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Abstract

Hierarchical Multi-Label Text Classification
(HMLTC) is a challenging machine learning
task where multiple labels from a hierarchi-
cally organized label set are assigned to a sin-
gle text. In this study, we examine the ef-
fectiveness of Euclidean and hyperbolic loss
functions to improve the performance of BERT
models on HMLTC, which very few previous
studies have adopted. We critically evaluate
label-aware losses as well as contrastive losses
in the Euclidean and hyperbolic space, demon-
strating that hyperbolic loss functions perform
comparably with non-hyperbolic loss functions
on four commonly used HMLTC datasets in
most scenarios. While hyperbolic label-aware
losses perform the best on low-level labels, the
overall consistency and micro-averaged per-
formance is compromised. Additionally, we
find that our contrastive losses are less effective
for HMLTC when deployed in the hyperbolic
space than non-hyperbolic counterparts. Our
research highlights that with the right metrics
and training objectives, hyperbolic space does
not provide any additional benefits compared to
Euclidean space for HMLTC, thereby prompt-
ing a reevaluation of how different geometric
spaces are used in other AI applications1.

1 Introduction

Hierarchical Text Classification (HTC) is a text
classification problem where the labels are orga-
nized as a hierarchical structure, often represented
as a Directed Acycilic Graph (DAG) or tree. This
type of classification problem has been widely re-
searched for both image classification and text clas-
sification in single-label and multi-label settings.
Most of the work surrounding HTC is concerned
with optimally leveraging and representing the hi-
erarchical structure of the labels for learning hi-
erarchical text representations. Some research on

1The code is available on https://github.com/clips/
jump_to_hyperspace.

Figure 1: Our approach uses label-aware losses to min-
imize distance from true labels (left), and contrastive
losses to minimize distance in positive pairs and maxi-
mize it in negative pairs (right).

hierarchical classification has indicated that the hy-
perbolic space is more suitable than the Euclidean
to model hierarchical representations between fea-
tures of texts or images, due to the space’s constant
negative curvature (Nickel and Kiela, 2017; Ganea
et al., 2018; Gulcehre et al., 2018). Because of this
curvature, the space allows nodes in a hierarchy to
be spaced out more effectively. Even though a few
studies have incorporated it for HTC (Chatterjee
et al., 2021; Chen et al., 2023, 2020a), no other
work has directly compared label-aware losses or
contrastive losses in the Euclidean space and hy-
perbolic space with LLMs for Hierarchical Multi-
Label Text Classification (HMLTC), to the best of
our knowledge. The contributions of our work are
the following:

• We thoroughly compare the impact of deploy-
ing several loss functions in the Euclidean
and hyperbolic space on four commonly used
HMLTC datasets.

• We introduce previously established label-
aware losses and novel (hyperbolic) con-
trastive losses to HMLTC.

https://github.com/clips/jump_to_hyperspace
https://github.com/clips/jump_to_hyperspace
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We find that Euclidean and hyperbolic label-
aware losses perform almost on-par with each
other and that contrastive learning in the hyperbolic
space is ineffective. While our study is limited
to exploring NLP applications, it offers insights
into the geometric underpinnings of learning al-
gorithms which could influence broader AI appli-
cations such as knowledge graph embedding and
multi-task learning for hierarchical representations.

2 Related Research

2.1 Hierarchical Multi-Label Text
Classification

The main research question in HMLTC is how the
hierarchical nature of the label sets can be opti-
mally leveraged during training, or, how to opti-
mally learn hierarchical text and label representa-
tions. Many different approaches have been taken
to tackle HMLTC, though they can be generally
split up in two main categories: Global (one flat
classifier) and local (multiple classifiers) classifi-
cation. The most recent approaches range from
using label correlations (Xu et al., 2021; Zhang
et al., 2021) and label-aware representations (Chen
et al., 2020a; Zhou et al., 2020; Deng et al., 2021)
to attention-based methods, such as label-based
attention (Zhang et al., 2022a) or hierarchical at-
tention (Lu et al., 2022). Additionally, Wang et al.
(2023) opt for data augmentation with LLMs to im-
prove model performance for HMLTC. Some stud-
ies have also investigated a multi-task approach,
where models simultaneously learn to classify and
minimize the distance between text and label repre-
sentations within a shared embedding space (Chen
et al., 2020a, 2021b), an approach that we aim to
explore further with our work.

2.2 Training Neural Networks in the
Hyperbolic Space

Hyperbolic Space While most neural networks
are trained and fine-tuned in the Euclidean space,
some research argues that the hyperbolic space is
more preferable for learning hierarchical represen-
tations (Nickel and Kiela, 2017; Ganea et al., 2018).
The hyperbolic space is a space defined by its con-
stant negative curvature, as opposed to the flatness
of the Euclidean space. The Euclidean space ad-
heres to Euclidean axioms, such as the parallel pos-
tulate, meaning that parallel lines never converge.
This contrasts with the hyperbolic space, where
lines have a constant hyperbolic curvature, contin-

ually diverging as they extend. Consequently, the
different nature of the hyperbolic space affects the
way mathematical operations are performed, such
as vector additions and measuring the distance be-
tween points (Ganea et al., 2018).

Poincaré Ball Model The Poincaré ball model
(bottom row of Figure 1) is a widely-used model
that represents the hyperbolic space within a sphere-
like space (Nickel and Kiela, 2017; Ganea et al.,
2018). The main intuition behind using the hy-
perbolic space –represented as this ball model– to
effectively model hierarchical relationships is that
the distance between two points on this space in-
creases exponentially as points move away from
the center. Hierarchies can be represented as trees
where the number of nodes increases exponentially
the more hierarchy levels the tree has, which natu-
rally lends itself well to the constant negative cur-
vature of the hyperbolic space. This allows the
hierarchy nodes to be more efficiently “spaced out”
compared to the flat surface of the Euclidean space,
given the same spatial dimensions. Therefore, this
way of embedding hierarchical nodes is postulated
to be especially useful for representing low-level
leaf nodes in a hierarchy (Nickel and Kiela, 2017;
Ganea et al., 2018; Chen et al., 2023).

Hyperbolic Learning for Computer Vision and
NLP Some works in the field of computer vision
focus on leveraging the hyperbolic space for mod-
elling hierarchical relationships between features
(Dhall et al., 2020; Yue et al., 2023; Xiong et al.,
2022), though very few works have explored the hy-
perbolic space for NLP tasks (Gulcehre et al., 2018;
Chen et al., 2021a), especially for hierarchical text
classification (Chen et al., 2020a; Chatterjee et al.,
2021; Chen et al., 2023). Training Deep Neural
Networks (DNNs) in general for text-based applica-
tions in the hyperbolic space was explored further
by Nickel and Kiela (2017), who trained entailment
representations of graph nodes using Poincaré em-
beddings. Ganea et al. (2018) improved upon these
results by training hierarchical node representa-
tions as hyperbolic entailment cones with a Graph
Neural Network (GNN)2, where the branches of
a hierarchy are embedded as a cone shape in the
hyperbolic or Euclidean space, thus allowing for a
more well-defined discrimination between nodes
and entire branches in an embedding space. The

2Essentially, the model is trained on a binary link predic-
tion task ("Is node n a child node of m?").
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authors found that representing nodes in the hy-
perbolic space –and as entailment cones– yields
improved hierarchical representations.

Chen et al. (2020a) adopt the hyperbolic space
for training label-aware text representations with
GLoVE embeddings and a GRU encoder. They
found that their Hyperbolic Interaction Model (Hy-
perIM) outperformed the Euclidean counterpart on
several HMLTC datasets, though no experiments
were conducted with LLMs. To better model hierar-
chical representations of emotion words, Chen et al.
(2023) took inspiration from HyperIM and entail-
ment cones by minimizing the distance between hy-
perbolic BERT embeddings and the corresponding
true labels (represented as hyperbolic entailment
cones of an emotion graph), which lead to perfor-
mance increases on several multi-class emotion
classification datasets. However, no comparison
was made with the same loss function deployed in
the Euclidean space. Furthermore, Chatterjee et al.
(2021) combine hyperbolic label representations
with label correlations during training.

Conversely, Fivez et al. (2021) found that their
approach of leveraging the cosine distance in the
Euclidean space proved to be more effective than
more complex hyperbolic methods for modelling
biomedical hypernym relationships. The authors
do so by explicitly grounding the model by mini-
mizing the cosine distance between a concept repre-
sentation and its prototypical representation. Given
these findings, and due to the limited comparisons
between the Euclidean and hyperbolic space for
such loss functions in HMLTC with LLMs, we
deploy our loss functions in both spaces.

2.3 Contrastive Learning for Multi-Label
Classification

Contrastive Learning Contrastive Learning
(CL) is a training method where models are en-
couraged to separate dissimilar representations and
bring similar representations closer in an embed-
ding space, leading to a better performance on
downstream tasks (Chen et al., 2020b). CL has
been well researched and has shown promising re-
sults for several single-label and multi-label NLP
tasks (Zhang et al., 2022b; Yu et al., 2023). How-
ever, due to the complexity of the label space and,
consequently, the semantic embedding space of
multi-label instances, the notion of positive and
negative examples for an anchor (i.e. a training
instance) also becomes more complex. A posi-
tive example could be an instance with the exact

same label set, though this is too restrictive on
datasets with a large number of labels. Generally,
given a batch of training samples, positive samples
can be retrieved within a batch (Lin et al., 2023),
generated based on an anchor (Lu et al., 2022) or
by using class prototypes (Audibert et al., 2024).
Lin et al. (2023) explored several sample selec-
tion methods for multi-label emotion classification
on the SemEval datasets, including calculating the
overlap between binary label vectors of the anchor
and other in-batch examples using the Jaccard In-
dex metric. This way, hard positives (all labels
must overlap) or soft positives (only a percentage
of labels must overlap) can be retrieved. In combi-
nation with the established Supervised Contrastive
Loss (SCL) (Khosla et al., 2020), considerable im-
provements are achieved for multi-label emotion
classification.

Contrastive Learning for Hierarchical Classifi-
cation Several papers study contrastive learning
for HMLTC by leveraging a multi-headed attention
mechanism (Yu et al., 2023) or local contrastive
learning (Chen et al., 2024). Additionally, multi-
label CL in the hyperbolic space has been explored
for image classification in Yue et al. (2023). In this
paper, the authors found that minimizing and maxi-
mizing the distance between positive and negative
pairs respectively in the hyperbolic space excels at
supervised pretraining and classification, compared
to SimCLR (Chen et al., 2020b), a Euclidean loss
function. In the present work, we aim to fill the gap
in the literature by further exploring the hyperbolic
space for HMLTC with LLMs and making direct
comparisons between the two geometric spaces for
two sets of loss functions.

3 Methodology

We fine-tune models with two sets of loss functions
that are adaptable to the Euclidean and hyperbolic
space. The first set aims to minimize the distance
between a text embedding and its true labels repre-
sented as hierarchical embeddings through entail-
ment cones, based on earlier work by Chen et al.
(2020a) and Chen et al. (2023). This set of loss
functions will be referred to as Label-Aware losses
(LA). The second set of losses are Multi-Label Con-
trastive Losses (MLCL), which aim to minimize
and maximize the distance between similar and dis-
similar pairs of texts respectively. The details of
the datasets, evaluation metrics and loss functions
are described in the following sections.
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BGC RCV1-V2 AAPD WOS
Text type Book descs. News articles Abstracts Abstracts
N train 58,715 20,826 53,840 30,070
N val 14,785 2,323 1,000 7,518
N test 18,394 781,265 1,000 9,397

N lbls. (lvls.)
146

(7, 36, 77, 7)
103

(4, 22, 33, 43, 1)
61

(9, 52)
150

(7, 143)
Avg lbls. / text 3.01 3.24 2.41 2
Max. lbl. count |
Min. lbl. count

21,872 | 3 9,290 | 2 17,152 | 350 750 | 1

Corr. lbl. cnt. &
lbl. lvl. |

-.48 -.42 -.37 -.87

Table 1: Statistics for each dataset. The last row depicts
the Pearson correlation values between label frequency
and label level.

3.1 Datasets

We compare the performance of the hyperbolic-
and non-hyperbolic loss (i.e. Euclidean) func-
tion on four of the most commonly used datasets
for HMLTC, namely the Blurb Genre Collection
(BGC) (Aly et al., 2019), RCV1-v2 (Lewis et al.,
2004), the Arxiv Academic Papers Dataset (AAPD)
(Yang et al., 2018) and the WOS-46985 dataset
(Kowsari et al., 2017). Details about each dataset
can be found in Table 1. It should be noted that we
augmented the AAPD dataset to include the nine
highest level nodes, similar to Xu et al. (2021)3.

3.2 Evaluation Metrics

We evaluate our models with macro- and micro-
averaged F1 in addition to the Exact Match Ratio
(EMR), which deems a prediction set as correct
when all labels are predicted correctly. Finally,
we calculate the hierarchical precision, recall and
F1 (Kiritchenko et al., 2005), which are micro-
averaged scores on prediction sets to which all an-
cestor nodes are added. This way, models that pre-
dict leaf nodes from other branches are punished
more severely.

3.3 Label-Aware Losses

Label Nodes as Entailment Cones The first set
of losses that we utilize is a set of label-aware losses
(LA), based on previous work (Chen et al., 2023,
2020a). A visualization of this approach can be
found in Figure 1. We first train label embeddings
with a GNN as entailment cones (Chen et al., 2023;
Ganea et al., 2018) both in the Euclidean space
and the hyperbolic space for a binary link predic-
tion task. For the hyperbolic space, we adopt the
Poincaré ball model to represent the labels, thereby

3Even though this dataset is hierarchical in nature, the
original version does not include the first-level nodes in the
data

following the original implementation. The label
dimension is set to 1004.

Label-Aware Fine-tuning Once these label em-
beddings are obtained, BERT is fine-tuned to mini-
mize the Binary Cross-Entropy Loss and to mini-
mize the distance between the text representation
and their respective hierarchical label embeddings,
following Chen et al. (2023). With this approach,
we aim to combine the contextual semantic knowl-
edge of BERT embeddings with the explicit hier-
archical information encoded in the label embed-
dings. For Euclidean embeddings, we use cosine
distance or Euclidean distance as a distance mea-
sure, while we use the Poincaré distance –the most
commonly used hyperbolic stance measure– for
hyperbolic label representations. The Poincaré dis-
tance between hyperbolic vectors u and v is defined
as follows, where ∥u∥ and ∥v∥ are the Euclidean
norms of u and v, and arcosh is the inverse hyper-
bolic cosine function:

d(u, v) = arcosh

(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(1)

Before calculating the hyperbolic distance, we
must assure that the text embedding is projected
to the hyperbolic space by training an additional
set of weights that learn to map vectors from the
Euclidean space to the hyperbolic space by means
of an exponential mapping (Chen et al., 2023)5.
Let p denote a point on a n-dimensional Poincaré
ball model of the hyperbolic space, ⊕ the Möbius
addition and v a tangent vector at p:

expp(v) = p⊕
(
tanh

(
λp∥v∥

2

)
v

∥v∥

)
(2)

BERT embeddings are projected from their orig-
inal hidden size to the same hidden size as the label
embeddings. The label-aware loss LLA is calcu-
lated as follows: Given is a batch with N items,
with M labels per item, an embedding yij for label j
assigned to the ith item in the batch of (projected)
text embeddings x. The Poincaré (or Euclidean)
distance d is calculated between xi and yij. The
resulting distance is scaled with hyperparameter α6

4Other dimensions (300 and 768) showed negligible per-
formance differences.

5This mapping adds 77k trainabale parameters.
6By introducing this hyperparameter, the model is not "dis-

tracted" from learning the classification task itself by assigning
a lower value to the secondary loss. Conversely, this hyper-
parameter can also increase the effect of the secondary task
during training.
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Figure 2: Visualisation of the Label-Aware (LA) training process.

and then multiplied with the Binary Cross-Entropy
(LBCE) loss for the corresponding labels Yij:

LLA =
1

N

N∑
i=1

(
α× (

1

Mi

Mi∑
j=1

d(xi, yij))× LBCE(Yij)

)
(3)

3.4 Contrastive Losses

Pos. and Neg. Sample Selection Contrastive
learning for multi-label text classification is espe-
cially challenging since the label space and embed-
ding space are complex. Figure 3 visualizes our
proposed contrastive loss. We propose to select
positive and negative samples based on the Jaccard
Index (JI) of binary –or multi-hot– representations
of label vectors7, following Lin et al. (2023). A
sample is considered a positive when the JI is equal
to or greater than a predefined threshold, namely
0.5. We hypothesize that soft positives (JI < 1) are
a valid approach in the context of HMLTC, since
texts from the same branch but with different leaf
nodes ought to be clustered more closely together
than texts from a different branch.

Multi-Label CL State-of-the-art contrastive
losses usually leverage a variant of Supervised
Contrastive Loss (Khosla et al., 2020; Yu et al.,
2023), though we opt for a variant that does not
necessarily require positive samples for an anchor
in a batch. Since positive sample generation re-
mains an open issue and there is no guarantee
that a positive sample for each item is present in
mini-batches due to the large number of labels in

7Binary vectors of length N, representing each unique label
in the dataset with 1 for presence and 0 for absence.

HMLTC datasets8, we construct pairs by taking all
possible combinations between items in a batch to
extract as much information out of a single batch
as possible. We adopt a margin-based contrastive
loss (CL) function inspired by Sentence Transform-
ers (Reimers and Gurevych, 2019) that minimizes
the distance between similar pairs and maximizes
the distance between negative pairs using a prede-
fined distance measure, which in our case are either
cosine distance, Euclidean distance or Poincaré dis-
tance. Given a batch with individual pairs (u, v),
binary label γ assigned to a pair (1 for positive, 0
for negative), a distance function d9 and a margin
θ, this loss function can be expressed as follows for
a single text pair in a minibatch:

LMLCL =
1

N

N∑
i=1

[
γ · d(u, v)2

+

(1− γ) · ReLu(θ − d(u, v))2
] (4)

The first part of the loss function is activated
when a pair is positive (γ = 1) , while the second
part is activated when a pair is negative (γ = 0).
The loss yields 0 when a negative pair’s distance
is equal to or less than the predefined margin. The
final loss for a batch can be expressed as the sum
of LMLCL, which is weighted by hyperparameter
α10, and the Binary Cross-Entropy (LBCE) loss for
a batch:

8In Yu et al. (2023), the authors use a batch size of 80,
which allows them to fully leverage SupConLoss, since un-
common labels are more likely to co-occur in a batch.

9For training stability, we divide the Poincaré and Eu-
clidean distance by 10.

10Similar to LLA,α puts less or more emphasis on the sec-
ondary loss during training.
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Figure 3: Visualisation of the Multi-Label Contrastive Loss (MLCL) training process.

LFinal = (α× LMLCL) + LBCE (5)

Similar to the Label-Aware Loss, we project the
text embeddings u and v to the hyperbolic space
using an exponential mapping before calculating
the Poincaré distance.

3.5 Classification Models

As classification models we employ BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2020)11,
but the loss functions that we use can be employed
in conjunction with any other type of feature en-
coder. The former model is used because of its
success in HMLTC (Jiang et al., 2022; Wang et al.,
2022), while the latter model’s performance has
been underexplored in HMLTC, even though the
smaller model size is more attractive for industrial
applications.

We grid search the optimal learning rate for each
method and α hyperparameters for the label-aware
losses and contrastive losses. All hyperparame-
ters are summarized in Table 4 and 5 in Appendix
A. For all experiments, we used the largest batch
size that fit within the working memory, which
was 8 with 2 gradient accumulation steps. We use
the Adam optimizer and a learning rate scheduler
with linear decay. All models are fine-tuned for 15
epochs, except for on the WOS dataset, on which
we fine-tune the models for 10 epochs12. We repeat
each experiment five times with a different random
seed and report the average scores.

11bert-based-cased and distilbert-base-cased on https://
huggingface.co/.

12Preliminary experiments showed that 10 epochs yielded
equal, if not better results on the validation set than fine-tuning
for 15 epochs.

For training label embeddings as entailment
cones (LA loss), we follow the original implemen-
tation by Ganea et al. (2018) and Chen et al. (2023)
by setting the learning rate to 1e-3 and the label
dimension size to 100. We train the models for
1,000 epochs. All experiments were conducted
on NVIDIA GeForce RTX 2080 Ti GPUs with
11,264GB of RAM.

4 Results and Discussion

Euclidean vs. Hyperbolic losses The results, as
summarized in Table 213, show consistent trends
across different base encoders and datasets, in
that both spaces generally produce comparable
results. This is especially the case for the label-
aware losses, where we only observe a .03 and
.09 difference in macro and micro-averaged F1 re-
spectively on the BGC dataset, for example. Con-
cerning the contrastive losses, we observe that hy-
perbolic MLCL underperforms compared to the
cosine-based MLCL, but performs similarly to
MLCL with Euclidean distance on all datasets ex-
cept AAPD. Differences of up to 1 macro-averaged
and 0.8 micro-averaged F1 point are observed on
the datasets.

When investigating the performance of the mod-
els per hierarchical level (Table 3), we again ob-
serve that geometric space only makes a slight
difference. For the LA-models, performance in-
creases of up to 7 macro F1 points are observed at
the lowest levels compared to the baselines. It is
also important to note that the non-hyperbolic LA
models yield virtually the same results on almost
all levels as the hyperbolic LA models. For exam-

13The results for DistilBERT can be found in Table 6, Ap-
pendix B.

https://huggingface.co/.
https://huggingface.co/.
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BGC RCV1 AAPD WOS
Setup maF1 miF1 EMR hPr hR hF1 maF1 miF1 EMR hPr hR hF1 maF1 miF1 EMR hPr hR hF1 maF1 miF1 EMR hPr hR hF1

Chat-GPT
(Resuts from
Yu et al. (2023))

35.63 57.17 / / / / 32.30 51.35 / / / / 45.82 27.98 / / / / / / / / / /

BERT
62.57
(.32)

79.7
(.11)

47.08
(.31)

81.12
(.19)

78.2
(.17)

79.63
(.11)

54.16
(1.48)

79.94
(.45)

55.56
(.74)

82.78
(.33)

77.35
(.53)

79.97
(.41)

58.02
(.54)

81.49
(.16)

40.42
(.61)

84.14
(.35)

79.02
(.15)

81.5
(.16)

75.94
(.43)

86.39
(.12)

77.96
(.28)

87.95
(.12)

84.87
(.14)

86.39
(.11)

BERT +
LA (hyperb.)

65.15
(.19)

79.73
(.06)

46.24
(.12)

77.24
(.16)

82.14
(.16)

79.71
(.06)

60.35
(.74)

80.11
(.38)

55.12
(.73)

77.79
(.39)

82.29
(.13)

79.98
(.21)

60.07
(.68)

80.58
(.42)

37.46
(1.46)

78.48
(.76)

82.74
(.36)

80.55
(.44)

77.92
(.27)

86.46
(.26)

77.64
(.39)

85.07
(.3)

87.9
(.17)

86.46
(.23)

BERT +
LA (eucl.)

65.12
(.28)

79.62
(.12)

46.08
(.27)

77.41
(.1)

82.29
(.28)

79.78
(.08)

60.03
(.18)

79.87
(.19)

54.76
(.36)

77.49
(.56)

82.33
(.23)

79.83
(.19)

59.25
(.56)

80.04
(.68)

36.5
(1.73)

77.33
(1.52)

82.85
(.53)

79.98
(.68)

77.18
(.41)

86.27
(.48)

77.18
(.22)

84.73
(.07)

87.88
(.06)

86.27
(.04)

BERT +
LA (cos.)

64.44
(.39)

80.01
(.23)

47.65
(.24)

80.08
(.27)

80.12
(.21)

80.1
(.21)

58.82
(.57)

80.57
(.17)

56.51
(.17)

81.3
(.13)

79.85
(.17)

80.94
(.08)

58.77
(.94)

81.02
(.69)

38.22
(1.78)

80.53
(1.4)

81.41
(.41)

80.88
(.71)

76.83
(.42)

86.31
(.26)

78.22
(.41)

86.52
(.18)

86.14
(.14)

86.33
(.16)

BERT +
MLCL (hyperb.)

62.26
(.59)

79.96
(.13)

47.38
(.27)

81.28
(.19)

78.68
(.16)

79.96
(.11)

54.64
(.4)

80.54
(.13)

56.19
(.21)

83.64
(.14)

77.58
(.17)

80.5
(.11)

58.51
(.25)

81.84
(.16)

41.6
(.48)

84.68
(.28)

79.27
(.31)

81.89
(.13)

76.79
(.29)

86.67
(.11)

78.37
(.13)

88.07
(.07)

85.32
(.15)

86.67
(.1)

BERT +
MLCL (Eucl.)

58.43
(.58)

79.45
(.13)

46.54
(.31)

81.56
(.13)

77.46
(.16)

79.46
(.13)

52.25
(.19)

80.0
(.07)

55.04
(.16)

84.21
(.08)

76.23
(.09)

80.02
(.07)

58.77
(.94)

81.02
(.69)

38.22
(1.78)

83.19
(.32)

78.54
(.27)

80.8
(.29)

76.41
(.33)

87.21
(.13)

76.41
(.33)

88.91
(.13)

85.57
(.13)

87.21
(.13)

BERT +
MLCL (cos)

62.53
(.39)

80.42
(.07)

47.95
(.34)

82.25
(.26)

78.68
(.09)

80.42
(.17)

55.61
(.34)

80.89
(.07)

57.04
(.09)

84.46
(.3)

77.69
(.19)

80.94
(.08)

58.75
(1.21)

81.75
(.43)

41.2
(.6)

84.53
(.27)

79.12
(.67)

81.74
(.47)

77.82
(.29)

87.35
(.1)

79.13
(.21)

88.96
(.14)

85.79
(.05)

87.35
(.09)

Table 2: Results from all methods with BERT across each dataset, showing macro F1, micro F1, Exact Match Ratio,
hierarchical precision, recall and F1 scores with standard deviations across random seeds. ’Cos’ refers to the cosine
distance in the Euclidean space. The best results across models are marked in bold.

BGC RCV1 AAPD WOS
Setup L1 L2 L3 L4 L1 L2 L3 L4 L5 L1 L2 L1 L2

BERT
83.3
(.32)

59.97
(.2)

59.48
(.78)

49.05
(.68)

69.74
(.17)

28.51
(.86)

60.39
(.6)

50.62
(.92)

87.07
(1.88)

69.09
(.85)

56.1
(.58)

91.19
(.15)

75.19
(.39)

BERT +
LA (hyperb.)

83.75
(.12)

61.11
(.14)

63.14
(.28)

55.4
(1.18)

70.28
(.12)

34.22
(.16)

64.24
(.4)

57.05
(.34)

89.82
(1.51)

71.48
(1.35)

58.1
(.63)

91.63
(.24)

77.25
(.25)

BERT +
LA (eucl.)

83.87
(.32)

61.13
(.14)

63.33
(.26)

54.48
(.87)

70.06
(.12)

33.82
(.34)

64.19
(.16)

57.0
(.36)

89.73
(.73)

70.59
(1.13)

57.29
(.54)

91.47
(.14)

76.48
(.39)

BERT +
LA (cos.)

83.73
(.21)

61.01
(.19)

62.6
(.38)

51.49
(2.22)

70.19
(.1)

33.14
(.29)

63.77
(.38)

54.97
(.45)

89.61
(.66)

67.98
(.53)

57.17
(1.07)

91.34
(.08)

76.05
(.37)

BERT +
MLCL (hyperb.)

83.72
(.18)

60.45
(.18)

59.44
(.72)

48.93
(1.69)

70.01
(.13)

29.07
(.81)

60.7
(.31)

50.69
(.32)

88.56
(.12)

68.14
(1.06)

56.85
(.22)

91.37
(.16)

76.08
(.27)

BERT +
MLCL (Eucl.)

83.07
(.21)

59.35
(.19)

53.98
(.52)

44.13
(2.94)

70.19
(.06)

27.33
(.51)

59.52
(.26)

49.04
(.25)

50.19
(.7)

67.23
(.99)

54.94
(1.19)

91.37
(.16)

76.08
(.27)

BERT +
MLCL (cos.)

84.33
(.04)

60.52
(.06)

59.89
(.31)

49.33
(.42)

70.22
(.05)

30.42
(.56)

61.28
(.15)

51.41
(.32)

89.25
(1.36)

69.28
(1.89)

56.93
(1.3)

91.87
(.21)

77.14
(.28)

Table 3: Macro-averaged F1-scores on each hierarchical level.

ple, the score differences on most levels are as low
as .05 F1 points on the RCV1 dataset. However,
McNemar tests show that the small differences be-
tween hyperbolic and non-hyperbolic LA models
are statistically significant in the majority of the set-
tings (cf. Table 7 in Appendix D). We observe that
the hyperbolic models see more statistically signif-
icant performance increases on individual labels
than decreases on labels in the majority of cases
(e.g. 54 increases versus 36 decreases on the RCV1
dataset and 11 versus 7 on the WOS dataset). Most
of these score increases are observed on the deeper
leaf nodes.

Moreover, we also observe that the non-
hyperbolic models generally achieve the best re-
sults in terms of hierarchical F1 (cf. Table 2).
Whereas hyperbolic exhibit the highest recall (espe-
cially with LA models), the non-hyperbolic coun-
terparts excel at hierarchical precision.

These results indicate that the hyperbolic nature
of the label embedding anchors are better suited to
learn less-frequent deep leaf nodes because of the
better separation of those anchors in the embedding
space (Nickel and Kiela, 2017). However, there

is a small trade-off between general performance
across all classes and performance on the aforemen-
tioned more fine-grained labels on lower levels of
the hierarchy, as shown by the higher F1-micro and
EMR yielded by the cosine LA losses. Addition-
ally, the hyperbolic MLCL tend to underperform
compared to non-hyperbolic counterparts, thus indi-
cating that the hierarchical semantic relationships
between similar texts can be better learned with
loss functions in the Euclidean space. Therefore,
these results question the overall effectiveness of
the hyperbolic space for HMLTC.

These findings fall in line with the study from
Fivez et al. (2021), which demonstrated that Eu-
clidean anchors were equally or more effective
than more complex anchors in the hyperbolic space
for incorporating hierarchical semantic information
into biomedical name representations. Addition-
ally, our findings with regards to MLCL losses
oppose some of the findings in the computer vi-
sion literature (Yue et al., 2023), which might be
due to the different nature of the hierarchies and
loss functions. Our results also differ from those in
Chen et al. (2020a), who observed a superior per-
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formance with hyperbolic representations of label-
aware documents compared to Euclidean represen-
tations for HMLTC. This difference could stem
from the different label representations and text
encoders (GloVE + GRU), in that the language
models that we use might capture hierarchical fea-
tures in the Euclidean space better.

Label-aware vs. Contrastive Losses Compar-
ing the LA models with the baselines, we observe
that the LA models yield a decrease in true nega-
tives, paired with an increase in true positives. The
MLCL models on the other hand generally yield an
increase in true negatives and true positives (Figure
4 - 7 in Appendix C).

Additionally, we observe that the Label-aware
losses (LA) improve macro-averaged F1 scores up
to 7 points, of which the most substantial improve-
ments are achieved when the Poincaré distance or
Euclidean distance are used. Conversely, using
the cosine distance as measure results in a lower
increase in macro F1 and a higher gain in micro
F1 and EMR compared to the hyperbolic LA loss.
In general, the most considerable improvements
with LA losses compared to the baselines are ob-
served on the dataset with the most complex label
hierarchies, namely BGC and RCV1-V2.

The MLCL models consistently show only a
slight increase in macro F1 (± 2 F1 points), but
also an increase in micro F1 and EMR across all
datasets. Though the increases of these models
are relatively low in terms of macro F1 and micro
F1, they show more substantial improvements in
consistency (EMR) compared to the baseline and
LA models. The contrastive losses are the most
effective when cosine distance is used as a distance
measure.

The high increase in macro F1 scores indicates
that the models trained with the LA losses excel at
predicting more infrequent and low-level classes,
while the low increase in micro F1 and EMR in-
dicates that this is at the cost of the performance
on some more frequent, high-level labels and over-
all consistency. This contrasts with MLCL-based
models, where the increase in micro-averaged per-
formance is relatively higher than the LA-based
models. Across all datasets, we observe increases
in performance on the lower frequent classes and
low-level leaf nodes when using the LA models,
with some classes seeing an increase of up to 80
F1 points on the BGC dataset (for example, Travel:
Africa).

Concerning the hierarchical consistency of the
models, MLCL models generally achieve the best
results in terms of hierarchical precision and F1 (cf.
Table 2), while the hyperbolic LA models exhibit
the best hierarchical recall.

The reason why label-aware losses underperform
compared to contrastive losses might lie in the na-
ture of the label representations. The label-aware
loss function, as adapted from Chen et al. (2023),
does not use semantically rich label representations
such as word2vec, GloVe or contextual embeddings
as "base embeddings" to encode hierarchical rela-
tionships. Rather, these representations –as ob-
tained from the graph neural network that encodes
hierarchical relationships between nodes– are ran-
domly initialized and merely encoded with the hi-
erarchical positions. This might interfere with the
rich contextual representations derived from BERT
during training. The effectiveness of contrastive
learning could be related to this explanation. We
implicitly make use of the hierarchy by bringing
instances of the same branches (i.e., instances with
overlapping label sets) closer together in an em-
bedding space. This does not introduce noise from
an outside component (as is the case with label-
aware losses), thereby showing more hierarchical
consistency.

Error Analysis We further examine the differ-
ences between hyperbolic models and their non-
hyperbolic counterparts by performing an error
analysis. We aim to illustrate these differences by
providing examples of the errors from the different
models on the BGC dataset that we described in the
previous paragraphs. The predicted label sets for
several models are provided, with the hierarchical
level for each node in between brackets.
Example a: LA (hyperb.) predicts an incorrect
parent node
Text: "Luis Negrón’s debut collection reveals the
intimate world of a small community in Puerto
Rico joined [...]"

• Truth: Fiction (1)
• LA (hyperb.): Fiction (1), Poetry (1)
• LA (cos.): Fiction (1)
Here the hyperbolic LA model incorrectly pre-

dicts Poetry, a first-level node, thereby highlighting
the trade-off between performance on fine-grained
nodes and overall consistency.
Example b: LA (hyperb.) correctly predicts fine-
grained leaf nodes
Text: "With the utterance of a single line—“Doctor
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Livingstone, I presume?”—a remote meeting [...]"
• Truth: Nonfiction (1), Biography & Memoir

(2), History (2), World History (3), African
World History (4)

• LA (hyperb.): Nonfiction (1), Biography &
Memoir (2), History (2), World History (3),
African World History (4)

• LA (cos.): Nonfiction (1), Biography & Mem-
oir (2), History (2)

Here the hyperbolic LA model correctly predicts
two leaf nodes which other models fail to predict,
thus highlighting the effectiveness of using the hy-
perbolic space for predicting deep nodes.
Example c: MLCL (Cos) correctly predicts a
label set
Text: "Book Four in the Lydia Strong Series. In the
final installment of her Lydia Strong series, best-
selling author [...]"

• Truth: Fiction (1), Mystery & Suspense (2),
Suspense & Thriller (3)

• LA (hyperb.): Fiction (1), Mystery & Sus-
pense (2), Crime Mysteries (3), Suspense &
Thriller (3)

• LA (cos.): Fiction (1), Mystery & Suspense
(2)

• MLCL (cos.): Fiction (1), Mystery & Sus-
pense (2), Suspense & Thriller (3)

Here the cosine-based MLCL model correctly
predicts an entire label set, whereas the hyperbolic
label-aware model incorrectly predicts two deep-
level nodes.

5 Conclusion

In this study, we compared the performance of loss
functions deployed in the Euclidean space and hy-
perbolic space. We noticed that the performance
between hyperbolic and non-hyperbolic counter-
parts was generally the same. We also observed
that incorporating the hyperbolic space either nega-
tively affects or barely affects contrastive learning
on most datasets and that cosine-based MLCL over-
all yields the best performance.

Label-aware losses generally performed well on
fine-grained leaf nodes, though there was a trade-
off between performance on fine-grained leaf nodes
and overall performance or consistency depending
on the metric and space. Additionally, we found
that MLCL yielded an increased hierarchical per-
formance and consistency overall, though these
loss functions underperformed on fine-grained leaf
nodes compared to the LA losses in most cases.

In summary, we found that Euclidean models
yield a similar or even superior performance to
hyperbolic models for HMLTC, challenging the
efficacy of complex geometric embeddings given
their marginal performance gains. Our work also
highlights the challenge of optimally organizing
hierarchical embeddings in a space, since the per-
formance increases are rather small compared to
more complex state-of-the-art approaches. Our
study therefore takes a critical step in reevaluat-
ing the usage of different geometric space in NLP,
which could inspire other similar studies in other
AI applications.

6 Limitations

Previous work explored Supervised Contrastive
Loss for (hierarchical) multi-label text classifica-
tion, where transformations of a positive sample
are leveraged as positive samples, as opposed to
our presented MLCL models. Methods that gen-
erate additional positive samples could be more
effective than our proposed MLCL functions and
should be explored in the context of hyperbolic
learning. Additionally, we leave it to future work
to explore other hyperbolic distance measures for
the proposed LA and MLCL models. In this work,
we found differences between metrics in the Eu-
clidean space, so we have to take into account that
another hyperbolic distance metric could poten-
tially yield different results. However, the limited
performance increases on all datasets questions the
general efficacy of additional training objectives
for fine-tuning transformers on HMLTC datasets.
With the advent of autoregressive LLMs like the
GPT-models, it leaves the question how these mod-
els can be optimally prompted to perform HMLTC
effectively.

In summary, exploring different MLCL func-
tions (or other loss functions) and exploring met-
rics for measuring distances in the hyperbolic space
should be valuable directions for future research.
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Appendix

A Model Hyperparameters and Implementation Details

The table belows contain the hyperparameters used for the models.

Method BGC RCV1-V2 AAPD WOS
BERT LR = 5e-5 LR = 5e-5 LR = 2e-5 LR = 5e-5
BERT +
LA (hyperb.)

LR = 5e-5
α = 2

LR = 5e-5
α = 2

LR = 5e-5
α = 1

LR = 5e-5
α = 1

BERT +
LA (eucl.)

LR = 5e-5
α = 2

LR = 5e-5
α = 1

LR = 2e-5
α = 2

LR = 5e-5
α = 1

BERT +
LA (cos.)

LR = 5e-5
α = 5

LR = 5e-5
α = 5

LR = 5e-5
α = 5

LR = 5e-5
α = 1

BERT +
MLCL (hyperb.)

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 2e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

BERT +
MLCL (Eucl.)

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 7e-5
α = 0.5
JI = 0.5
θ = 1.0

LR = 2e-5
α = 0.5
JI = 1.0
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

BERT +
MLCL (cos.)

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 2e-5
α = 0.5
JI = 0.5
θ = 0.7

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

Table 4: Hyperparameters for the BERT models. LR = Learning rate, α = alpha value for loss functions, JI = Jaccard
Index, θ = margin.

Method BGC RCV1-V2 AAPD WOS
DistilBERT LR = 5e-5 LR = 5e-5 LR = 2e-5 LR = 5e-5
DistilBERT +
LA (hyperb.)

LR = 5e-5
α = 2

LR = 5e-5
α = 2

LR = 5e-5
α = 1

LR = 5e-5
α = 1

DistilBERT +
LA (eucl.)

LR = 5e-5
α = 2

LR = 5e-5
α = 2

LR = 5e-5
α = 1

LR = 5e-5
α = 1

DistilBERT +
LA (cos.)

LR = 5e-5
α = 5

LR = 5e-5
α = 5

LR = 5e-5
α = 5

LR = 5e-5
α = 1

DistilBERT +
CoLo (hyperb.)

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

DistilBERT +
CoLo (Eucl.)

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 7e-5
α = 0.5
JI = 0.5
θ = 0.7

LR = 2e-5
α = 0.5
J = 0.5
θ = 0.5

LR = 7e-5
α = 0.5
JI = 0.5
θ = 0.7

DistilBERT +
CoLo (cos.)

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 2e-5
α = 0.5
JI = 0.5
θ = 0.5

LR = 5e-5
α = 0.5
JI = 0.5
θ = 0.5

Table 5: Hyperparameters for the DistilBERT models. LR = Learning rate, α = alpha value for loss functions, JI =
Jaccard Index, θ = margin.

The experiments were conducted on NVIDIA GeForce RTX 2080 Ti GPUs with 11,264GB of RAM.
Each experiment took approximately 8 hours per random seed with BERT (110M parameters) and
approximately 5 hours with DistilBERT (66M parameters). Training times varied slightly between
datasets, though it should also be noted that the proposed approaches (label-aware and contrastive losses)
do not add a substantial amount of training time compared to baselines (±5 minutes per epoch). The
total computational cost of the experiments is roughly 650 GPU hours, including hyperparameter tuning
experiments.

The implementations of precision, recall, F1 and EMR in scikit-learn 1.2.0 were used to evaluate the
models (Pedregosa et al., 2011).
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B Results from DistilBERT

The tables below contain the results from the DistilBERT models. As noted in Section 4, the same trends
are observed with BERT. Consult Section 4 for an in-depth discussion about the models’ performance on
the datasets.

BGC RCV1-V2 AAPD WOS
Setup maF1 miF1 EMR maF1 miF1 EMR maF1 miF1 EMR maF1 miF1 EMR

DistilBERT 59.22
(.5)

78.45
(.06)

45.46
(.14)

52.33
(.6)

78.88
(.27)

54.2
(.5)

58.32
(.74)

80.81
(.62)

39.16
(.83)

76.33
(.44)

86.41
(.28)

77.57
(.33)

DistilBERT +
LA (hyperb.)

62.99
(.29)

78.7
(.13)

44.87
(.23)

59.09
(.24)

79.12
(.17)

53.87
(.36)

58.92
(.91)

80.18
(.55)

37.36
(1.35)

77.72
(.36)

86.56
(.13)

77.62
(.19)

DistilBERT +
LA (eucl.)

62.54
(.43)

78.54
(.09)

44.45
(.15)

58.56
(.33)

78.99
(.2)

53.8
(.31)

58.89
(.92)

80.25
(.4)

37.44
(1.35)

76.98
(.18)

86.33
(.09)

76.96
(.1)

DistilBERT +
LA (cos.)

61.9
(.51)

78.94
(.16)

45.9
(.14)

56.87
(.33)

79.64
(.11)

55.44
(.04)

58.48
(.81)

80.74
(.34)

38.46
(.34)

76.97
(.35)

86.39
(.26)

78.03
(.49)

DistilBERT +
MLCL (hyperb.)

59.43
(.44)

78.56
(.16)

45.67
(.25)

52.68
(.54)

79.0
(.21)

54.58
(.27)

57.64
(.5)

80.72
(.5)

38.88
(1.46)

76.02
(.41)

86.27
(.15)

77.34
(.24)

DistilBERT +
MLCL (Eucl.)

56.85
(.41)

78.66
(.12)

45.64
(.23)

51.16
(.34)

79.1
(.11)

54.17
(.34)

57.09
(.52)

80.92
(.35)

40.4
(.63)

76.83
(.15)

86.72
(.13)

78.2
(.19)

DistilBERT +
MLCL (cos.)

60.61
(.27)

79.43
(.06)

46.79
(.3)

53.73
(.13)

79.78
(.05)

55.67
(.08)

58.35
(1.19)

81.06
(.52)

39.68
(1.41)

77.27
(.12)

87.09
(.09)

78.3
(.2)

Table 6: Results from DistilBERT. The best results across models are marked in bold.

C Confusion Matrices

Figure 4: True negatives, false positives, false negatives
and true positives (in %) from each model on the BGC
dataset.

Figure 5: True negatives, false positives, false negatives
and true positives (in %) from each model on the RCV1
dataset.
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Figure 6: True negatives, false positives, false negatives
and true positives (in %) from each model on the BGC
dataset.

Figure 7: True negatives, false positives, false negatives
and true positives (in %) from each model on the RCV1
dataset.

D Statistical Tests

Dataset Setup P-value
Improved
Results (a > b)

Worse
Results (a < b)

BGC
LA (hyperb.) vs.
LA (eucl..)

.002
14 (9.5%)
(1, 8, 3, 2)

14 (9.5%)
(2, 3, 8, 1)

LA (hyperb.) vs.
LA (cos.)

<.001
64 (43.8%)
(3, 18, 30, 13)

51 (28.8%)
(3, 19, 28, 1)

RCV1
LA (hyperb.) vs.
LA (eucl.)

<.001
54 (52.4%)
(4, 14, 17,
18, 1)

36 (34.9%)
(0, 5, 13,
18, 0)

LA (hyperb.) vs.
LA (cos.)

<.001
46 (44.6%)
(3, 13, 15,
14, 1)

51 (49.5%)
(0, 7, 18,
26, 0)

AAPD
LA (hyperb.) vs.
LA (eucl.)

<.001
6 (9.8%)
(0, 6)

1 (1.6%)
(0, 1)

LA (hyperb.) vs.
LA (cos.)

<.001
13 (21.3%)
(1, 12)

12 (19.7%)
(0, 12)

WOS
LA (hyperb.) vs.
LA (eucl.)

.002
11 (7.3%)
(0, 11)

7 (4.6%)
(0, 7)

LA (hyperb.) vs.
LA (cos.)

<.001
37 (24.7%)
(4, 33)

33 (22.0%)
(1, 32)

Table 7: Results from the McNemar tests between model set-ups. The last two columns show statistically significant
improvements and decreases per hierarchical level.
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