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Abstract

Text-to-SQL is a technology that converts nat-
ural language questions into executable SQL
queries, allowing users to query and manage re-
lational databases more easily. In recent years,
large language models have significantly ad-
vanced the development of text-to-SQL. How-
ever, existing methods often overlook valida-
tion of the generated results during the SQL
generation process. Current error identification
methods are mainly divided into self-correction
approaches based on large models and feed-
back methods based on SQL execution, both of
which have limitations. We categorize SQL
errors into three main types: system errors,
skeleton errors, and value errors, and propose a
multi-grained error identification method. Ex-
perimental results demonstrate that this method
can be integrated as a plugin into various meth-
ods, providing effective error identification and
correction capabilities.

1 Introduction

Text-to-SQL is a technology designed to convert
natural language questions into executable SQL
queries, offering users a more intuitive and user-
friendly interface for querying and managing re-
lational databases, thereby enhancing database us-
ability and query efficiency (Deng et al., 2022).

In recent years, large language models (LLMs)
like ChatGPT and GPT-4 have achieved remarkable
success across various natural language processing
tasks (Ouyang et al., 2022; Achiam et al., 2023).
By leveraging in-context learning techniques, re-
searchers have effectively harnessed the knowledge
of LLMs (Dong et al., 2023).

Despite significant progress in generating SQL,
existing methods often overlook the critical step
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Figure 1: Comparison of different text-to-SQL methods
based on the generation-identification-correction frame-
work, highlighting the differences in error identification
approaches.

of validating the generated results. Unlike natu-
ral language, SQL is a language with very strict
syntax, and any non compliant part of a statement
will be rejected by the database. To address this
issue, current methods based on large language
models primarily follow a generation-identification-
correction framework: first generating the SQL,
then detecting any errors, and finally correcting
these errors. These methods can be classified into
two major categories, with the key difference lying
in their approach to error identification, as illus-
trated in Figure 1. The first category employs the
large language model itself to detect errors in the
generated SQL (Pourreza and Rafiei, 2024; Wang
et al., 2024). However, because these models are
not specifically designed for SQL syntax valida-
tion, they often struggle to accurately identify pre-
cise SQL errors. The second category relies on
SQL execution engines, such as MySQL, to deter-
mine the presence of errors based on the execution
results (Chen et al., 2023). Nonetheless, this ap-
proach is limited to detecting system errors and
cannot identify a broader range of error types.
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To address the above challenges, we propose a
multi-grained error identification method designed
to enhance text-to-SQL generation results. We cat-
egorize SQL errors into three main types: system
errors, skeleton errors, and value errors. As illus-
trated in Figure 2, System Error arises when the
predicted SQL query contains invalid syntax that
prevents it from being executed by the SQL engine.
Skeleton Error occurs when the predicted SQL
query structural mismatches the expected query
after removing specific value-related components.
Value Error is identified when the values used
in the predicted SQL query do not align with the
values expected by the database. Specifically, to
identify system errors, we employ an SQL executor,
which flags these errors based on execution failures.
To identify skeleton errors, we introduce a skeleton
matching model that measures the structural simi-
larity between the question and the generated SQL
to identify mismatches. To identify value errors,
we interact with the database, comparing the pre-
dicted values with the actual values in the relevant
columns to identify inconsistencies. Once errors
are identified, our framework outputs the error type
along with detailed error information. This infor-
mation is then used to guide a large language model
in correcting the identified errors, ensuring a more
accurate SQL query generation.

Our main contributions are as follows:

• We systematically study the errors that oc-
cur during SQL generation, categorizing them
into three distinct types and proposing a multi-
grained identification method. This approach
provides detailed error information that facili-
tates subsequent model correction.

• We introduce a skeleton matching module
based on contrastive learning to identify skele-
ton errors by comparing the semantic similar-
ity between the query and the SQL skeleton.
To enhance the encoder’s representation capa-
bility, we incorporate hard negative examples
into the learning process.

• Experiments demonstrate that our approach
can serve as a versatile plugin, enhancing the
performance of various methods across differ-
ent models. Through ablation study, we high-
light the importance of each module within
the method.

Pred: select t1.model from carnames as t1 join cars_data as t2 on t1.makeid = t2.id order by 
t2.mpg desc limit 1
Gold: select t1.model from car_names as t1 join cars_data as t2 on t1.makeid = t2.id order 
by t2.mpg desc limit 1

System Error

Question: How many singers are there in each country?
Question skeleton: How many [table] are from each [column]?
Pred: select country from singers
Pred skeleton: select [column] from [table]
Gold: select country, count (*) from singers group by country
Gold skeleton: select [column], count (*) from [table] group by [column]

Skeleton Error

Pred: select first_name, last_name from players where hand = 'left' order by birth_date
Gold: select first_name, last_name from players where hand = 'L' order by birth_date

Value Error

Figure 2: An example illustrating three types of errors,
with each error highlighted in red for easy identification.

2 Overview

In this section, we first define our problem and then
introduce our framework.

2.1 Problem Formulation

The text-to-SQL task can be divided into three se-
quential subtasks:

1) SQL Generation: Given a natural language
question q and a relational database D comprised
of tables T = {T1,T2, ...,Tn} and columns C =
{c11, c12, ..., cij , ..., cnmn

}, where cij represents the j-
th column of table Ti, the objective is to generate
an initial SQL query s. Thus, the input for this
subtask is q and D, and the output is s.

2) Error Identification: Given the natural lan-
guage question q, the relational database D, and
the generated SQL query s, this subtask aims to
determine whether s is correct or erroneous. If
the query is erroneous, the output should include
specific error type and information. Therefore, the
input consists of q, D, and s, and the output is a
binary indication of the correctness of s along with
the relevant error type and information, if applica-
ble.

3) SQL Error Correction: If the SQL query s
is identified as erroneous in the previous subtask,
this final subtask addresses the correction of the
query. Given the natural language question q, the
relational database D, the initial SQL query s, the
error type, and the error information, the objective
is to generate a corrected SQL query. Thus, the
input for this subtask comprises q, D, s, the error
type and the error information, and the output is
the corrected SQL query s′.

In this paper, we focus on the Error Identifi-
cation subtask. Specifically, we define three error
types, namely System Error, Skeleton Error and
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Figure 3: The Generation-Identification-Correction Text-to-SQL Framework with Multi-grained Error Identification
Method.

Value Error.

2.2 Framework

The overall text-to-SQL framework, as illustrated
in Figure 3, consists of three stages: SQL gener-
ation, multi-grained error identification, and SQL
error correction. As mentioned above, the focus
of this paper is on error identification. The SQL
generation and SQL error correction stages can di-
rectly utilize existing large language models. The
multi-grained error identification stage is composed
of three modules: the system error identification
module, the skeleton error identification module,
and the value error identification module. Each
module is responsible for identifying specific types
of SQL errors and providing corresponding error
information.

The entire process is as follows: we employ a
large language model to generate an initial SQL
query based on the given natural language question
and the database schema. The generated query then
undergoes identification through three distinct mod-
ules. First, the system error identification module
employs an SQL executor to identify any syntax
errors. Second, the skeleton error identification
module utilizes a skeleton matching model based
on contrastive learning to determine whether the
SQL skeleton aligns with the question. Finally, the
value error identification module checks for dis-

crepancies between the values in the question and
the database. By leveraging these three error identi-
fication modules, we hierarchically identify errors
in the SQL query. Finally, specific error informa-
tion is provided to the SQL error correction models
for correcting the identified errors.

3 Method

In this section, we provide a detailed introduction
to the text-to-SQL framework. The prompt details
for the large language models used in SQL gen-
eration and SQL error correction can be found in
Appendix A.

3.1 SQL Generation Stage

The objective of this stage is to take a question
and a database schema as input and output SQL.
This is a modular component that can be replaced
with any text-to-SQL method based on large lan-
guage models. These methods include using in-
context learning to directly leverage open-source
and closed-source large language models, or fine-
tuning open-source large language models using
a text-to-SQL dataset. The process is defined as
follows:

s = LLM(q,D), (1)

where q is the question, D is the database schema
and s is the generated SQL.
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3.2 Error Identification Stage

This stage will introduce the modules for identify-
ing system errors, skeleton errors, and value errors
separately.

3.2.1 System Error Identification
This module primarily checks for syntax errors in
the generated SQL. Specifically, we determine the
presence of syntax errors by analyzing the results
of SQL execution. In simple terms, any SQL that
fails to execute correctly is identified as having a
syntax error. These errors may include incorrect
table aliases, mistakes in joining columns, column
name errors, or improper use of keywords. To
facilitate correction, we categorize all these issues
under system errors and collect the corresponding
error information.

3.2.2 Skeleton Error Identification
This module is designed to detect inconsistencies in
intent between the SQL skeleton and the question
skeleton. To achieve this, we employ contrastive
learning to help the model understand the under-
lying relationships between the intended question
skeleton and the SQL skeleton. Once these hidden
correspondences are learned, we use a similarity
threshold to determine whether the question skele-
ton and the SQL skeleton align.

We first the skeletons of the question x and the
SQL query y by abstracting specific table names,
column information, and values, a process achieved
through matching with the database schema. As
illustrated in Figure 3, skeletonizing the question
and SQL query allows the model to focus more
on their underlying structure. After constructing
the skeletons, we use contrastive learning to train
a skeleton matching model. The goal is to bring
the skeletons of similar questions and SQL queries
closer together in the representation space while
pushing apart those with different skeletons. We be-
lieve this method enhances the alignment between
the skeletons of questions and SQL queries. For in-
stance, the phrase "more than" in a question might
correspond to the "having count" keyword in SQL,
reflecting similar underlying structures.

Specifically, we treat the question skeletons and
SQL skeletons within the same question-SQL pair
as having the same label. By using the supervised
contrastive learning (Khosla et al., 2020) loss func-
tion, we bring the vector representations of the
skeletons with the same intent closer together. Ad-
ditionally, to better capture the corresponding re-

lationships between skeletons, we introduce hard
negative samples to help the model learn more chal-
lenging semantic scenarios. For each SQL skeleton,
we select a variant that has one more or one fewer
common keyword as a hard negative sample. The
overall training objective is as follows:

Lsup
out =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(xi · yp/τ)∑

a∈A(i)
exp(xi · ya/τ) + N

,

(2)

Where xi represents the i-th question skeleton in
the batch, yp represents the p-th positive SQL skele-
ton in the batch, P (i) represents the set of indices
for all positive samples in the batch, and N repre-
sents the hard negative samples.

Finally, skeleton errors are identified by evalu-
ating the similarity between the question skeleton
and the SQL skeleton. If the similarity score falls
below a predefined threshold τ , the SQL is deemed
to have a skeleton error.

3.2.3 Value Error Identification
This module primarily addresses discrepancies be-
tween the values referenced in a question and those
stored in the database schema. For example, if a
question requires filtering by gender using Male or
Female, but the database stores these values as M or
F, a mismatch arises. If SQL generation only con-
siders the query information and overlooks these
differences in the schema, it may result in the SQL
query returning an empty result set. This module
aims to identify and correct such inconsistencies to
prevent errors during query execution.

Specifically, we only examine SQL queries that
involve filtering values. If the SQL query returns
an empty result set, we compare the filter values
against the corresponding column in the database.
If the filter values are present in the relevant col-
umn, we consider the SQL query correct; if the
filter values are not found in the corresponding
column, we mark the SQL query as potentially er-
roneous. For queries with multiple filter values,
each value is checked individually; if any value is
missing from the database, the query is flagged as
potentially erroneous.

In reality, the SQL query returning an empty re-
sult set can also be correct. This module uniformly
treats it as a value error. If it is correct, the subse-
quent error correction module will not modify the
SQL; if it is incorrect, the subsequent error correc-
tion module will modify it based on the values in
the corresponding column of the database.
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3.3 Error Correction Stage
At this stage, we pass the information obtained
from error identification to the respective correc-
tion models to perform SQL correction. In line
with the SQL generation stage, this is a modular
component that can be replaced with any text-to-
SQL method based on large language models. Be-
low, we will provide a detailed introduction to the
method of fine-tuning open-source large language
models using text-to-SQL datasets. The general
process is outlined in Appendix A.

3.3.1 System Errors and Skeleton Error
Correction

The error correction model takes as input a problem,
database schema, error information, and erroneous
SQL, and outputs a corrected SQL query. To train
the model, we randomly selected 1,000 examples
from the training set, following the same proce-
dures as those used for the SQL generation module.
After training, we used the model to predict the
remaining data in the training set and identified
SQL queries as erroneous if their execution results
differed from the Gold SQL results. We collected a
total of 4,921 erroneous SQL queries by repeatedly
sampling and identifying discrepancies.

We categorize the erroneous datasets into two
distinct types of errors: system errors and skele-
ton errors. The specific details for prompt cor-
rection are provided in Appendix A. Similar
to SQL generation model, our error correction
training dataset contains four elements: Zc =
{(qi,Si, ei, si, s

′
i)}i=1,..,N , where qi,Si, ei, si and

s′i represent the natural language question, the cor-
responding database schema, the error information,
the erroneous SQL, and the gold SQL, respectively.
Our goal of fine-tuning the SQL error correction
model Mc is to maximize the conditional language
modeling objective:

max
Mc

∑
(q,S,e,s,s′)∈Zc

|s′|∑
t=1

PMc(s
′
t|q,S, e, s, s′<t),

(3)
Where s′t represents the t-th token of the expected
SQL. By providing incorrect guidance and faulty
SQL, the model is instructed to correct the erro-
neous SQL based on the type of error identified.

3.3.2 Value Error Correction
To correct value errors, we trained a value error
correction model using the information available

from the training set. We manually cleaned and
processed the data in the training set where there
was a gap between the required values in the ques-
tions and the value ranges available in the database.
Based on the discrepancies between the question
values and the database value ranges, we con-
structed erroneous SQL queries, resulting in a total
of 247 entries. To ensure that cases where the
question value does not fall within the database
value range, but an empty output is considered cor-
rect, were properly handled, we included scenarios
where the output itself is empty. This resulted in a
total of 532 entries.

To address the gap between the required val-
ues and those present in the database, we ran-
domly select 30 values from each filtering column
in the SQL queries. The training set ZD, simi-
lar to our SQL error correction model, consists
of {(qi, vi, si, s′i)}i=1,..,N , where qi, vi, si and s′i
represent the natural language question, the values
of columns filtered by SQL, the erroneous SQL,
and the corrected SQL, respectively. Our goal of
fine-tuning the value error correction model MD

is to maximize the conditional language modeling
objective:

max
MD

∑
(q,v,s,s′)∈ZD

|s′|∑
t=1

PMD
(s′t|q, v, s, s′<t), (4)

Where s′t represents the t-th token of the expected
SQL.

We employ the value error correction model to
address the gap between the question values and
the database values, working in conjunction with
the value error identification module for compre-
hensive evaluation. We input the question, the SQL
column values being filtered, and the erroneous
SQL query into the model. The model then pro-
cesses this input to either correct the SQL query to
align with the appropriate value range or determine
that no correction is necessary.

4 Experiment

Our experiments consist of two parts. The first part
evaluates the performance of the multi-grained er-
ror identification method (MGEI). The second part
assesses the overall improvement in text-to-SQL
performance after existing methods incorporate our
approach. This section presents the experimental
settings and results.
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Methods precision(%) recall(%) F1(%)
Codellama 32.2 75.5 45.2
ChatGPT 65.0 53.3 58.6
DIN-SQL 75.3 54.5 63.2
MAC-SQL 75.5 51.6 61.4
DEA-SQL 69.1 56.4 62.1
PURPLE 100 37.4 54.4

MGEI 94.1 49.4 64.8

Table 1: Comparison of our method with previous
approaches in terms of identification error on the Spider
dataset.

4.1 Experimental Setup
4.1.1 Data
We evaluated our method using the Spider dataset,
a comprehensive cross-domain collection for Text-
to-SQL tasks. Each instance comprises a natural
language question tailored to a specific database,
along with its corresponding SQL query. We opted
for the Spider development subset for our evalua-
tion, given that the test subset has not been made
publicly available.

We use SQL queries generated by the fine-tuned
CodeLlama-13b-Instruct model on the Spider vali-
dation set as the dataset for evaluating error identi-
fication performance. This dataset includes a total
of 257 erroneous SQL queries. The detailed distri-
bution of error types is illustrated in Figure 4.

4.1.2 Evaluation Metrics
When evaluating the model’s ability to identify
SQL errors, it is crucial not only to detect as
many errors as possible but also to ensure that
the detected errors are indeed accurate. There-
fore, we use precision, recall, and the F1 score
as our evaluation metrics. Meanwhile, we fol-
low the previously established research method-
ology, employing both exact-set-match accuracy
(EM) and execution accuracy (EX) for evaluation
purposes. Following previous work (Zhong et al.,
2020), we utilize the evaluation scripts available at
https://github.com/taoyds/test-suite-sql-eval.

4.1.3 Parameter Settings
We performed all experiments using 2 Nvidia RTX
A6000 GPUs with PyTorch 2.0.0. The parameters
for our method were configured as follows: we uti-
lized the CodeLlama-13b-Instruct and CodeLlama-
13b-Python models (Roziere et al., 2023) across all
modules. For fine-tuning the LLMs, we employed
LoRA (Hu et al., 2021) for efficient adaptation,

Methods EM EX
Fine-tuning

CodeLlama-13b-Instruct 72.7 75.0
+ MGEI + CodeLlama 73.2 78.6
CodeLlama-13b-Python 70.6 72.3
+ MGEI + CodeLlama 72.3 76.5

In-context Learning
DIN-SQL (GPT4) 54.3 76.8
+ MGEI + GPT4 56.0 81.4
DAIL-SQL (ChatGPT) 26.7 74.4
+ MGEI + ChatGPT 27.2 76.0

Table 2: Performance of MGEI as a plugin across
different methods. All results are obtained by running
the code released by the author.

setting the parameters to r = 16 and α = 64, with
a learning rate of 5 × 10−4. In the skeleton error
identification module, we set a threshold τ of 0.3 to
filter out SQL queries with mismatched skeletons.

4.1.4 Baselines
When comparing the performance of error identifi-
cation, we conducted a comprehensive comparison
by testing the correction modules of various meth-
ods, including CodeLlama-13b-Instruct, ChatGPT
in a zero-shot setting, and other approaches such as
DIN-SQL, MAC-SQL (Wang et al., 2024), DEA-
SQL (Xie et al., 2024), and PURPLE (Ren et al.,
2024). The prompts used for error identification of
SQLs directly with CodeLlama-13b-Instruct and
ChatGPT are shown in Appendix B. For other self-
correction methods, including DIN-SQL, MAC-
SQL, and DEA-SQL, we compare their output with
the initial SQL; if the outputs are different, the SQL
is considered erroneous. PURPLE only recognizes
SQL that produce execution errors; therefore, we
categorize system errors as erroneous SQL. Each
method’s ability to identify errors was individually
assessed and compared against our own approach.

To evaluate the effectiveness of our method as a
plugin, we used DIN-SQL and DAIL-SQL to gen-
erate initial SQL queries. DIN-SQL explores break-
ing down complex text-to-SQL tasks into smaller
sub-tasks. DAIL-SQL compared existing prompt
engineering methods, including question represen-
tation, example selection, and example organiza-
tion, and based on these comparisons, proposed a
new integrated solution designed to overcome the
limitations of current methods. For DAIL-SQL, we
utilized ChatGPT in a zero-shot scenario to gen-
erate SQL based on the code provided by the au-
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Method Easy Medium Hard Extra Hard All
CodeLlama-13b-Instruct + MGEI + CodeLlama-13b-Instruct

No Error Identification 87.5 84.3 62.6 45.2 75.0
w/ System Error Identification 87.5 86.3 64.9 45.2 76.4
w/ System and Skeleton Error Identification 88.7 86.1 64.9 45.2 76.6
w/ System, Skeleton and Value Error Identification 91.5 87.7 67.2 47.0 78.6

DAIL-SQL (ChatGPT) + MGEI + ChatGPT
No Error Identification 89.9 79.8 62.6 48.8 74.4
w/ System Error Identification 90.3 80.5 63.8 50.0 75.1
w/ System and Skeleton Error Identification 90.3 80.5 63.8 50.0 75.1
w/ System, Skeleton and Value Error Identification 92.3 80.5 63.8 52.4 76.0

Table 3: Ablation study on the execution accuracy of the MGEI module across different text-to-SQL methods.

thors. Additionally, we fine-tuned the CodeLlama-
13b-Instruct and CodeLlama-13b-Python models
following the DAIL-SQL-SFT format to produce
initial SQL queries. This approach allowed us to
test the effectiveness of our method across multiple
models.

4.2 Effectiveness
Firstly, we evaluate the model’s ability to identify
errors. Then, we demonstrate the performance im-
provements after the model corrects these errors.

4.2.1 The Performance of Identifying Errors
We compared the performance of MGEI with six
other methods in detecting errors on the Spider
dataset. Table 1 presents the results of each method
across three metrics: precision, recall, and F1-
score.

Firstly, from the perspective of precision, there
are significant differences in the accuracy of er-
ror identification across the models. Among them,
PURPLE stands out with a precision of 100%, the
highest among all, due to its focus solely on cor-
recting system errors. However, the MGEI method
also demonstrates exceptional performance, achiev-
ing a precision of 94.1%. This indicates that MGEI
is highly accurate in identifying errors. In con-
trast, Codellama has the lowest precision at just
32.2%, highlighting its significant shortcomings in
accurately detecting errors.

Secondly, from a recall perspective, the Codel-
lama method excels at identifying as many errors
as possible, achieving a recall of 75.5%, which in-
dicates its ability to detect the majority of errors.
However, despite its high recall, Codellama’s pre-
cision is lower, suggesting that while it identifies
a large number of errors, it also introduces a sig-
nificant number of false positives. In comparison,

MGEI has a recall of 49.4%, which is moderate
among the methods tested. ChatGPT shows a sim-
ilar recall rate at 53.3%, close to that of MGEI,
while other methods such as DIN-SQL (54.5%)
and MAC-SQL (51.6%) also have comparable re-
call rates, though none surpass Codellama.

Finally, when evaluating the overall F1-score,
MGEI leads with a score of 64.8%, highlighting
its excellent balance between precision and recall.
Although CodeLlama achieves the highest recall,
its F1-score is only 45.2%, indicating that its lower
precision significantly impacts its overall perfor-
mance. On the other hand, while PURPLE boasts
exceptionally high precision, its low recall results
in an F1-score of just 54.4%, preventing it from
surpassing MGEI in overall performance. Other
methods, such as DIN-SQL (63.2%), MAC-SQL
(61.4%), and DEA-SQL (62.1%), also fall short of
MGEI in F1-score. This demonstrates the effec-
tiveness and comprehensiveness of our method in
identifying the three types of errors.

4.2.2 The Performance of Improvement
Table 2 shows the performance of our method
compared to the baseline methods across differ-
ent setups. Our method consistently improves ex-
ecution accuracy (EX) in all cases. When inte-
grated with CodeLlama-13b-Instruct, our method
increases EX by 3.6%, achieving 78.6%. Similarly,
with CodeLlama-13b-Python, our method yields a
4.2% boost in EX. Notably, when combined with
DIN-SQL+GPT4, our approach enhances both EM
and EX, with a significant 4.6% increase in EX.
Although the improvement is more modest when
paired with DAIL-SQL+ChatGPT, our method still
achieves higher scores, demonstrating its effective-
ness as a universal plugin across various models
and prompts.
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4.3 Ablation Study

In the ablation study, we examine the impact of
different modules in our method by testing them
on the CodeLlama-13b-Instruct and DAIL-SQL
(ChatGPT) models, focusing on execution accuracy.
The results are summarized in Table 3.

Starting with the CodeLlama-13b-Instruct
model, the baseline performance of generating
SQL without any error identification (Initial SQL)
achieves an accuracy of 75.0%. When the system
error identification module is introduced, there is a
noticeable improvement, with the overall accuracy
rising to 76.4%. Adding the skeleton error iden-
tification further enhances the accuracy slightly
to 76.6%. The most significant improvement is
observed when the value error identification is in-
cluded, raising the overall accuracy to 78.6%, with
particularly strong gains in the hard and extra hard
categories. A similar pattern is evident for the
DAIL-SQL (ChatGPT) model. The baseline (Initial
SQL) starts with an accuracy of 74.4%, which in-
creases to 75.1% after integrating the system error
identification module. The performance remains
consistent with the addition of the skeleton error
identification module, and with the full integration
of all three identification modules, the accuracy
rises to 76.0%, with the most notable improvements
seen in the easy and extra hard categories. These
results underscore the critical role of each module
in enhancing the overall execution accuracy of our
method.

5 Related Work

In this section, we review and summarize the stud-
ies that are most closely related to our research.

5.1 Text-to-SQL

Early approaches primarily relied on carefully de-
signed rules and templates(Popescu et al., 2004),
which were only effective in simple database sce-
narios. However, as databases became more com-
plex, creating a specific rule or template for each
scenario proved increasingly challenging. In re-
cent years, the advancement of deep neural net-
works has significantly propelled the progress of
text-to-SQL tasks by enabling the automatic map-
ping of user queries to corresponding SQL com-
mands(Sutskever et al., 2014; Guo et al., 2019; Xu
et al., 2017). simultaneously, large-scale datasets
like Spider (Yu et al., 2018) and BIRD (Li et al.,
2024b) have been released. Subsequently, pre-

trained language models (PLMs), which offer supe-
rior semantic parsing capabilities, have emerged as
the new paradigm in text-to-SQL systems(Yin et al.,
2020). Recently, methods based on large language
models (LLMs) that utilize in-context learning and
fine-tuning paradigms have become mainstream,
achieving state-of-the-art accuracy in text-to-SQL
tasks(Li et al., 2024a; Jiang et al., 2023a).

5.2 Self-correction

There has been extensive research on improving
the responses of large language models (LLMs)
during inference, including in areas like arithmetic
reasoning, code generation, and question answer-
ing (Gao et al., 2023; Shinn et al., 2024; Brown
et al., 2020). Some studies have proposed self-
correction methods, where the LLM generates feed-
back for itself through prompting to correct its re-
sponses(Gou et al., 2023; Jiang et al., 2023b). Ad-
ditionally, other research has explored the use of
external information to enhance feedback, such as
leveraging external tools like code executors(Chen
et al., 2023), external knowledge from search en-
gines(Jiang et al., 2023c), or additional information
from sources like Wikipedia(Yu et al., 2023). How-
ever, recent studies have also reported negative
results, indicating that LLMs may not always be
capable of self-correction(Valmeekam et al., 2023;
Stechly et al., 2023). Therefore, we evaluate SQL
errors from multiple contextual perspectives to en-
sure accuracy.

6 Conclusion

In this paper, we systematically examined SQL gen-
eration errors, categorizing them into three types,
and proposed a multi-grained identification method
that provides detailed error information for effec-
tive correction. We introduced a skeleton match-
ing module based on contrastive learning to detect
skeleton errors, enhancing representation with hard
negative examples. Our experiments validate the
versatility of our approach as a plugin, improving
the performance of both open-source and closed-
source large language models. Ablation study fur-
ther underscore the significance of each module
in our method. This innovative classification and
modular design offer a new perspective for more
accurate SQL error handling.
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Limitation

Firstly, our approach primarily focuses on basic
syntax design, such as MySQL, without address-
ing specialized syntax for multiple databases or
complex constructs like window functions. This
limitation reduces the method’s ability to handle
complex queries in multi-database environments.
Secondly, although the method is intended to be
widely used as a plugin, it may encounter compati-
bility issues when integrated with existing systems,
particularly in environments with custom or legacy
SQL generation tools. This often requires addi-
tional customization or adjustments, increasing the
complexity of integration and maintenance costs.
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A Prompt

A.1 Correction Process
We abstract and generalize the error correction pro-
cess, which takes as input a problem, a database,
error information, and the erroneous SQL, and out-
puts the corrected SQL. It is defined as follows:

s′ = LLM(q,D, e, s), (5)

where q is the question, D is the database schema,
e is the error information, s is the generated SQL
and s′ is the corrected SQL.

A.2 prompt Examples
Table 4 provides examples of all prompts, including
SQL generation, system error correction, skeleton
error correction, value error correction, and error
identification (ChatGPT & CodeLlama).

B Experimental settings

B.1 Error types
Figure 4 illustrates the distribution of different
types of errors in the error identification dataset.

System Error
96

Skeleton Error
124

Value Error
37

Number of errors

Figure 4: This is the distribution of error types in our
error identification dataset.
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SQL Generation
Write a sql to answer the question "How many singers do we have?"
### Input:
concert(concert_id, concert_name, theme, stadium_id, year)
singer(singer_id, name, country, song_name, song_release_year, age, is_male)
singer_in_concert(concert_id, singer_id)
stadium(stadium_id, location, name, capacity, highest, lowest, average)
### SQL: select
System Error Correction
You are a database expert. I will provide a question, the database schema, and non-executable SQL.
There are syntax errors in non-executable SQL, such as s̈yntax errorsänd n̈o such column.̈
Please correct it.
Question: "Which model saves the most gasoline? That is to say, have the maximum miles per gallon."
### Input:
car_makers(id, maker, fullname, country)
car_names(makeid, model, make)
cars_data(id, mpg, cylinders, edispl, horsepower, weight, accelerate, year)
continents(contid, continent)
countries(countryid, countryname, continent)
model_list(modelid, maker, model)
Non-executable SQL: select model_list.model from model_list join cars_data on model_list.modelid
= cars_data.modelid
order by cars_data.mpg desc limit 1
Skeleton Error Correction
You are a database expert. I will provide a question, the database schema, and skeleton error SQL.
The syntax of the SQL is correct, but the execution results do not match the answer to the question.
Do not alter any value-specific parts, focus solely on correcting the structural elements related to SQL keywords.
Please correct it.
Question: "What is the maximum capacity and the average of all stadiums ?"
### Input:
concert(concert_id, concert_name, theme, stadium_id, year)
singer(singer_id, name, country, song_name, song_release_year, age, is_male)
singer_in_concert(concert_id, singer_id)
stadium(stadium_id, location, name, capacity, highest, lowest, average)
Skeleton error SQL: select max ( capacity ), avg ( average ) from stadium
Value Error Correction
You are a database expert. I will provide a question, the expected values for the columns in the SQL query,
and an SQL query.
Focus solely on verifying and correcting the values used in the SQL query to ensure they match
the expected values in the database.
Pay attention to discrepancies such as case sensitivity, abbreviations, and any other issues that might cause
a mismatch between the SQL values and the expected values.
If there are no discrepancies, return the original SQL query. Otherwise, correct the erroneous SQL query.
Question: "What is allergy type of a cat allergy?"
### column value: allergy:[Anchovies, Bee Stings, Cat, Dog, Eggs, Grass Pollen, Milk, Nuts, Ragweed, Rodent,
Shellfish, Soy, Tree Pollen, Wheat]
SQL: select allergytype from allergy_type where allergy = ‘cat‘
Error identification (ChatGPT & Codellama)
You are a database expert. I will provide a question, database schema, and SQL query,
and you will determine if the SQL query can answer the question.
# Question: "How many singers do we have?"
# Database schema:
concert(concert_id, concert_name, theme, stadium_id, year)
singer(singer_id, name, country, song_name, song_release_year, age, is_male)
singer_in_concert(concert_id, singer_id)
stadium(stadium_id, location, name, capacity, highest, lowest, average)
# SQL: select count ( * ) from singer
# Only respond with "Yes" or "No," no explanation needed.

Table 4: Examples of prompt templates.
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