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Abstract

Quaternion contains one real part and three
imaginary parts, which provided a more expres-
sive hypercomplex space for learning knowl-
edge graph. Existing quaternion embedding
models measure the plausibility of a triplet
through either semantic matching or geometric
distance scoring functions. However, it appears
that semantic matching diminishes the sepa-
rability of entities, while the distance scoring
function weakens the semantics of entities. To
address this issue, we propose a novel quater-
nion knowledge graph embedding model. Our
model combines semantic matching with the
geometric distance of entities to better mea-
sure the plausibility of triplets. Specifically,
in the quaternion space, we perform a right
rotation on head entity and a reverse rota-
tion on tail entity to learn rich semantic fea-
tures. We then utilize distance-adaptive trans-
lations to learn geometric distance between
entities. Furthermore, we provide mathemati-
cal proofs to demonstrate our model can han-
dle complex logical relationships. Extensive
experimental results and analyses show our
model significantly outperforms previous mod-
els on well-known knowledge graph comple-
tion benchmark datasets. Our code is available
at https://github.com/llqy123/DaBR.

1 Introduction

Knowledge graphs (KGs) (Liang et al., 2024a) are
powerful tools for representing valid factual triplets
by capturing entities and their relationships in a
graphical format. Owing to the well-structured
of graphs, KGs are often used for various Natural
Language Processing tasks, such as question an-
swering (Mendes et al., 2024; Faldu et al., 2024),
entity alignment (Wang et al., 2024a,b), KG-based
recommendation (Liang et al., 2024c) and KG en-
hanced Large Language Model (Wen et al., 2024).

*Corresponding Author. Email: wangwh@imu.edu.cn.

(a) QuatE (b) TransERR

Figure 1: The visualization embedding of QuatE and
TransERR models after 100 epochs training. Points in
the same color represent tail entities that have the same
(hr, rj) (query) context.

However, KGs are usually incomplete and the
incompleteness limits their application. As an ef-
fective tool for predicting missing facts, knowledge
graph completion (KGC) has received considerable
attention from researchers. Typically, researchers
transform KGC tasks into knowledge graph embed-
dings (KGEs). KGE refers to learning representa-
tions of entities and relations in a low-dimensional
space while preserving the graph’s inherent struc-
ture and semantic properties. In this representation
space, a scoring function can be defined to mea-
sure the plausibility of each triplet, where valid
triplets should receive higher scores than these in-
valid ones.

Quaternion contains one real part and three imag-
inary parts, which providing a more expressive
space for learning embeddings of entities and re-
lations. Rotation in the quaternion space is of-
ten used to model the KGs. For example, QuatE
(Zhang et al., 2019) learns semantic information
about entities by treating relations as rotations from
head entities to tail entities. TransERR (Li et al.,
2024) encodes the KG by rotating the head and tail
entities with their corresponding unit quaternions.
These models use either semantic matching or dis-
tance scoring functions to measure the plausibility
of the triplet, respectively. However, it appears

https://github.com/llqy123/DaBR
mailto:wangwh@imu.edu.cn


4220

that semantic matching diminishes the separabil-
ity of entities, while the distance scoring function
weakens the semantics of entities. For example,
we visualized the results for the same query in Fig-
ure 1 1. Specifically, as shown in Figure 1, we
observe that QuatE model overlaps some queries
when using semantic matching as a scoring func-
tion. The entities of TransERR using the distance
scoring function are also indistinguishable from
each query.

To address this issue, we propose a Distance-
adaptive quaternion knowledge graph embedding
with Bidirectional Rotation model, named as
DaBR. Our model combines semantic matching
with the geometric distance of entities to better
measure the plausibility of triplets. Specifically,
in the quaternion space, we perform a right ro-
tation on the head entity and a reverse rotation
on the tail entity to learn rich semantic features.
This process is called bidirectional rotation. We
conducted extensive experiments on multiple well-
known benchmark datasets for knowledge graph
completion task. The experimental results and anal-
yses demonstrated the effectiveness and robustness
of our model.

Our contributions are summarized as follows:

• We propose performing a right rotation on the
head entity and a reverse rotation on the tail
entity to learn rich semantic features.

• We propose learning the embedding distance
between entities by incorporating distance
adaptive translations.

• We provide mathematical proofs to demon-
strate that our model can handle rich logical
relationships.

• Extensive experiments show that our model
provides consistent and significant improve-
ments over previous models in most metrics.

2 Related Work

For KGE models, the design of the scoring func-
tion directly affects these models’ performance and
effectiveness. Based on the calculation methods of
scoring functions in previous models, KGE scoring
functions can mainly be categorized into semantic
matching- and geometric distance-based.

1For more information about queries, see Section 6.4.

Semantic matching. Semantic matching scor-
ing functions capture the interactions between en-
tities and relations through inner products on em-
bedding vectors. The hypothesis is that entities
connected by relations are close to each other in
the semantic space. For example, QuatE (Zhang
et al., 2019) obtains semantic information about en-
tities through the Hamiltonian rotation of the head
entity on the relation in quaternion space. DualE
(Cao et al., 2021) further enhances QuatE to model
knowledge graphs in dual quaternion space. Qua-
tRE (Nguyen et al., 2022) associates each relation
with two relation-aware rotations, which are used to
rotate the quaternion embeddings of the head and
tail entities, respectively. ConvQE (Liang et al.,
2024d) investigates the potential of quaternion con-
volution in knowledge graph embedding.

A common feature of these models is the compu-
tation of the inner product between the head entity
and the tail entity after a relation transformation.
However, these models overlook the geometric dis-
tance properties between entities in the knowledge
graph, which leads to distorted embeddings of the
learned entities.

Geometric distance. Geometric distance scor-
ing functions assess the plausibility of triplets by
calculating the distances between embedding vec-
tors in the representation space. The goal of this
scoring function is to keep the head/tail entity vec-
tor closer to the tail/head entity vector after being
transformed through the relation vector. For exam-
ple, TransE (Bordes et al., 2013), considered the
first model to employ a geometric distance scoring
function, assumes that triplets (h, r, t) in knowl-
edge graphs should satisfy the expression h+r ≈ t.
However, TransE struggles with more complex re-
lation types, such as one-to-many (1-to-N), many-
to-one (N-to-1) and many-to-many (N-to-N).

To address this limitation, several models using
distance-based scoring functions have been pro-
posed. For example, Rotate3D (Gao et al., 2020)
maps entities to a 3D space, defining the relation
as a rotation from the head entity to the tail entity.
Trans4E (Nayyeri et al., 2021) performs rotations
and translations in a quaternion space. RotateCT
(Dong et al., 2022) transforms entity coordinates
and represents each relation as a rotation in com-
plex space. Rotate4D (Le et al., 2023) employs
two distinct rotational transformations to align the
head embedding with the tail embedding. DCNE
(Dong et al., 2024) maps entities to the dual com-
plex number space, using rotations in the 2D space
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through the multiplication of dual complex num-
bers to represent relations. TransERR (Li et al.,
2024) encodes knowledge graphs by rotating the
head and tail entities with their corresponding unit
quaternions.

A common feature of these models is that the
plausibility of the triplets is evaluated by calculat-
ing the distance between the head entity and the
tail entity after transformation. However, these
models do not consider information about entities
within the semantic space, leading to performance
degradation.

3 Preliminaries

This section begins with a definition of the knowl-
edge graph completion task, followed by a brief
background on quaternion algebra.

3.1 Knowledge Graph Completion
Knowledge graph completion is the task of predict-
ing missing elements in a triplet (h, r, t). This task
can be broken down into three sub-tasks: predict-
ing the head entity (?, r, t), predicting the relation
(h, ?, t), and predicting the tail entity (h, r, ?). Fol-
lowing previous research, our work focuses on pre-
dicting the head (?, r, t) and tail (h, r, ?) entities.
It is because relation information is needed in the
training process.

3.2 Quaternion Algebra
The quaternion extends the complex number sys-
tem to four dimensions. In n-dimensional quater-
nion space Qn, a quaternion p ∈ Qn consists of
one real component and three imaginary compo-
nents. It can be formalized as: p = a+bi+cj+dk,
where a, b, c, d ∈ R

n
4 are real numbers and i, j,k

are imaginary units. The imaginary part satisfies
the Hamilton’s rules (Hamilton, 1844): i2 = j2 =
k2 = ijk = −1.

Addition. Given two quaternions p = a+ bi+
cj+dk and q = e+f i+gj+hk ∈ Qn, quaternion
addition is defined as:

p+q = (a+e)+(b+f)i+(c+g)j+(d+h)k (1)

Norm. The normalization of quaternions ∥ p ∥∈
Qn can be defined by the following:

∥ p ∥=
√

a2 + b2 + c2 + d2. (2)

Inverse. The inverse of quaternions ∥ p ∥∈ Qn

can be defined by the following:

p−1 =
p̄

∥ p ∥2
, p̄ = a− bi− cj− dk, (3)

where p̄ ∈ Qn is the conjugate of p ∈ Qn.
Hamilton product. Given two quaternions p

and q. The quaternion rotation of these two quater-
nions can be performed by the Hamilton product:

p⊗ q =(a ◦ e− b ◦ f − c ◦ g − d ◦ h)+
(b ◦ e+ a ◦ f + c ◦ h− d ◦ g)i+
(c ◦ e+ a ◦ g + d ◦ f − b ◦ h)j+
(d ◦ e+ a ◦ h+ b ◦ g − c ◦ f)k,

(4)

where ◦ denotes the element-wise product.

4 Methodology

In this section, we describe our model in detail,
which consists of two main parts:

• Bidirectional rotation: Performing a right ro-
tation on the head entity and a reverse rotation
on the tail entity to learn the rich semantic
features.

• Distance-adaptation: Incorporating a dis-
tance adaptive translation to learn the geomet-
ric distance between entity embeddings.

4.1 Symbol Description
A knowledge graph G =: {(h, r, t)} ∈ E ×R× E
is a collection of triplet, where E and R are the
entity set and relation set. |E| and |R| represent
the number of entities and relations, respectively.
Given a triplet (h, r, t), the embeddings of head en-
tity h, relation r and tail entity t can be represented
by quaternions:

h = ah + bhi+ chj+ dhk

r = p+ qi+ uj+ vk

t = at + bti+ ctj+ dtk

(5)

4.2 Part One: Bidirectional Rotation
In Figure 2, we show the differences between our
proposed bidirectional rotation and previous meth-
ods when modeling entity semantics. Specifically,
QuatE (Figure 2(a)) performs a right rotation for
head entity. QuatRE (Figure 2(b)) performs two
times right rotation for head entity and a right ro-
tation for tail entity. Our model (Figure 2(c)) per-
forms a right rotation for head entity and a reverse
rotation for tail entity.

We first normalize the relation quaternion r to a
unit quaternion r� to eliminate the scaling effect
by dividing by its norm (Equation 2):

r� =
r

∥ r ∥
=

p+ qi+ uj+ vk√
p2 + q2 + u2 + v2

. (6)
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(a) QuatE (b) QuatRE (c) DaBR (ours)

Figure 2: The comparison of modeling entity semantics of QuatE, QuatRE and DaBR. These models learn the
embeddings of knowledge graphs in quaternion spaces. ⊗ denotes the Hamilton product (Equation 4).

Then, the head entity h is right rotated using the
relation r�, i.e., the entity vector and the relation
vector do a Hamilton product (Equation 4):

h′ = h⊗ r�. (7)

Similarly, the inverse of the relation unit quater-
nion r� is used to make a reverse rotation of the
tail entity t:

t′ = t⊗ r�−1. (8)

Since r� is a unit quaternion, we have:

t′ = t⊗ r�−1 = t⊗ r̄�, (9)

where r̄� is the conjugate of r�.
Therefore, the scoring function s(h, r, t) for the

bidirectional rotation modeling entity semantics is
defined by:

s(h, r, t) = h′ ◦ t′ = h⊗ r� ◦ t⊗ r̄�, (10)

4.3 Part Two: Distance-Adaptation

As shown in Figure 2, the previous QuatE (Figure
2(a)) and QuatRE (Figure 2(b)) can only learn the
semantic information of an entity but ignore the
geometric distance attribute of an entity. Our DaBR
effectively addresses this limitation by adding a
distance-adaptation (Figure 2(c)).

Therefore, to model the geometric distance infor-
mation, we initialize a distance-adaptive relation
embedding rd = pd+qdi+udj+vdk. Finally, the
geometric distance part scoring function d(h, r, t)
is defined as:

d(h, r, t) =∥ h+ rd − t ∥1, (11)

where ∥ · ∥1 represents the ℓ1 norm. Despite its
simplicity, we find that the proposed method is
effective enough in providing distance information
for our model.

4.4 Scoring Function
After obtaining the scoring functions for modeling
entity semantics and entity geometric distances,
respectively. We fuse these scoring functions into
a new scoring function for model training:

ϕ(h, r, t) = s(h, r, t) + λd(h, r, t)

= h⊗ r� · t⊗ r̄� + λ ∥ h+ rd − t ∥1,
(12)

where s(h, r, t) represents the semantic matching
scoring function, d(h, r, t) represents the geometric
distance scoring function, and λ ∈ R is an adaptive
parameter that learned by our model.

4.5 Loss Function
Following Trouillon et al. (2016), we formulate
the task as a classification problem, and the model
parameters are learned by minimizing the following
regularized logistic loss:

L =
∑

r(h,t)∈Ω∪Ω−

log(1 + exp(−Yhrtϕ(h, r, t)))

+ η1 ∥ E ∥22 +η2 ∥ R ∥22,
(13)

where E and R denote the embedding of all entities
and relations. Here we use the ℓ2 norm with reg-
ularization rates η1 and η2 to regularize E and R,
respectively. Ω− is sampled from the unobserved
set Ω′ using uniform sampling. Yhrt ∈ {−1, 1}
represents the corresponding label of the triplet
(h, r, t).

4.6 Discussion
As described in Chami et al. (2020), there are com-
plex logical relationships (such as symmetry, anti-
symmetry, inversion and composition relationships)
in the knowledge graph. In this part, we analyze
the ability of our DaBR to infer these relationships.
Lemma 1 DaBR can infer the symmetry relation-
ship pattern. (See proof in Appendix A.1)
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SF Model WN18RR FB15k-237
MR(↓) MRR H@10 H@3 H@1 MR(↓) MRR H@10 H@3 H@1

SM

TuckER (2019) - .470 .526 .482 .443 - .358 .544 .394 .266
QuatE (2019) 2314 .488 .582 .508 .438 87 .348 .550 .382 .248
DualE (2021) 2270 .492 .584 .513 .444 91 .365 .559 .400 .268
QuatRE (2022) 1986 .493 .592 .519 .439 88 .367 .563 .404 .269
ConvQE (2024d) - .487 .563 .502 .447 - .366 .551 .402 .273

GD

ATTH (2020) - .486 .573 .499 .443 - .348 .540 .384 .252
Rotate3D (2020) 3328 .489 .579 .505 .442 165 .347 .250 .543 .385
Trans4E (2021) 1755 .469 .577 .487 .416 158 .332 .527 .366 .236
RotateCT (2022) 3285 .492 .579 .507 .448 171 .347 .537 .382 .251
Rotate4D (2023) 3167 .499 .587 .518 .455 181 .353 .547 .391 .257
CompoundE (2023) - .491 .576 .508 .450 - .357 .545 .393 .264
HAQE (2024e) - .496 .584 .512 .450 - .343 .535 .379 .247
DCNE (2024) 3244 .492 .581 .510 .448 169 .354 .547 .393 .257
FHRE (2024b) - .494 .563 .510 .450 - .345 .528 .375 .255
TransERR (2024) 1167 .501 .605 .520 .450 125 .360 .555 .396 .264

SG DaBR (ours) 899 .510 .622 .538 .450 83 .373 .572 .410 .274

Table 1: Knowledge graph completion results on WN18RR and FB15k-237 datasets. Best results are in bold and
second best results are underlined. SF indicates the scoring function, SM indicates semantic matching scoring
function, GD indicates geometric distance scoring function, and SG indicates our semantic matching and geometric
distance scoring function. “-” indicates that there is no result reported. The same settings apply to Table 2.

Lemma 2 DaBR can infer the antisymmetry rela-
tionship pattern. (See proof in Appendix A.2)
Lemma 3 DaBR can infer the inversion relation-
ship pattern. (See proof in Appendix A.3)
Lemma 4 DaBR can infer the composition rela-
tionship pattern. (See proof in Appendix A.4)

5 Experiments

In this section, we first introduce the datasets, eval-
uation protocol, implementation details and base-
lines. Subsequently, we evaluate our model on four
benchmark datasets.
Datasets. To verify the effectiveness and robust-
ness of our model, we conducted extensive experi-
ments on four standard knowledge graph comple-
tion datasets including WN18RR (Dettmers et al.,
2018), FB15k-237 (Toutanova and Chen, 2015),
WN18 (Bordes et al., 2013) and FB15k (Bordes
et al., 2013). The WN18 and FB15k datasets
are known to suffer from a data leakage problem,
which causes models to easily inferred and conse-
quently performing well on metrics. WN18RR and
FB15k-237 were derived as subsets of WN18 and
FB15k respectively. These datasets are designed to
address data leakage concerns and thereby present
a more realistic prediction task. The detailed statis-
tics of the four standard datasets are shown in Ap-
pendix B.
Evaluation protocol. Similar to previous work
(Zhang et al., 2019; Li et al., 2024), we employed

the filtered evaluation setup described in reference
(Bordes et al., 2013) to filter out real triplets during
the evaluation process. This was done to avoid
flawed evaluations. We used evaluation metrics
encompassed Mean Rank (MR), Mean Reciprocity
Rating (MRR) and Hits@n (n=1, 3 or 10). Where
a smaller value on the MR indicates a better model.
The final scoring model on the test set is derived
from the model with the highest Hits@10 score on
the validation set.
Implementation details. We conduct all our ex-
periments on a single NVIDIA GeForce RTX 4090
with 24GB of memory. The ranges of the hyper-
parameters for the grid search are set as follows:
the embedding dimension (dim) is selected from
{300, 400, 500}; the learning rate (lr) is chosen
from {0.01, 0.02, 0.05, 0.1}; and the number of
negative triplets sampled (neg) per training triplet
is selected from {5, 10}. The regularization rates
η1 and η2 are adjusted within {0.01, 0.05, 0.1, 0.5}.
We create 100 batches of training samples for dif-
ferent datasets. We optimize the loss function by
utilizing Adagrad (Duchi et al., 2011). All our
hyper-parameters are provided in Appendix C.

It is worth noting that our models do not employ
the training strategies of self-adversarial negative
sampling (Sun et al., 2019) or N3 regularization
with reciprocal learning (Lacroix et al., 2018).
Baselines. To verify the effectiveness of our model,
we compared DaBR with several powerful baseline
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SF Model WN18 FB15k
MR(↓) MRR H@10 H@3 H@1 MR(↓) MRR H@10 H@3 H@1

SM

TuckER (2019) - .953 .958 .955 .949 - .795 .892 .833 .741
QuatE (2019) 162 .950 .959 .954 .945 17 .782 .900 .835 .711
DualE (2021) 156 .952 .962 .956 .946 21 .813 .896 .850 .766
QuatRE (2022) 116 .939 .963 .953 .946 21 .808 .896 .851 .751

GD

Rotate3D (2020) 214 .951 .961 .953 .945 39 .789 .887 .832 .728
Trans4E (2021) 175 .950 .960 .953 .944 47 .767 .892 .834 .681
RotateCT (2022) 201 .951 .963 .956 .944 34 .794 .888 .834 .737
Rotate4D (2023) 173 .952 .963 .956 .946 37 .790 .887 .831 .732
DCNE (2024) 192 .952 .963 .955 .945 34 .798 .888 .835 .745
TransERR (2024) 82 .953 .965 .957 .945 41 .815 .896 .848 .767

SG DaBR (ours) 56 .954 .966 .959 .946 18 .819 .900 .854 .769

Table 2: Knowledge graph completion results on WN18 and FB15k datasets.

Model WN18RR FB15k-237 WN18 FB15k
MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

DaBR .510 .622 .538 .450 .373 .572 .410 .274 .954 .966 .959 .946 .819 .900 .854 .769
Variant I .505 .617 .532 .445 .370 .569 .404 .272 .953 .964 .956 .943 .816 .894 .844 .766
Variant II .495 .580 .512 .445 .368 .566 .402 .270 .947 .960 .954 .937 .801 .890 .847 .751

Table 3: Ablation results for all datasets.

models, including both well-known and recently
proposed ones with outstanding results. We divide
these models according to the scoring function:

1) Semantic Matching: TuckER (Balazevic
et al., 2019), QuatE (Zhang et al., 2019), DualE
(Cao et al., 2021), QuatRE (Nguyen et al., 2022)
and ConvQE (Liang et al., 2024d).

2) Geometric Distance: ATTH (Chami et al.,
2020), Rotate3D (Gao et al., 2020), Trans4E (Nayy-
eri et al., 2021), RotateCT (Dong et al., 2022), Ro-
tate4D (Le et al., 2023), CompoundE (Ge et al.,
2023), HAQE (Liang et al., 2024e), DCNE (Dong
et al., 2024), FHRE (Liang et al., 2024b) and
TransERR (Li et al., 2024).

For a fair comparison, we report the optimal
results for these baselines from the original papers.

5.1 Main Results

The main results of our DaBR and the baselines for
the WN18RR and FB15k-237 datasets are listed
in Table 1. We categorize the baseline models
into two main groups based on scoring functions,
namely semantic matching and geometric distance
scoring functions. The models based on Semantic
Matching are listed in the upper part of the table,
while the Geometric Distance based methods are
listed in the lower part of the table. It is worth not-
ing that our model’s scoring function is the unique
scoring function that simultaneously measures both
Semantic and Geometric distances.

From Table 1 we can clearly see that our model

achieves the best results on both datasets, except for
the H@1 metric on the WN18RR dataset. Specif-
ically, compared to the best performing of the se-
mantic matching model, QuatRE, our model drops
from 1986 to 899 on the MR metric and absolutely
improves 3.4%, 5.0%, 3.6% and 2.5% on the MRR,
H@10, H@3 and H@1 metrics on the WN18RR
dataset. On the FB15k-237 dataset, our model
decreases from 88 to 83 on the MR metrics, and
absolutely improves on the MRR, H@10, H@3
and H@1 metrics by 1.6%, 1.5%, 1.4% and 1.8%.

Compared to the latest and best performance
of the geometric distance model, TransERR, our
model decreases from 1167 to 899 on the MR met-
ric and achieves an absolute improvement of 1.8%,
2.8%, and 3.4% on the MRR, H@10 and H@3 met-
rics on the WN18RR dataset. On the FB15k-237
dataset, our model decreases from 125 to 83 on the
MR metrics, and absolutely improves on the MRR,
H@10, H@3 and H@1 metrics by 3.6%, 3.0%,
3.5% and 3.7%, respectively.

The KGC results on WN18 and FB15k datasets
are shown in Table 2. The Table 2 illustrates our
model superiority over any previous model on the
FB15k dataset. On the WN18 dataset, our model
achieves the best results on all metrics, except for
the H@1 metric which achieves second place. In
conclusion, our model not only achieves optimal
results compared to semantic matching models, but
also achieves competitive results compared to geo-
metric distance models.
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(a) 1-to-N (b) N-to-1 (c) N-to-N

Figure 3: MRR scores for QuatE, QuatRE and our DaBR models over 0 to 5200 training epochs.

6 Analysis

To demonstrate the superiority of our model, we
have conducted in-depth analysis experiments from
various aspects. The obtained experimental results
and analysis are as follows:

6.1 Ablation Analysis

In this section, we aim to evaluate the efficacy
of bidirectional rotation and distance-adaptation
within our DaBR. We have designed the following
model variants:

Variant I: We remove the rotation of the tail
entity and keep the rotation of the head entity.

Variant II: We removed the distance-adaptation.
The DaBR degenerates into a semantic matching
model.

We show the results of the ablation experiments
in Table 3. From the table, we can obtain the fol-
lowing conclusions: 1) The rotation of the tail en-
tity and distance-adaptation are important parts of
our model. 2) When our model removed the tail
rotation, the model (i.e., Variant I) still achieved
the best results compared to the models in Table
1 and Table 2. We attribute this to the fact that
our model can measure both the semantics of en-
tities and the embedding distance of entities. 3)
When our model removed distance-adaptation, the
model (i.e., Variant II) performance decreased dra-
matically on all datasets. It is worth noting that
our model still achieves optimal results on most
datasets compared to the semantic matching model
on most datasets.

6.2 Parameter Comparison Analysis

To analyze the number of parameters compared to
other models, we compared our DaBR with the
best semantic matching model (QuatRE) and the
best geometric distance model (TransERR). Given
the same embedding dimension n, QuatRE and

TransERR have (|E| × n+ 3× |R| × n) parame-
ters, while our DaBR has (|E| × n+ 2× |R| × n)
parameters, where E and R are the entity set and
relation set. Compared to QuatRE and TransERR,
our model achieves better results with fewer param-
eters.

6.3 Relationship Type Analysis

To explore the robustness of our model in the face
of different relation types (one-to-many (1-to-N),
many-to-one (N-to-1) and many-to-many (N-to-
N)), we compared DaBR with QuatE and QuatRE
in WN18R dataset. For the results of the QuatE
and QuatRE, we reproduce these models following
the hyper-parameter settings of their paper.

In accordance with the calculation rules set out
in Bordes et al. (2013), the test set of WN18RR
has been divided into three categories: 1-to-N, N-
to-1 and N-to-N. The division results are shown in
Appendix D, where ηh and ηt represent the average
degree of head and tail entities, respectively.

We show the MRR scores for the QuatE, Qua-
tRE, and DaBR models for 0 to 5200 training
epochs in Figure 3. This demonstrates the effec-
tiveness of our model in modelling different types
of relationships. In particular, the model is supe-
rior in dealing with 1-to-N relationship. “1-to-N”
means that a head entity can form a fact triplet with
multiple tail entities. We attribute this superior en-
hancement to the distance-adaptive embedding of
our model.

6.4 Visualization Analysis

In this section, to explore the embedding results
of our model after distance adaptive embedding,
we visualize the the tail entity embeddings using t-
SNE (van der Maaten and Hinton, 2008). Suppose
(hi, rj) is a query where hi and rj are the head
entity and the relation, respectively. If (hi, rj , tk )
is valid, the entity tk is the answer to query (hi, rj).
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(a) QuatE (epoch=1) (b) QuatE (epoch=100) (c) QuatRE (epoch=1) (d) QuatRE (epoch=100)

(e) TransERR (epoch=1) (f) TransERR (epoch=100) (g) DaBR (epoch=1) (h) DaBR (epoch=100)

Figure 4: Visualization of the embeddings of tail entities using t-SNE. A point represents a tail entity. Points in the
same color represent tail entities that have the same (hi, rj) context.

We selected 9 queries in FB15k-237 dataset, each
of which has 50 answers. For more details about
the 9 queries, please refer to the Appendix E.

We then use t-SNE to visualize the semantic
matching models QuatE and QuatRE, the geomet-
ric distance model TransERR, and our combined
semantic and geometric distance DaBR to gener-
ate the answer embeddings for epoch 1 and epoch
100, respectively. Figure 4 shows the visualization
results2. Each entity is represented by a 2D point
and points in the same color represent tail entities
with the same (hi, rj) context (i.e. query).

Specifically, our model (Figure 4(g)) in the first
epoch have demonstrated better embedding com-
pared to QuatE, QuatRE and TransERR. At epoch
100, our model (Figure 4(h)) show clear inter-
cluster separability, with entities within each clus-
ter (intra-cluster) being well-separated from one
another.

However, the semantic matching model QuatE
(Figure 4(b)) and QuatRE (Figure 4(d)) heav-
ily overlap entities within clusters despite inter-
cluster separability. The geometric distance model
TransERR (Figure 4(f)) clusters are indistinguish-
able from each other and entities within the clusters
(intra-clusters) are distinguishable.

Table 4 summarizes our analysis above, which
we attribute to the fact that our model combines
semantic matching with entity geometric distance
to better measure the plausibility of triplets.

2Refer to Appendix F for more visualization results.

Model intra-cluster inter-cluster
QuatE ✓

QuatRE ✓
TransERR ✓

DaBR ✓ ✓

Table 4: ✓ indicates a separable ability.

(a) DaBR (with) (b) DaBR (without)

Figure 5: DaBR with distance-adaptation and without.

6.5 Visualization Ablation Analysis

In Figure 5, we visualize that our model removes
the distance adaptive embedding in the first epoch.
We can find that the visualization without the dis-
tance adaptive embedding (Figure 5(b)) is worse
than the with one (Figure 5(a)). By visualizing the
ablation experiments, we can further illustrate the
advantage of distance adaptive embedding.

7 Conclusion

We note that existing quaternion models based on
semantic matching diminishes the separability of
entities, while the distance scoring function weak-
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ens the semantics of entities. To address this issue,
we propose a novel quaternion knowledge graph
embedding model. By combining semantic match-
ing with entity geometric distance, our model pro-
vides a robust and comprehensive framework for
knowledge graph embedding. We provide mathe-
matical proofs to demonstrate our model can han-
dle complex logical relationships. Visualization
results show that our model can learn the geomet-
ric distance property between entities to achieve
both inter-cluster and intra-cluster separability.

Limitations

The H@1 metric performance of our model on the
WN18 and WN18RR datasets is not optimal. In
addition, like most knowledge graph embedding
models, our model is unable to predict new entities
that do not exist in the training data.
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Appendix

A Proof

Given h = ah + bhi + chj + dhk, r = p + qi +
uj+ vk, t = at+ bti+ ctj+dtk, where r is a unit
quaternion after normalization operation. We can
make λ = 0 and then our scoring function can be
simplified as follows:

ϕ(h, r, t) = h⊗ r · t⊗ r̄

= [(ah ◦ p− bh ◦ q − ch ◦ u− dh ◦ v)
+ (ah ◦ q + bh ◦ p+ ch ◦ v − dh ◦ u)i
+ (ah ◦ u− bh ◦ v + ch ◦ p+ dh ◦ q)j
+ (ah ◦ v + bh ◦ u− ch ◦ q + dh ◦ p)k]
· [(at ◦ p+ bt ◦ q + ct ◦ u+ dt ◦ v)
+ (−at ◦ q + bt ◦ p− ct ◦ v + dt ◦ u)i
+ (−at ◦ u+ bt ◦ v + ct ◦ p− dt ◦ q)j
+ (−at ◦ v − bt ◦ u+ ct ◦ q + dt ◦ p)k]

(14)

where ⊗ is the Hamilton product, ◦ denotes the
element-wise product, and “·” is the inner product.

A.1 Proof of Symmetry pattern
In order to prove the symmetry pattern, we need to
prove the following equality:

h⊗ r · t⊗ r̄ = t⊗ r · h⊗ r̄. (15)

The symmetry property of DaBR can be proved by
setting the imaginary parts of r to zero.

A.2 Proof of Antisymmetry pattern
In order to prove the antisymmetry pattern, we need
to prove the following inequality when imaginary
components are nonzero:

h⊗ r · t⊗ r̄ ̸= t⊗ r · h⊗ r̄. (16)

We expand the right term:

t⊗ r · h⊗ r̄

= [(at ◦ p− bt ◦ q − ct ◦ u− dt ◦ v)
+ (at ◦ q + bt ◦ p+ ct ◦ v − dt ◦ u)i
+ (at ◦ u− bt ◦ v + ct ◦ p+ dt ◦ q)j
+ (at ◦ v + bt ◦ u− ct ◦ q + dt ◦ p)k]
· [(ah ◦ p+ bh ◦ q + ch ◦ u+ dh ◦ v)
+ (−ah ◦ q + bh ◦ p− ch ◦ v + dh ◦ u)i
+ (−ah ◦ u+ bh ◦ v + ch ◦ p− dh ◦ q)j
+ (−ah ◦ v − bh ◦ u+ ch ◦ q + dh ◦ p)k].

(17)

We can easily see that those two terms are not equal
as the signs for some terms are not the same.

A.3 Proof of Inversion pattern
To prove the inversion pattern, we need to prove
that:

h⊗ r · t⊗ r̄ = t⊗ r̄ · h⊗ r̄−1. (18)

We expand the right term:

t⊗ r̄ · h⊗ r̄−1

= t⊗ r̄ · h⊗ r

= [(at ◦ p+ bt ◦ q + ct ◦ u+ dt ◦ v)
+ (−at ◦ q + bt ◦ p− ct ◦ v + dt ◦ u)i
+ (−at ◦ u+ bt ◦ v + ct ◦ p− dt ◦ q)j
+ (−at ◦ v − bt ◦ u+ ct ◦ q + dt ◦ p)k]
· [(ah ◦ p− bh ◦ q − ch ◦ u− dh ◦ v)
+ (ah ◦ q + bh ◦ p+ ch ◦ v − dh ◦ u)i
+ (ah ◦ u− bh ◦ v + ch ◦ p+ dh ◦ q)j
+ (ah ◦ v + bh ◦ u− ch ◦ q + dh ◦ p)k].

(19)

We can easily check the equality of these two terms.
Since r is a unit quaternion, we have r−1 = r̄.

A.4 Proof of Composition pattern
For composition relationships, we can get that:

(h⊗ r2)⊗ r3 · (t⊗ r̄2)⊗ r̄3

= h⊗ (r2 ⊗ r3) · t⊗ (r̄2 ⊗ r̄3)

= h⊗ r1 · t⊗ r̄1

(20)

B Dataset statistics

The detailed statistics of the four standard datasets
are shown in Table 6.

C Optimal hyper-parameters

Table 7 shows the optimal hyperparameter settings
for our model on the four benchmark datasets. The
optimal parameters come from the highest scores
of our model on the validation dataset.

D Classification rules

The classification rules and classification results
for WN18RR dataset in the Table 8.

E The queries in t-SNE visualization

In Table 5, we list the nine queries used in the t-
SNE visualization (Section 6.4 in the main text).
Note that a query is represented as (h, r, ?), where
h denotes the head entity and r denotes the relation.

F More visualization results

Figure 6 shows more visualization results.
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Index Query
1 (political drama, /media_common/netflix_genre/titles, ?)
2 (Academy Award for Best Original Song, /award/award_category/winners./award/award_honor/ceremony, ?)
3 (Germany, /location/location/contains, ?)
4 (Master’s Degree, /education/educational_degree/people_with_this_degree./education/education/major_field_of_study, ?)
5 (broccoli, /food/food/nutrients./food/nutrition_fact/nutrient, ?)
6 (shooting sport, /olympics/olympic_sport/athletes./olympics/olympic_athlete_affiliation/country,?)
7 (synthpop, /music/genre/artists, ?)
8 (Italian American, /people/ethnicity/people, ?)
9 (organ, /music/performance_role/track_performances./music/track_contribution/role, ?)

Table 5: The queries in t-SNE visualizations.

Dataset #Ent #Rel #Train #Valid #Test
WN18RR 40k 11 86k 3k 3k

FB15k-237 14k 237 272k 17k 20k
WN18 40k 18 141k 5k 5k
FB15k 14k 1345 483k 50k 59k

Table 6: Dataset statistics on four datasets.

Dataset lr neg dim η1 η2
WN18RR 0.1 5 500 0.5 0.01

FB15k-237 0.05 10 500 0.5 0.01
WN18 0.05 5 300 0.05 0.01
FB15k 0.02 10 400 0.05 0.01

Table 7: Optimal hyper-parameters for our DaBR on
each dataset.

Category ηh ηt #triplets
1-to-N < 1.5 > 1.5 475
N-to-1 > 1.5 < 1.5 1487
N-to-N > 1.5 > 1.5 1130

Table 8: Classification rules and classification results for
WN18RR. The last column is the number after division.
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(a) QuatE (epoch=1) (b) QuatE (epoch=50) (c) QuatE (epoch=100)

(d) QuatRE (epoch=1) (e) QuatRE (epoch=50) (f) QuatRE (epoch=100)

(g) TransERR (epoch=1) (h) TransERR (epoch=50) (i) TransERR (epoch=100)

(j) DaBR (epoch=1) (k) DaBR (epoch=50) (l) DaBR (epoch=100)

Figure 6: Visualization of the embeddings of tail entities using t-SNE. A point represents a tail entity. Points in the
same color represent tail entities that have the same (hr, rj) context.
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