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Abstract

Multimodal Emotion Recognition in Conversa-
tions (MERC) identifies utterance emotions by
integrating both contextual and multimodal in-
formation from dialogue videos. Existing meth-
ods struggle to capture emotion shifts due to la-
bel replication and fail to preserve positive inde-
pendent modality contributions during fusion.
To address these issues, we propose a Dual
Contrastive Learning Framework (DCLF) that
enhances current MERC models without addi-
tional data. Specifically, to mitigate label repli-
cation effects, we construct context-aware con-
trastive pairs. Additionally, we assign pseudo-
labels to distinguish modality-specific contribu-
tions. DCLF works alongside basic models to
introduce semantic constraints at the utterance,
context, and modality levels. Our experiments
on two MERC benchmark datasets demonstrate
performance gains of 4.67%-4.98% on IEMO-
CAP and 5.52%-5.89% on MELD, outperform-
ing state-of-the-art approaches. Perturbation
tests further validate DCLF’s ability to reduce
label dependence. Additionally, DCLF incorpo-
rates emotion-sensitive independent modality
features and multimodal fusion representations
into final decisions, unlocking the potential con-
tributions of individual modalities.

1 Introduction

Multimodal Emotion Recognition in Conversa-
tions (MERC) aims to integrate various modali-
ties from dialogue data to track the emotional tra-
jectories of interlocutors. This field has gained
significant attention due to its broad applicability
in human-centered conversational intelligence (Li
et al., 2023c; Ji et al., 2023; Anand et al., 2023).

Recent studies concentrate on modeling the in-
tricate conversational information flow, primarily
employing recurrence-based (Ju et al., 2023; Liang
et al., 2024; Guo et al., 2024) or graph-based meth-
ods (Li et al., 2023a,b, 2024). Additionally, re-
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Model Raw ECCS EICS

Unimodal Setting

AGHMN(2020) 59.1 54.0(↓5.1) 25.7(↓33.4)
DialogueRNN(2019) 62.2 60.0(↓2.2) 30.5(↓31.7)

Multimodal Setting

DDIN(2020) 66.7 64.3(↓2.4) 47.8(↓18.9)
MMGCN(2021) 67.4 63.7(↓3.7) 53.3(↓14.1)

Table 1: Preliminary experimental results of basic mod-
els: weighted-F1 performance on IEMOCAP (2008).

search on multimodal fusion strategies explores
early fusion (Zhang et al., 2021; Shou et al., 2022;
Wen et al., 2023) or a hybrid approach combining
graph-based and late fusion (Hu et al., 2022; Fan
et al., 2024; Ai et al., 2024). However, challenges
include sensing emotion shifts due to label repli-
cation and the dilution of individual modality con-
tributions in fusion processes remain unresolved,
constraining MERC models’ potential.

Ghosal et al. (2021) observe that existing models
often replicate dominant labels frequently found in
the context or mimic emotion transition patterns
from the training data, rather than genuinely under-
standing the contextual semantics. To verify this
label replication effect, Zhang and Song (2022) in-
troduce a perturbation test. This test replaces the
original context with different utterances from the
same dataset that share the same emotion, termed
Emotion-Consistent Context Substitution (ECCS).
Another extreme setting involves replacing the con-
text with utterances bearing entirely different emo-
tions, referred to as Emotion-Inconsistent Context
Substitution (EICS). We extend this test to a multi-
modal setting, with results shown in Table 1. Our
findings indicate that ECCS slightly impacts model
performance, while the EICS setting leads to a
significant performance drop. This confirms that
these models rely heavily on emotion labels, fail-
ing to capture the deeper context semantics. This
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Conversation Record T V A T+V+A

Joey Neutral Anger Neutral Neutral Neutral

Monica Joy Joy Surprise Joy Joy

Joey Surprise Neutral Neutral Neutral Neutral

Phoebe u4:About what? Neutral Joy Surprise Neutral Surprise

Monica u5:My surprise party! Surprise Joy Surprise Surprise Joy

Phoebe Neutral Sad Neutral Neutral Sad

u1:Ross is planning
your birthday party.

Ground
Truth

u3:You’d better act
surprised.

u2:Oh my God! I love
him!

u6:Well, he didn’t tell
me.

Figure 1: A MELD (2019) dialogue snippet with mis-
classifications highlighted in red across settings.

overreliance prevents the models from effectively
handling sudden emotion shifts (Shen et al., 2021;
Tu et al., 2023a; Kang and Cho, 2024).

On the other hand, theoretically, complemen-
tary information across modalities (e.g., u1-u3 in
Figure 1) should lead to a significant performance
improvement compared to single-modality settings.
However, this advantage is not evident in MERC
(Wang et al., 2023). Taking MMGCN’s (Hu et al.,
2021) performance on the MELD (Poria et al.,
2019) dataset as an example, if we take the cor-
rect prediction from any single modality (textual,
audio, visual) as the final judgment, the theoretical
F1 score could reach 81.7. Yet, the current best
performance is only around 70 (Dai et al., 2024).
We attribute this discrepancy to the dilution of the
accurate contributions of each modality during the
fusion process. For instance, in u6 of Figure 1,
a Sad prediction based on visual signals is over-
shadowed by Neutral inferences from the textual
and audio modalities. Existing methods decode the
fused result without considering the varying con-
tributions of each modality, resulting in a Pyrrhic
victory that ultimately limits the model’s potential.

To address these challenges, we propose a Dual
Contrastive Learning Framework (DCLF) that inte-
grates seamlessly with existing multimodal conver-
sational discriminative models without requiring
additional data. To mitigate the label replication
effect, we construct contextually semantic-aware
contrastive pairs. Specifically, we first employ a
typical MERC model to distill the context and re-
gard this representation as a dialogue summary. We
then concatenate the historical utterances in the di-
alogue window with the summary to form context-
consistent (positive) samples. Concurrently, we
randomly sample utterances from the same dataset
that share the same emotion as the historical ut-
terances, pairing them with the dialogue summary
as context-inconsistent (negative) samples. To dis-
tinguish the contributions of individual modalities,

we assign pseudo-labels to the corresponding ut-
terances, based on their ability to make accurate
predictions in single-modality settings. Ultimately,
DCLF operates alongside the original basic model,
performing parallel contrastive learning with these
newly constructed labels, thereby jointly establish-
ing semantic constraints at the context, utterance,
and modality levels, respectively.

We conduct experiments on two MERC bench-
mark datasets. Basic models utilizing different
modeling strategies exhibit performance gains of
4.67%-4.98% on IEMOCAP and 5.52%-5.89% on
MELD when integrated with DCLF. Our results
show that context-aware contrastive learning helps
reduce the model’s excessive reliance on labels
by controlling for emotion-related factors. Addi-
tionally, compared to baseline models, our frame-
work consistently improves performance by effec-
tively combining emotion-specific features from
individual modalities with multimodal fusion data.
This approach maximizes the unique contributions
of each modality, enhancing the overall decision-
making process.

Our main contributions are as follows:

1. We propose DCLF to enhance existing MERC
models. This framework is compatible with
existing models and requires no additional
data. Basic models equipped with DCLF out-
perform current SOTA methods.

2. Context-aware contrastive pairs effectively
mitigate the label replication effect, improving
the model’s ability to discriminate in emotion
transition scenarios.

3. By assigning pseudo-labels based on the per-
formance of each individual modality, DCLF
enhances modality-specific contributions, re-
ducing performance losses during fusion.

2 Related Work

2.1 Multimodal Conversational Emotion
Recognition

Early MERC works explore the role of various
modalities in emotion inference. Zhang et al.
(2020) parallelize multiple DialogueRNN (Ma-
jumder et al., 2019), assigning a separate channel
for each modality and fusing the outputs with an
attention mechanism. Conversely, Ren et al. (2021)
reorder the modules by applying attention to obtain
a text-centered representation before dialogue mod-
eling. Xing et al. (2020) replace CMN (Hazarika
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et al., 2018)’s memory module with a dynamic ver-
sion for speaker state tracking, while Wen et al.
(2023) expand CMN into a multimodal version us-
ing gated recurrent units for global modeling.

Recent studies introduce specialized modules to
address the unique challenges in MERC. Li et al.
(2024) enhance MMGCN (Hu et al., 2021) with
SMOTE (Chawla et al., 2003) algorithm to improve
recognition of minority classes. Dai et al. (2024)
propose a consensus-aware learning module, align-
ing modalities through emotion consensus learning.
Ai et al. (2024) incorporate event relationships by
using Doc2EDAG (Zheng et al., 2021) for event ex-
traction and constructing a weighted multi-relation
graph to capture interlocutor-event dependencies.

2.2 Multimodal Fusion
MERC models can primarily be categorized based
on the sequence of modality fusion into early fu-
sion (Guo et al., 2024) and late fusion (Yang et al.,
2023), with recent works often adopting a sequen-
tial graph-based and late fusion paradigm (Li et al.,
2023a; Fan et al., 2024). Early fusion involves
integrating data from different modalities at the fea-
ture level (Ji et al., 2023). In contrast, late fusion
processes and classifies each modality’s data sep-
arately, then combines the results. Self-attention
mechanisms that treat different modalities as query,
key, and value also gain popularity (Lian et al.,
2021; Zhang et al., 2023). Additionally, some ap-
proaches treat different modalities of the same utter-
ance as distinct languages, employing end-to-end
encoder-decoder structures to explore cross-modal
relationships (Wang et al., 2020; Lian et al., 2022).

2.3 Contrastive Learning
Li et al. (2022) are the first to introduce super-
vised contrastive learning to ERC, enhancing emo-
tion differentiation by excluding dissimilar emo-
tions. Nie et al. (2023) employ contrastive learning
with theme-aligned utterances as positive samples
to identify if pairs belong to the same conversa-
tion. Song et al. (2022) tackle emotional imbalance
with a prototypical contrastive loss function that
works without large batch sizes. Zhang and Song
(2022) introduce a semantics-guided contrastive
context-aware approach, but its perturbation test-
ing does not align with the process of constructing
positive and negative examples. Hu et al. (2023)
combine contrastive-aware adversarial training and
joint class propagation to extract structured rep-
resentations. Gao et al. (2024) and Jian et al.

(2024) refine pre-trained models by leveraging con-
trastive learning to create distinct representational
spaces. In multimodal settings, Yang et al. (2023)
model contextual dependencies and enhance dis-
criminability through adaptive path selection and
contrastive learning. Dai et al. (2024) introduce
speaker-guided contrastive learning to ensure diver-
sity and semantic consistency across modalities.

3 Methodology

3.1 Problem Definition

A dialogue can be represented as a sequence of
utterances {u1, ..., ui, ..., uN}, where i stands for
the utterance index and N is the total number of
utterances. Each utterance ui is associated with a
corresponding interlocutor Ii ∈ I, where |I| ≥ 2.
If we merge each Ii and ui as a pair Ui = (Ii, ui),
the sequential Ui constitutes the multimodal conver-
sation record C. Each utterance ui is also assigned
a discrete emotion label yi ∈ Y , where Y is a set
of pre-defined emotion labels. The objective of
MERC is to recognize yi for ui based on C.

3.2 Overview

The proposed DCLF, as illustrated in Figure 2,
comprises the following components. First, an
original MERC model processes the conversation
record through stages of feature extraction and Se-
mantic Modeling & Modal Fusion (SMMF), lead-
ing to a final prediction by the decoder. In the
Context-Aware Contrastive Learning (CACL) mod-
ule, we leverage SMMF to extract contextual fea-
tures from the target utterance, creating a dialogue
summary. We then concatenate historical utter-
ances with this summary as positive samples, while
negative samples are generated by randomly select-
ing utterances with the same emotions from differ-
ent dialogues within the same dataset, paired with
the same summary. In the Modality Contribution
Contrastive Learning (MCCL) module, we assign
pseudo-labels to each modality’s corresponding ut-
terances based on whether correct predictions can
be made under single-modality settings. Finally,
CACL and MCCL are executed in parallel, working
collaboratively with the original MERC model.

3.3 Typical MERC Model

A typical neural MERC model generally consists of
three components: a feature extractor, a semantic
modeling & feature fusion module, and a decoder.
In this study, we focus on the commonly used vi-
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Typical MERC Model

Feature Extractor

Semantic Modeling & 
Modal Fusion Module

Decoder

Conversation Record

…
CA Pair Construction

Context
Target

Utterance

Historical
Utterances

Sampled
Utterances

CACL

MC-Based Pseudo Label Assignment

Modality Specific Decoder

V

T

A

Ground Truth

MCCL

Joint Training

Figure 2: The overall framework of DCLF. Outer ring colors represent visual, textual, and audio modalities. CA,
MC, CE and CL stand for context-aware, modality contribution, cross-entropy and contrastive learning, respectively.

sual, textual, and audio modalities. The feature
extractor processes the multimodal conversation
records as input and derives modality-specific rep-
resentations um

i for each utterance ui:

um
i = FeatureExtractor (ui) , (1)

where m ∈ {v, t, a}.
The SMMF module typically utilizes a combina-

tion of sequence modeling networks to manage the
intricate streams of dialogue and modality infor-
mation. Formally, it takes initial modality-specific
representations as input and outputs the emotional
hidden state hi ∈ Rd for each utterance ui:

hi = SMMF
(
C,uv

i ,ut
i,ua

i

)
. (2)

Finally, the classification decoder, comprising
fully connected layers and a softmax function, pre-
dicts the emotion label of the target utterance ui:

ŷi = softmax (Whi + b) . (3)

where W ∈ R|Y|×d and b ∈ R|Y| are learnable
parameters. Equations (1)-(3) outline the typical
execution process of a MERC model:

ŷi = MERC(C, ui) , (4)

which employs cross-entropy as the loss function:

LCE = −
N∑
i=1

|Y|∑
e=1

yi,e log ŷi,e, (5)

where yi,e and ŷi,e are the components of yi and ŷi
for the emotion class e, respectively.

3.4 Context-Aware Contrastive Learning
To align with real-world applications, this study fo-
cuses exclusively on real-time emotion recognition.
In this setting, the dialogue history u1:i−1 serves as
the context for the target utterance ui.

The core of the CACL module lies in construct-
ing context-aware contrastive pairs. The fundamen-
tal idea is to exclude the influence of emotion labels,
enabling the target utterance to genuinely capture
the contextual semantics. Specifically, constructing
contrastive samples requires the contextual extract
ci ∈ Rd (obtained from the SMMF module), and
(pseudo) contextual utterances.

Context-Consistent (Positive) Pairs: It is as-
sumed that the most relevant information for un-
derstanding the target utterance comes from its pre-
ceding dialogue window ui−W :i−1, where W de-
notes the window size. Therefore, we sequentially
concatenate the context ci with these relevant utter-
ances to form positive pairs, which are then aligned
within the hidden state space, formalized as:

gp = Wg [ci,hi−p] + bg, (6)

where p ∈ [1,W ], Wg ∈ Rd×2d, bg ∈ Rd and gp
forms the context-consistent set PCC (i).

Context-Inconsistent (Negative) Pairs: We
sample utterances consecutively from different di-
alogues within the same dataset as negative exam-
ples, aligning them as closely as possible to the
emotions present in ui−W :i−1. If an exact match is
not available, we gradually relax the alignment cri-
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Algorithm 1: Calculation of LMC for each
mini-batch B
Input: B = {uv

i ,ut
i,ua

i }
Nb
i=1, ℓv, ℓt, ℓa,← 0

Output: LMC

// MC-Based Pseudo Label Assignment
1 for i = 1 to Nb do
2 for m ∈ {v, t, a} do
3 pmi ← 0;
4 pmi ← I(Um(um

i ) == yi);

5 for i = 1 to Nb do
6 ℓ+v , ℓ

−
v , ℓ

+
t , ℓ

−
t , ℓ

+
a , ℓ

−
a ← 0;

7 nv, nt, na ← 0;
// Contrastive loss for ui

8 for j = 1 to Nb and j ̸= i do
9 for m ∈ {v, t, a} do

10 if pmj == pmi then
11 ℓ+m += F(um

i ,um
j , τ);

12 nm += 1;

13 else
14 ℓ−m += F(um

i ,um
j , τ);

15 for m ∈ {v, t, a} do
16 if nm > 0 then
17 ℓm+ = − log ℓ+m

nm×ℓ−m
;

18 LMC ← ℓv + ℓt + ℓa

teria until a suitable match is found. This approach
minimizes the influence of emotion labels and their
transition patterns. Similarly, we concatenate the
context ci with these negative examples, converting
them into negative pairs gn (n ∈ [1,W ]), forming
the context-inconsistent set PCI (i).
PCC (i) and PCI (i) constitute the contrastive

pair for ui. We apply supervised contrastive learn-
ing (Khosla et al., 2020), treating gp as the positive
example and gn as the negative example. The total
loss LCA for the CACL module is computed as:

F(hi, gj) = exp(G(hi, gj)/τ), (7)

PCA(i) =
∑

gp∈PCC(i)

F(hi, gp), (8)

NCA(i) =
∑

gn∈PCI(i)

F(hi, gn), (9)

LCA = −
N∑
i=1

log
1

|PCC (i) |
PCA(i)

NCA(i)
, (10)

where G(·) is a score function, here using cosine
similarity, and τ ∈ R+ is a temperature parameter.

Dataset
#Dialogue #Uterance

#Ut./Dia.
Train Val Test Train Val Test

IEMOCAP 100 20 31 5146 664 1623 49.2
MELD 1039 114 280 9889 1109 2610 9.5

Table 2: Data distribution of IEMOCAP and MELD.

3.5 Modality Contribution Contrastive
Learning

Effectively utilizing multimodal information is cru-
cial in MERC. While some methods intuitively
prioritize single modality as primary (Zhang et al.,
2022), Song et al. (2022) demonstrate that textual
information may fail to distinguish between emo-
tions. Mao et al. (2021) reveal that textual infor-
mation depends heavily on context, unlike visual
and audio signals. Although modality fusion en-
hances MERC models, low-quality unimodal infor-
mation can disrupt accuracy. In some cases, MERC
models even underperform in comparison to single-
modality settings, underscoring the need to isolate
and understand individual modality contributions.

We design a modality contribution contrastive
learning approach to capture both the correlations
and differences in recognition tendencies across
modalities. In the MCCL module, we connect the
feature extractor directly to the modality-specific
decoder, forming the element model U . Initially,
we conduct self-supervised modality-level pseudo-
labeling, as detailed in Lines 1 to 4 of Algorithm
1. Then, we compute the contrastive loss for each
utterance based on the pseudo-labels, following
the steps outlined in Lines 8 to 14 of Algorithm 1,
leading to the overall MCCL module loss LMC .

Moreover, we combine the strengths of both
feature- and decision-level fusion by concatenating
each modality’s contribution-aware representation
with hi before feeding it into the decoder. This en-
sures that high-confidence single-modality features
are incorporated into the decision-making process.

3.6 Joint Training

The total loss of DCLF consists of two main cate-
gories: the original MERC model loss and the con-
trastive loss. We jointly train our proposed DCLF
by minimizing the sum of the following losses:

L = LCE + γcaLCA + γmcLMC + λ∥θ∥2, (11)

where γca and γmc are tunable hyper-parameters.
θ is a set of learnable parameters of DCLF. λ rep-
resents the coefficient of L2 regularization.
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Methods
IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated Average Average
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 WA WF1 WA WF1

DSAGCN (2022) 60.10 62.60 84.80 82.30 44.50 47.50 63.70 59.60 69.30 71.50 54.80 62.10 63.50 61.70 60.90 58.70
MM-DFN (2022) — 42.22 — 78.98 — 66.42 — 69.77 — 75.56 — 66.33 68.21 68.18 62.49 59.46
DIMMN (2023) 24.30 30.20 64.50 74.20 57.30 59.00 61.80 62.70 81.30 72.50 75.90 66.60 64.70 64.10 60.60 58.60
SCMM (2023) — 45.37 — 78.76 — 63.54 — 66.05 — 76.70 — 66.18 — 67.53 — 59.44
HI-IMC (2023) 55.80 51.40 80.50 84.40 64.20 62.00 65.20 64.20 88.50 78.90 68.20 64.50 70.60 67.90 61.70 60.80
GraphMFT (2023b) — 45.99 — 83.12 — 63.08 — 70.30 — 76.92 — 63.84 67.90 68.07 61.30 58.37
GraphCFC (2023a) — 43.08 — 84.99 — 64.70 — 71.35 — 78.86 — 63.70 69.13 68.91 61.42 58.86
SACCMA (2024) — 38.60 — 86.53 — 64.90 — 64.56 — 74.52 — 62.99 67.41 67.10 62.30 59.30
IMBA (2024) — 41.89 — 80.62 — 64.88 — 69.69 — 75.54 — 59.60 — 68.22 — 58.94
MultiDAG (2024) — 45.26 — 81.40 — 69.53 — 70.33 — 71.61 — 66.94 69.11 69.08 64.41 64.00
GCCL (2024) — 54.05 — 81.10 — 70.28 — 68.21 — 72.17 — 64.00 69.87 69.29 62.82 60.28
DER-GCN (2024) 60.70 58.80 75.90 79.80 66.50 61.50 71.30 72.10 71.10 73.30 66.10 67.80 69.70 69.40 66.80 66.10

DDIN* (2020) 28.87 34.31 78.74 84.60 63.82 64.14 56.36 61.05 90.14 77.99 64.89 63.50 67.34 66.70 61.91 61.02
w/ DCLF 56.42 54.67 95.39 92.98 64.33 65.64 67.84 72.23 82.66 77.83 64.00 65.20 72.01 71.68 67.39 66.91

MMGCN* (2021) 52.76 47.41 69.16 75.47 75.06 72.16 63.03 64.52 62.22 68.38 68.84 65.45 67.10 67.40 62.31 61.59
w/ DCLF 45.61 48.01 87.10 84.93 69.53 71.35 75.83 72.08 73.51 70.83 72.07 75.23 73.27 72.07 68.37 67.11

Table 3: Performance comparison of different methods under the multimodal setting (T+A+V). * indicates our
reproduced results. The best overall performance and the top two F1 scores for each emotion are highlighted in bold.

4 Experiment

4.1 Datasets & Evaluation Metrics

We evaluate DCLF on two MERC benchmark
datasets, IEMOCAP1 (Busso et al., 2008) and
MELD2 (Poria et al., 2019), both of which pro-
vide aligned visual, textual, and audio information.
The dataset statistics are presented in Table 2.

IEMOCAP includes dyadic dialogues, with each
utterance annotated into one of six emotion cat-
egories: Happy, Sad, Neutral, Angry, Excited,
and Frustrated. Consistent with prior work (Hu
et al., 2021), we use the first four sessions for train-
ing, reserving the final session for testing.

MELD involves two or more speakers, and ut-
terances are labeled by at least five experts across
seven emotion categories: Anger, Disgust, Fear,
Joy, Neutral, Sadness, and Surprise. We adopt
the predefined split provided by MELD.

We use four metrics: accuracy (Acc), F1,
Weighted Acc (WA), and Weighted F1 (WF1), fo-
cusing on WA and WF1 due to data imbalances.
Acc and F1 for each emotion are also reported. The
significance of the model with and without DCLF
on datasets is validated by a paired t-test (p < 0.05).

4.2 Baselines

We compare our proposed DCLF with twelve
MERC baselines, including recurrence-based meth-
ods: DIMMN (Wen et al., 2023), SCMM (Yang
et al., 2023), SACCMA (Guo et al., 2024); A
Transformer-based method: HI-IMC (Ji et al.,

1https://sail.usc.edu/iemocap/
2https://affective-meld.github.io/

2023), and graph-based methods: DSAGCN
(Shou et al., 2022), MM-DFN (Hu et al., 2022),
GraphMFT (Li et al., 2023b), GraphCFC (Li
et al., 2023a), IMBA (Li et al., 2024), MultiDAG
(Nguyen et al., 2024), GCCL (Dai et al., 2024), and
DER-GCN (Ai et al., 2024). A detailed introduc-
tion to baselines is provided in Section 2.

We further incorporate the proposed DCLF into
DDIN3 (Zhang et al., 2020) and MMGCN4 (Hu
et al., 2021), two representative early-stage open-
source models, to evaluate the impact of DCLF.

4.3 Implementation Setups

For a fair comparison, we replace the text features
in DDIN and MMGCN with RoBERTa (Liu et al.,
2019) while keeping all other settings consistent
with the original configurations. The temperature
parameter τ is set to 0.07, and other hyperparam-
eters are manually tuned via hold-out validation.
In IEMOCAP, we set W , γca, and γmc to 10, 0.8,
and 0.4, respectively, with a batch size of 16. For
MELD, these parameters were adjusted to 4, 0.6,
0.4, and 8. The reported results are the average
scores from five random runs on the test set.

5 Results and Analysis

5.1 Overall Performance

Table 3 shows the experimental results across
datasets. Comparing baselines with their DCLF-
enhanced versions reveals the following insights:

3https://github.com/MANLP-suda/BiDDIN
4https://github.com/hujingwen6666/MMGCN
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Figure 3: Specific label F1 performance on MELD.

(1) Importance of contextual semantics and
modality-specific contributions: Among the base-
line models, DER-GCN and MultiDAG outperform
others on both datasets. DER-GCN uses an event
extraction model, which enhances contextual un-
derstanding by extracting key information, con-
structing semantic networks, and analyzing causal
links. While MultiDAG does not explicitly differen-
tiate modality contributions, it uniquely integrates
unimodal features into final decisions via residual
connections, reinforcing their impact.

(2) Effectiveness of DCLF: DDIN and
MMGCN serve as suitable basic models for testing
DCLF due to their straightforward design. Both
models show notable performance improvements
when integrated with DCLF, surpassing the current
state-of-the-art model by 0.81% to 2.67%. Specifi-
cally, DCLF improves DDIN by 4.98% on IEMO-
CAP and 5.89% on MELD, while MMGCN gains
4.67% and 5.52%. These results demonstrate the
broad effectiveness of DCLF in enhancing MERC
models with varied dialogue modeling approaches.

5.2 Specific Label Analysis

We compare the performance on specific emotions,
as shown in Table 3. While certain methods excel
in recognizing minority-class emotions in IEMO-
CAP, their deliberate emphasis on these emotions
reduces performance on dominant emotions, lead-
ing to only marginal overall improvement. In con-
trast, DCLF does not simply prioritize minority-
class emotion recognition but corrects dominant
emotion misclassifications, leading to more bal-
anced performance. For instance, after equipping
DCLF, DDIN experiences only a 0.61% drop in
Neutral while achieving better overall results.

On MELD, DCLF’s benefits for minority-class
emotions are even more pronounced. As shown
in Figure 3, after integrating DCLF, DDIN and
MMGCN double their initial performance on

Methods
IEMOCAP MELD

DDIN†(71.68) MMGCN†(72.07) DDIN†(66.91) MMGCN†(67.11)

-w/o CACL 68.77(↓2.91) 69.95(↓2.12) 63.50(↓3.41) 64.55(↓2.56)
-w/o CE 70.89(↓0.79) 71.36(↓0.71) 66.25(↓0.66) 66.51(↓0.60)
-w/o MCCL 67.21(↓4.47) 68.02(↓4.05) 62.53(↓4.38) 62.45(↓4.66)
-w/o ICA 69.47(↓2.21) 70.11(↓1.96) 65.05(↓1.86) 65.83(↓1.28)

Table 4: WF1 results of ablation studies for different
settings. † denotes DCLF-equipped.

Methods
#W

2 4 8 16

DDIN+DCLF 69.54 70.27 71.22 70.96
MMGCN+DCLF 70.29 71.05 71.61 71.44

(a) WF1 performance comparison on IEMOCAP.

Methods
#W

1 2 4 8

DDIN+DCLF 63.89 64.37 66.91 66.38
MMGCN+DCLF 64.82 66.29 67.11 66.84

(b) WF1 performance comparison on MELD.

Table 5: Performance comparison for different dialogue
window sizes (W ).

Disgust and improve Fear recognition by 2.89
to 4.25 times. Importantly, these enhancements
are achieved without sacrificing performance on
dominant emotions such as Neutral or Joy.

5.3 Ablation Study

We conduct an ablation study to evaluate the im-
pact of each DCLF component (Table 4). "-w/o
CACL" and "-w/o MCCL" represent the removal of
the CACL and MCCL modules, respectively. "-w/o
CE" skips contextual extraction, using utterances
directly as positive and negative samples, while
"-w/o ICA" removes independent modality contri-
bution awareness from decoding, leaving MCCL
as a soft constraint during feature extraction.

The results indicate that MCCL has a greater
impact than CACL, as prior methods often sup-
press independent modality contributions, which
offer more room for improvement than contextual
understanding. Tu et al. (2023b) also note that cur-
rent models inherently denoise unrelated contexts.
While CACL addresses the label replication effect
in emotion shifts, most conversations exhibit sta-
ble emotional flows. Additionally, limiting MCCL
to a soft constraint before modality fusion signifi-
cantly reduces its effectiveness. Finally, combining
contextual extraction with utterances strengthens
the distinction between positive and negative pairs,
improving contextual comprehension.
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(a) DDIN† on IEMOCAP. (b) MMGCN† on IEMOCAP. (c) DDIN† on MELD. (d) MMGCN† on MELD.

Figure 4: WF1 results for different combinations of γca and γmc values across datasets. † denotes DCLF-equipped.

Methods
IEMOCAP MELD

Raw ECCS EICS Raw ECCS EICS

DDIN 66.70 64.30(↓2.40) 47.80(↓18.90) 61.02 59.15(↓1.87) 47.74(↓13.28)
DDIN† 71.68 70.31(↓1.37) 64.15(↓7.53) 66.91 65.69(↓1.22) 61.42(↓5.49)
MMGCN 67.40 63.70(↓3.70) 53.30(↓14.10) 61.59 59.96(↓1.63) 45.62(↓15.97)
MMGCN† 72.07 69.91(↓2.16) 66.26(↓5.81) 67.11 66.27(↓0.84) 61.29(↓5.82)

Table 6: WF1 results of perturbation test. † denotes
DCLF-equipped.

5.4 Quantitative Analysis
5.4.1 Impact of Contrastive Pair Quantity
The dialogue window size W controls the CACL
contrastive pairs’ number. We analyze how varying
W affects performance, assuming equal positive
and negative pairs. As shown in Table 5, perfor-
mance initially improves as W increases but then
slightly declines. The optimal W values, 10 for
IEMOCAP and 4 for MELD, appear to correspond
with the average number of utterances per dialogue.

5.4.2 Impact of Contrastive Loss Coefficient
γca and γmc control the model’s focus on contex-
tual information and on the characteristics of each
modality, respectively. We assess model perfor-
mance using various combinations of γca and γmc,
each ranging from [0.1, 0.2, 0.4, 0.8]. As shown in
Figure 4, the performance improves initially as γmc

increases but declines after a certain point. This in-
dicates that distinguishing modality features early
on benefits the model, while overemphasizing them
can hinder the integration of contextual corrections
later. On IEMOCAP, the optimal performance oc-
curs at γca = 0.8, while on MELD, it is γca = 0.6.
This difference can be attributed to the significantly
longer dialogues in IEMOCAP, which require a
stronger emphasis on contextual understanding.

5.5 Perturbation Test
We conduct perturbation tests as outlined in the
introduction. We report the average scores in Table
6 based on five random seeds. The results show that
DCLF significantly mitigates performance drops

Methods
IEMOCAP MELD

Whole w/o ES w/ ES Whole w/o ES w/ ES

DDIN 66.70 73.85 54.27 61.02 68.34 54.69
DDIN+DCLF 71.68 76.16 63.88 66.91 75.83 59.25
MMGCN 67.40 72.60 58.35 61.59 68.95 55.27
MMGCN+DCLF 72.07 75.86 65.47 67.11 74.30 60.94

Table 7: WF1 results comparison on emotion shift.

under the ECCS setting. This is primarily due to
CACL acting as a regularization module, reducing
reliance on label patterns and improving stability.

5.6 Error Analysis

Section 5.2 and Section 5.5 demonstrate DCLF’s
effectiveness in mitigating label replication effect.
In this section, we extend the evaluation to emotion-
shift scenarios. As shown in Table 7, the results
reveal that integrating DCLF into MERC models
effectively narrows the performance gap between
emotion-shift and stable-emotion contexts, which
aligns with the key motivation of this work.

6 Conclusion

This paper presents a Dual Contrastive Learning
Framework for MERC, designed to enhance perfor-
mance in emotion-shift dialogue scenarios. DCLF
also ensures that the unique characteristics of each
modality are preserved and effectively utilized. It
integrates seamlessly with existing MERC mod-
els by applying semantic constraints at the context,
utterance, and modality levels.

Experimental results confirm the effectiveness
of DCLF in improving overall model performance.
DCLF addresses the issue of replicated label pat-
terns and reduces the loss of accuracy during the
fusion of different modalities. Additionally, the
framework improves the effectiveness of single
modalities while maintaining flexibility, enabling
it to extend beyond just MERC tasks and demon-
strating DCLF’s broad applicability.
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Limitations

We evaluate DCLF using two MERC models with
distinct dialogue modeling approaches. We do not
extend the evaluation to more complex MERC mod-
els due to the limited availability of open-source
implementations. Furthermore, evaluating straight-
forward models better highlights DCLF’s true im-
pact. Additionally, this work focuses solely on
real-time recognition scenarios. It is worth noting
that the performance of the MCCL module is con-
strained by the capacity of the feature extractor,
and the quality of pseudo-labels heavily depends
on the model’s predictions. This dependency may
lead to fluctuations in performance during training,
though these stabilize as the model converges.
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