.84 22.07 23.34 24.11 24.42 24.11
5 Orca 14.62 9.52 9.28 22.24 18.81 22.24
6 Zephyr 16.16 12.49 9.75 14.76 17.22 14.76
7 CodeT5 21.47 21.64 22.7 20.7 17.47 20.7
8 CodeParrot 0 0 0 0 0.01 0
9 GPT-3.5-Turbo 7.13 7.43 7.9 7.2

FlanT5 7.44 15.96 18.51 12.19
Orca 14.62 9.52 9.28 22.24

7.62 12.72 12.96 11.14

Zero-shot One-shot Five-shot Structured Knowledge (semantic) Targeted Knowledge
Average Prompt Length 109.86 272.26 844.46 282.918 175.68

WD knowledge only CN knowledge only WN knowledge only
25.14 25.38 25.04
19.63 28.15 30.7

4.11 2.4 1
22.84 22.07 23.34
14.62 9.52 9.28
16.16 12.49 9.75
21.47 21.64 22.7

0 0 0

Average EMA across the nine LLMs 13.77 13.52 13.53

WD knowledge only CN knowledge only WN knowledge only
13.77 13.52 13.53

Abalation for Structured General Knowledge (only for indexes with all three knowledge types available)

Prompt Types

LLM Name Zero-shot Pompting Few-shot Prompting Stuctured Knowledge Prompting Targeted Knowledge Prompting
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24.17% 23.21% 22.61% 24.75% 25.01% 25.40% 25.67%
36.47% 40.09% 38.07% 14.43% 14.62% 44.26% 37.31%
22.65% 22.49% 7.19% 6.29% 6.17% 21.64% 19.32%
26.59% 26.22% 27.34% 24.58% 24.42% 27.37% 26.35%
24.54% 23.28% 14.11% 18.48% 18.81% 24.20% 25.94%
29.46% 34.05% 35.87% 16.13% 17.22% 15.83% 34.24%
20.64% 24.33% 0.00% 16.15% 17.47% 21.64% 25.67%
12.60% 10.11% 0.00% 0.00% 0.01% 2.09% 0.04%
45.70% 31.79% 41.21% 38.29% 38.79% 55.25% 53.03%

Best Performing ModelsModel for Each Knowledge-enchanced Prompting Style
Falcon (vilsonrodrigues/falcon-7b-instruct-sharded) 24.17% 25.40%
FlanT5 (philschmid/flan-t5-xxl-sharded-fp16) 36.47% 44.26% Knowledge-Enhanced Prompting StyleBest Performing ModelLeast Performing Model
GPT2 (GPT-2 XL is the 1.5B parameter version of GPT-2) 22.65% 21.64% Zero-shot 45.70% 12.60% GPT3.5-TurboCodeParrot
Mistral (mistralai/Mistral-7B-Instruct-v0.1) 26.59% 27.37% One-shot 40.09% 10.11% FlanT5 CodeParrot
Orca (psmathur/orca_mini_7b) 24.54% 24.20% Five-shot 41.21% 0.00% GPT3.5-TurboCodeParrot/Code-T5
Zephyr (anakin87/zephyr-7b-alpha-sharded) 29.46% 15.83% SKP[Random] 38.29% 0.00% GPT3.5-TurboCodeParrot
CodeT5 (Salesforce/codet5-large) 20.64% 21.64% SKP[Semantic] 38.79% 0.01% GPT3.5-TurboCodeParrot
CodeParrot (codeparrot/codeparrot) 12.60% 2.09% TKP 55.25% 2.09% GPT3.5-TurboCodeParrot
GPT3.5 (Turbo) 45.70% 55.25%

LLM Name Zero-shot One-shot Five-shot SKP [Random] SKP [Semantic] TKP
Falcon 0.24 0.23 0.23 0.25 0.25 0.25
FlanT5 0.36 0.4 0.38 0.14 0.15 0.44
GPT-2 0.23 0.22 0.07 0.06 0.06 0.22
Mistral 0.27 0.26 0.27 0.25 0.24 0.27
Orca 0.25 0.23 0.14 0.18 0.19 0.24
Zephyr 0.29 0.34 0.36 0.16 0.16
CodeT5 0.21 0.24 0 0.22
CodeParrot 0.13 0.1 0 0.02
GPT3.5-Turbo 0.46 0.32 0.41 0.38 0.3879 0.55
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Figure 5: Best and least performing models for each
prompting technique.

in the number of exemplars. However, Liu et al.
(2022) found that the benefits diminish beyond 20
exemplars in certain cases. Similarly, in our study,
increasing exemplars from one to five decreases
EMA in six out of nine models (see Table 2), lead-
ing us to limit exemplars to a maximum of five.

5.4 Cost of Knowledge Acquisition vs. Model
Performance

In this study, we utilize three types of knowledge
to enhance prompts: exemplar knowledge, struc-
tured knowledge, and targeted knowledge. Among

these, exemplar knowledge has the least acquisition
cost since it is readily available from the dataset
itself requiring no additional resources. Structured
knowledge, on the other hand, is more expensive to
acquire because it necessitates accessing external
knowledge bases or graphs and filtering knowledge,
which incurs computational overhead. Targeted
knowledge is the costliest to acquire, as it involves
identifying the specific semantic relationship be-
tween the question term pairs. This semantic rela-
tionship is not always readily available, requiring
human annotation (for instance, in our dataset of
15K data points, 1K data points lacked this seman-
tic information, necessitating human annotation).

As shown in Table 2, targeted knowledge, be-
ing the most expensive to acquire, led to the best
performance in four models (Falcon, FlanT5, Mis-
tral and GPT-3.5-Turbo) including the peak perfor-
mance (55% EMA) from GPT-3.5-Turbo. In con-
trast, structured knowledge, the second most costly,
did not result in any model’s best performance. Al-
though exemplar knowledge is the least expensive,
three models performed best with it (Zephyr and
CodeParrot in Five-shot; CodeT5 in One-shot).



3987

EMA % of Large Language Model
Semantic Relationship Type Falcon FlanT5 GPT2 Mistral Orca Zephyr CodeT5 CodeParrot GPT-3.5-Turbo

part of 23.50 25.05 20.19 24.95 23.98 9.03 13.88 0.00 27.18
is a 25.78 29.20 20.09 25.50 22.08 6.84 19.37 0.00 31.34
at location 29.34 31.85 21.43 27.80 19.31 11.20 18.73 0.39 32.24
follows 22.07 28.46 15.43 22.34 23.94 3.19 14.36 0.27 35.11
producer 25.94 37.97 22.19 24.87 23.80 7.22 13.90 0.00 53.21
Avg. performance across the above relations 25.33 30.51 19.87 25.09 22.62 7.50 16.05 0.13 35.82

Table 3: Performance of each LLM across semantic relations. We report the performance of each LLM on the
top five semantic relations in the dataset. For each LLM, the relation with the highest performance is highlighted
in green , while the relation with the lowest performance is highlighted in orange . Additionally, the average
performance across all five relation types is calculated and highlighted in grey .

5.5 Diversity of Semantic Relationships vs.
Model Performance

As elaborated in Section 3.1, our dataset encom-
passes 236 unique semantic relation types, with the
frequencies of the top five relations detailed in Ta-
ble 1. To further elucidate the performance of each
LLM, we assess their results on these top five se-
mantic relations using targeted knowledge prompts
(refer to Table 3). Consistent with prior findings,
GPT-3.5-Turbo achieves the highest average per-
formance across the top five relations, followed
by FlanT5. For both models, the MCQs involving
the "part of" relation pose the greatest challenge,
whereas the "producer" relation is the easiest to
solve. Similarly, across all nine LLMs, the "part
of" and "follows" relations emerge as the most dif-
ficult, while the "at location" relation proves to be
the easiest.

6 Conclusion and Future Work

We evaluate nine LLMs on a 15K MCQ dataset to
assess their ability to solve proportional analogies
using various knowledge-enhanced prompting tech-
niques. Our experiments reveal that LLMs perform
best when targeted knowledge is integrated into
prompts, outperforming exemplar and structured
knowledge.

While several of the models used are instruction-
finetuned versions of their base models, they are
not specifically finetuned for proportional analogy
completion, leaving room for improvement. Addi-
tionally, our study focuses on manual prompting
techniques, which are brittle; exploring automatic
prompting approaches could yield more robust re-
sults.

7 Limitations

In SKP, knowledge paths may occasionally provide
the exact semantic relationship between question
term pairs, defined as targeted knowledge. These
instances can be classified as SKP with targeted
knowledge, but we do not currently verify or ad-
just for them. Also, in this work, we used manual
prompt creation, where slight variations can sig-
nificantly affect model outputs (Zhao et al., 2021).
However, we did not address this variability by
testing multiple prompt templates for each prompt-
ing technique. Acquiring targeted knowledge is
resource-intensive due to the need for manual an-
notations. Scaling this process is impractical, high-
lighting the need for automated targeted knowledge
acquisition techniques. Not all data points in the
dataset include knowledge from ConceptNet, Wiki-
data, and WordNet due to the incompleteness of
these graphs, highlighting the broader challenge of
knowledge graph completion.
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A Model Details

Falcon (Almazrouei et al., 2023): The Falcon
model used in this work is the Falcon-7B-Instruct
model 9 which is a causal decode-only model,
instruction finetuned on top of the base Falcon-7B.
The fine-tuning dataset is made up of 250M tokens
from various conversational datasets (Baize10),
instruction datasets (GPT4All (Anand et al.,

9https://huggingface.co/tiiuae/
falcon-7b-instruct

10https://github.com/project-baize/
baize-chatbot/tree/main/data
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2023), GPTeacher11) and common crawl data
(RefinedWeb (Penedo et al., 2023))from the web.
Falcon-7B tokenizer is used for tokenization. The
architecture of Falcon is broadly adapted from
GPT3 with changes in positional embeddings used,
attention mechanisms used and decoder block
architecture.

FlanT5 (Chung et al., 2022): We use the
FlanT5-XXL version with 11B parameters. This
version is based on a pretrained T5 (Raffel et al.,
2020b) and instruction finetuned on a mixture of
tasks. This model is finetuned specifically with
Chain-of-Thought data.

GPT2 (Radford et al., 2019b): We use the
XL version with 1.5 parameters. The model is
pretrained with English language data (40 GB of
text from the web) and causal language modeling
objective. Interestingly the model is not trained on
articles from Wikipedia.

Mistral (Jiang et al., 2023): This is a decoder
only transformer model and we use the Mistral-7B-
Instruct version with 7B parameters. This version
is finetuned on publicly available instruction
datasets. Mistral introduce Sliding Window
Attention, Rolling Buffer Cache and Pre-fill
Chunking in its architecture.

Orca (Mathur, 2023): We employ orca_mini_7b,
a 7B parameter version of Orca, which is based on
OpenLLaMA-7B. The model is trained on datasets
with explanation tuning, where the response from
the <query, response> pair is augmented with
detailed responses from the base (teacher) model
(Mukherjee et al., 2023). The explanation tuning
datasets used are WizardLM12, Alpaca dataset
(Taori et al., 2023) and Dolly13 and system prompts
are used to elicit step-by-step explanations.

Zephyr14: We use the Zephyr-7B-alpha with
7B parameters finetuned from Mistral-7B-v0.1.
The finetune datasets contain synthetic dialogues
ranked by GPT-4 and a prompt completion dataset
where completions are ranked by GPT-4.

11https://github.com/teknium1/GPTeacher
12https://github.com/nlpxucan/WizardLM
13https://github.com/databrickslabs/dolly
14https://huggingface.co/HuggingFaceH4/

zephyr-7b-alpha

CodeT5 (Le et al., 2022): The CodeT5 model
wwe use is codet5-large model with 770M
parameters. The model is trained on Masked Span
Prediction objective on CodeSearchNet dataset
(Husain et al., 2019)

CodeParrot (Jain, 2023): We use the 1.5B
parameter CodeParrot model based on GPT-2. The
model is trained to generate python code on a
python files dataset from GitHub15.

GPT-3.5-Turbo16: We use OpenAI API to access
the model, gpt-3.5-turbo-0125.

One-shot Five-shot Random Semantic
1 Falcon (vilsonrodrigues/falcon-7b-instruct-sharded) 24.17 23.21 22.61 24.75 25.01 25.4
2 FlanT5 (philschmid/flan-t5-xxl-sharded-fp16) 36.47 40.09 38.07 14.43 14.62 44.26
3 GPT2 (GPT-2 XL is the 1.5B parameter version of GPT-2) 22.65 22.49 7.19 6.29 6.17 21.64
4 Mistral (mistralai/Mistral-7B-Instruct-v0.1) 26.59 26.22 27.34 24.58 24.42 27.37
5 Orca (psmathur/orca_mini_7b) 24.54 23.28 14.11 18.48 18.81 24.2
6 Zephyr (anakin87/zephyr-7b-alpha-sharded) 29.46 34.05 35.87 16.13 17.22 15.83
7 CodeT5 (Salesforce/codet5-large) 20.64 24.33 0 16.15 17.47 21.64
8 CodeParrot (codeparrot/codeparrot) 0 10.11 12.6 0 0.01 2.09
9 GPT3.5 (Turbo) 45.7 31.79 41.21 38.29 38.79 55.25

25.58 26.17444444 22.11111111 17.67777778 18.05777778 26.40888889

Model Name WD knowledge only CN knowledge only WN knowledge only All knowledge available Semantic-all Semantic-abalation
1 Falcon 25.14 25.38 25.04 24.14 25.01 24.14
2 FlanT5 19.63 28.15 30.7 12.19 14.62 12.19
3 GPT2 4.11 2.4 1 5.84 6.17 5.84
4 Mistral 22.84 22.07 23.34 24.11 24.42 24.11
5 Orca 14.62 9.52 9.28 22.24 18.81 22.24
6 Zephyr 16.16 12.49 9.75 14.76 17.22 14.76
7 CodeT5 21.47 21.64 22.7 20.7 17.47 20.7
8 CodeParrot 0 0 0 0 0.01 0
9 GPT-3.5-Turbo 7.13 7.43 7.9 7.2

FlanT5 7.44 15.96 18.51 12.19
Orca 14.62 9.52 9.28 22.24

7.62 12.72 12.96 11.14

Zero-shot One-shot Five-shot Structured Knowledge (semantic)Targeted Knowledge
Average Prompt Length 109.86 272.26 844.46 282.918 175.68
Average Performance of Models 25.58 26.17444444 22.11111111 17.86777778 26.40888889
Normalized Averaged Prompt Length 0 0.221072693 1 0.235581269 0.089599782
Normalized Averaged Model Performance 0.902953038 0.97255106 0.496812801 0 1

xnormalized = (x - xminimum) / range of x

Zero-shot One-shot Five-shot Structured Knowledge (semantic)Targeted KnowledgeNormalized Averaged Prompt 
Length 0 0.22 1 0.24 0.09Normalized Averaged Model 
Performance 0.90 0.97 0.50 0 1

Normalized 
Averaged Prompt Peak Model Performance

Normalized Averaged Model 
Performance

Zero-shot 0 0.457 0.90
One-shot 0.22 0.4009 0.97
Five-shot 1 0.4121 0.50

Structured Knowledge (semantic) 0.24 0.3879 0
Targeted Knowledge 0.09 0.5525 1

WD knowledge only CN knowledge only WN knowledge only
25.14 25.38 25.04
19.63 28.15 30.7

4.11 2.4 1
22.84 22.07 23.34
14.62 9.52 9.28
16.16 12.49 9.75
21.47 21.64 22.7

0 0 0
7.13 7.43 7.9

Average EMA across the nine LLMs 14.57 14.34 14.41

WD knowledge only CN knowledge only WN knowledge only
14.57 14.34 13.53

Prompt Types

Prompt Types
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Figure 6: Prompt Lengths vs. Peak Performance.

B Implementation Details

We use API requests for GPT-3.5-Turbo and check-
points from Hugging face17 for open-source mod-
els. The models are evaluated with following hyper
parameter settings, temperature = 0.1, top_p=0.1
and repetition_penalty=1.2 to elicit more concrete
answers for the MCQs. We use Sentence Trans-
formers18 to identify semantically similar exem-
plars and to perform semantic knowledge filter-
ing. We utilize Wikidata knowledge from (Wang
et al., 2021b), ConceptNet knowledge from con-
ceptnet519 and WordNet knowledge from Open
English WordNet (2023)20.

15https://huggingface.co/datasets/codeparrot/
codeparrot-clean

16https://platform.openai.com/docs/models/
gpt-3-5-turbo

17https://huggingface.co/models
18https://sbert.net/
19https://github.com/commonsense/conceptnet5/

wiki/Downloads
20https://github.com/globalwordnet/

english-wordnet?tab=readme-ov-file

https://github.com/teknium1/GPTeacher
https://github.com/nlpxucan/WizardLM
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Model Name WD Knowledge Only CN Knowledge Only WN Knowledge Only All Knowledge Available

Falcon 25.14 25.38 25.04 24.14
FlanT5 19.63 28.15 30.70 12.19
GPT2 4.11 2.40 1.00 5.84
Mistral 22.84 22.07 23.34 24.11
Orca 14.62 9.52 9.28 22.24
Zephyr 16.16 12.49 9.75 14.76
CodeT5 21.47 21.64 22.70 20.70
CodeParrot 0.00 0.00 0.00 0.00
GPT-3.5-Turbo 7.13 7.43 7.90 7.20

Table 4: Performance of models based on provided knowledge types. Performance values are reported in EMA
percentage and calculated using 2995 (∼20%) data points that had all three knowledge types available.

C Performance and Additional Results

C.1 Model Performance vs. Prompt Length
(PL)

We calculated the average prompt lengths across
models for each prompting technique (PL for
SKP is calculated by averaging SKP[random] and
SKP[semantic]) (See Figure 6). According to (Liu
et al., 2024), longer prompts (with important in-
formation placed in the middle) tend to negatively
affect performance. Based on such literature, one
might suggest that Zero-shot prompts yield better
results in our study because they are short, but this
is not the case. Despite being longer than Zero-
shot prompts, a higher peak model performance is
achieved by TKP.

D Prompts

Figues 7, 8, 9, 10 and 11 illustrates example
prompts provided to models.
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Zero-shot Prompt

Question: What is the analogical word pair to, "Lens" and "Glass" from the following choices.
Choices: 
    1. "Well" and "Water"  
    2. "Saw" and "Wood" 
    3. "Sweater" and "Wool"
    4. "Fuel" and "Fire"
    5. "Ink" and "Paper"
The answer should only be 1 or 2 or 3 or 4 or 5?. 
Answer:

Figure 7: Example of a Zero-shot prompt used on our dataset

Look at the following example and answer the question below.
 
Example: 
    Question: What is the analogical word pair to, "Cloth" and "Threads"      from the
following choices. Choices:

1. "Gun" and "Bullets" 
2. "Guitar" and "Drums" 
3. "Chain" and "Links" 
4. "Star" and "Planets"

    Answer: 3

Question: What is the analogical word pair to, "Lens" and "Glass" from the following
choices. Choices: 
    1. "Well" and "Water" 
    2. "Saw" and "Wood" 
    3. "Sweater" and "Wool" 
    4. "Fuel" and "Fire" 
    5. "Ink" and "Paper" 
The answer should only be 1 or 2 or 3 or 4 or 5?. 
Answer:

One-shot Prompt

Figure 8: Example of a One-shot prompt used on our dataset
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Five-shot Prompt

Look at the following examples and answer the question below.
 
Example 1: 
    Question: What is the analogical word pair to, "Cloth" and "Threads" from the following
choices. Choices:

1. "Gun" and "Bullets" 
2. "Guitar" and "Drums" 
3. "Chain" and "Links" 
4. "Star" and "Planets"

    Answer: 3
Example 2: 
    Question: What is the analogical word pair to, "Drapery" and "Fabric" from the following
choices. Choices:

1. "Fireplace" and "Wood" 
2. "Curtain" and "Stage" 
3. "Shutter" and "Light" 
4. "Sieve" and "Liquid"
5. "Window" and "Glass"

    Answer: 5
Example 3:

......................
Example 4:

......................
Example 5:

......................
Question: What is the analogical word pair to, "Lens" and "Glass" from the following choices. Choices: 
    1. "Well" and "Water" 
    2. "Saw" and "Wood" 
    3. "Sweater" and "Wool" 
    4. "Fuel" and "Fire" 
    5. "Ink" and "Paper" 
The answer should only be 1 or 2 or 3 or 4 or 5?. 
Answer:

Figure 9: Example of a Five-shot prompt used on our dataset

Structured Knowledge Prompt

Question: What is the analogical word pair to, "Lens" and "Glass" from the following
choices. Choices: 
    1. "Well" and "Water" 
    2. "Saw" and "Wood" 
    3. "Sweater" and "Wool" 
    4. "Fuel" and "Fire" 
    5. "Ink" and "Paper" 
The answer should only be 1 or 2 or 3 or 4 or 5?. 
Use following knowledge to find the correct answer choice.
Question Knowledge: glass related to device, device is a camera, camera is a lens; optical device is
a device, device is a instrumentality, instrumentality is a container, container is a glass
Answer choice 1 knowledge: well is a place, place is a water_route, water_route is a water
Answer choice 2 knowledge: wood made of house, house made of metal, metal made of saw; power tool is
a machine, machine is a device, device is a instrument, instrument is a wind, wind is a wood
Answer choice 3 knowledge: coat made of wool, wool related to warm, warm related to sweater; garment
is a habiliment, habiliment is a covering, covering is a artifact, artifact is a textile, textile is
a wool
Answer choice 4 knowledge: fuel is a substance, substance is a element, element is a fire
Answer choice 5 knowledge: ink at location sign, sign at location paper; ink is a change, change is a
cover, cover is a paper
Answer:

 

Figure 10: Example of a Structured Knowledge Prompt[semantic] used on our dataset



3996

Targeted Knowledge Prompt

Question: What is the analogical word pair to, "Lens" and "Glass" from the following choices. Choices: 
    1. "Well" and "Water" 

    2. "Saw" and "Wood" 
    3. "Sweater" and "Wool" 

    4. "Fuel" and "Fire" 
    5. "Ink" and "Paper" 
The answer should only be 1 or 2 or 3 or 4 or 5?. 

The implicit relation shared by "lens" and "glass" is "made of". The correct choice should have the same implicit
relation among the two words.

Answer:

 

Figure 11: Example of a Targeted Knowledge Prompt used on our dataset
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