
Proceedings of the 31st International Conference on Computational Linguistics, pages 4293–4312
January 19–24, 2025. ©2025 Association for Computational Linguistics

4293

Know When to Fuse: Investigating Non-English Hybrid Retrieval
in the Legal Domain

Antoine Louis , Gijs van Dijck , Gerasimos Spanakis
Law & Tech Lab, Maastricht University

{a.louis, gijs.vandijck, jerry.spanakis}@maastrichtuniversity.nl

Abstract

Hybrid search has emerged as an effective strat-
egy to offset the limitations of different match-
ing paradigms, especially in out-of-domain con-
texts where notable improvements in retrieval
quality have been observed. However, existing
research predominantly focuses on a limited
set of retrieval methods, evaluated in pairs on
domain-general datasets exclusively in English.
In this work, we study the efficacy of hybrid
search across a variety of prominent retrieval
models within the unexplored field of law in the
French language, assessing both zero-shot and
in-domain scenarios. Our findings reveal that
in a zero-shot context, fusing different domain-
general models consistently enhances perfor-
mance compared to using a standalone model,
regardless of the fusion method. Surprisingly,
when models are trained in-domain, we find
that fusion generally diminishes performance
relative to using the best single system, un-
less fusing scores with carefully tuned weights.
These novel insights, among others, expand
the applicability of prior findings across a new
field and language, and contribute to a deeper
understanding of hybrid search in non-English
specialized domains.1

1 Introduction

Information retrieval is typically addressed through
one of two fundamental matching paradigms: (i)
lexical matching, which relies on an exact match
of terms between queries and documents; and (ii)
semantic matching, which measures complex rela-
tionships between words to capture underlying se-
mantics. Lexical matching is simple, efficient, and
generally effective across various domains (Thakur
et al., 2021). However, it suffers from the vocab-
ulary gap issue (Berger et al., 2000), where rele-
vant information might not explicitly include query

1Our source code and models are available at https:
//github.com/maastrichtlawtech/fusion.
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Figure 1: A high-level illustration of the hybrid search
workflow based on various sparse and dense retrievers.

terms yet still fulfills the actual informational needs.
Semantic models remedy vocabulary mismatches
by learning to model semantic similarity, result-
ing in significant in-domain performance gains (Qu
et al., 2021; Xiong et al., 2021; Hofstätter et al.,
2021). Nevertheless, these models tend to exhibit
limited generalization across unseen topics (Thakur
et al., 2021), which is particularly problematic in
highly specialized domains, like law, where high-
quality labeled data is both scarce and costly.

Recent works suggest that combining these two
paradigms can enhance retrieval quality (Kuzi et al.,
2020; Wang et al., 2021; Ma et al., 2021), partic-
ularly in out-of-distribution settings (Chen et al.,
2022; Bruch et al., 2024), as they tend to miti-
gate each other’s limitations. However, these ef-
forts have mostly been limited to combining no
more than two systems – typically pairing BM25
(Robertson et al., 1994) with single-vector dense
bi-encoders (Reimers and Gurevych, 2019) – while
constraining evaluation to English datasets only.

Our work aims to extend this scope by investigat-
ing the potential synergies among a broader range
of retrieval models, encompassing both sparse and
dense methods, specifically within the uncharted
legal domain in the French language, as illustrated
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in Figure 1. Our contributions are threefold:
• First, we investigate the efficacy of combining

diverse domain-general retrieval models for
legal retrieval, assuming no domain-specific
labeled data is available – a highly usual sce-
nario in specialized domains like law.

• Second, we explore the extent to which spe-
cialized retrievers and their fusion can im-
pact in-domain performance, assuming lim-
ited domain-specific training data is available.

• Finally, we release all our learned retrievers,
including the first French SPLADE and Col-
BERT models for general and legal domains.

2 Methodology

Assuming that different matching paradigms may
be complementary in how they model relevance
(Chen et al., 2022; Bruch et al., 2024), we aim to ex-
plore the potential of combining various systems to
enhance performance on French legal retrieval. In
this section, we outline the retrieval models (§2.1),
fusion techniques (§2.2), and experimental setup
(§2.3) employed in our study, with additional com-
prehensive details available in Appendix A.

2.1 Retrieval Models

We select several prominent retrieval methods rep-
resenting diverse matching paradigms, all demon-
strating high effectiveness in prior studies. Specifi-
cally, we explore the unsupervised BM25 weight-
ing scheme (Robertson et al., 1994), our own single-
vector dense (Lee et al., 2019; Chang et al., 2020;
Karpukhin et al., 2020), multi-vector dense (Khat-
tab and Zaharia, 2020; Santhanam et al., 2022b),
and single-vector sparse (Formal et al., 2021a,b)
bi-encoder models – respectively dubbed DPRFR,
ColBERTFR, and SPLADEFR – and a cross-attention
model (Nogueira and Cho, 2019; Han et al., 2020;
Gao et al., 2021a) termed monoBERTFR. Following
a preliminary comparative analysis of various pre-
trained French language models in Appendix B.1,
we choose CamemBERTBASE (Martin et al., 2020)
as the backbone encoder for all our supervised neu-
ral retrievers. We refer readers to Appendix A.1 for
detailed explanations of each method’s relevance
matching and optimization processes.

2.2 Fusion Techniques

To leverage existing retrieval methods without mod-
ifications, our study explores late fusion techniques,
which aggregate results post-prediction – in con-

trast to early fusion methods that merge latent rep-
resentations of distinct retrievers within the feature
space prior to making predictions. In this context,
the relevance of a candidate can be assessed using
two main measures: its position in the ranked list or
its predicted score. This distinction underpins the
two primary late fusion approaches explored in this
study: score-based and rank-based fusion. Specifi-
cally, we investigate normalized score fusion (NSF;
Lee, 1995) with various scaling techniques, Borda
count fusion (BCF; Ho et al., 1994), and reciprocal
rank fusion (RRF; Cormack et al., 2009). See Ap-
pendix A.2 for detailed definitions of each method.

2.3 Experimental Setup
Datasets. We exploit two French text ranking
datasets: the domain-general mMARCO-fr (Boni-
facio et al., 2021) and the domain-specific LLeQA
(Louis et al., 2024). The former is a translated ver-
sion of MS MARCO (Nguyen et al., 2018) in 13
languages, including French. It comprises a cor-
pus of 8.8M passages, 539K training queries, and
6980 development queries. LLeQA targets long-
form question answering and information retrieval
within the legal domain. It consists of 1,868 French-
native questions on various legal topics, distributed
across training (1472), development (201), and test
(195) sets. Each question is expertly annotated with
references to relevant legal provisions drawn from
a corpus of 27,942 Belgian law articles.

Evaluation metrics. To measure effectiveness,
we use official metrics for each dataset: mean recip-
rocal rank at cutoff 10 (MRR@10) for mMARCO,
and average r-precision (RP) for LLeQA. Both met-
rics are rank-aware, meaning they are sensitive to
variations in the ordering of retrieved results. Ad-
ditionally, we report the rank-unaware recall mea-
sure at various cutoffs (R@k), which is particularly
useful for assessing performance of first-stage re-
trievers. See Appendix A.3 for details.

Baselines. We evaluate our learned retrievers and
their hybrid configurations against leading open-
source multilingual retrieval models, including
BM25 (Robertson et al., 1994), mE5 (Wang et al.,
2024) in its small, base, and large variants, and
BGE-M3 (Chen et al., 2024) in its dense version.

2.4 Efficiency
To evaluate the practicality of each system for real-
world deployment, we assess their computational
and memory efficiency during inference.
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Model mMARCO-fr Model Size #Samples Batch Size Hardware
MRR@10 R@500 #Params RAM PF F PF F Pre-Finetune Finetune

Baselines
1 BM25 (k1=0.9, b=0.4) 0.143 0.681 – – – – – – – –
2 mE5SMALL 0.297 0.908 117.7M 0.5GB 1B 1.6M 32k 512 32×V100 8×V100
3 mE5BASE 0.303 0.914 278.0M 1.1GB 1B 1.6M 32k 512 64×V100 8×V100
4 mE5LARGE 0.311 0.909 559.9M 2.2GB 1B 1.6M 32k 512 Unk. 8×V100
5 BGE-M3DENSE 0.270 0.891 567.8M 2.3GB 1.2B 1.6M 67k 1.2k 96×A800 24×A800

Learned models (ours)
6 DPRFR-BASE 0.285 0.891 110.6M 0.4GB – 0.5M – 152 – 1×V100
7 SPLADEFR-BASE 0.247 0.860 110.6M 0.4GB – 0.5M – 128 – 1×H100
8 ColBERTFR-BASE 0.295† 0.884† 110.6M 0.4GB – 0.5M – 128 – 1×H100
9 monoBERTFR-BASE 0.334⋆ 0.965⋆ 110.6M 0.4GB – 0.5M – 128 – 1×H100
† Evaluated using the PLAID retrieval engine (Santhanam et al., 2022a). ⋆ Evaluated by re-ranking 1k candidates including gold and hard negative passages.

Table 1: Retrieval results on mMARCO-fr small dev set (in-domain). We report each model’s training resources.

Index size. We start by calculating the stor-
age footprint of the indexed LLeQA articles, pre-
computed offline and loaded at inference, not-
ing that the indexing method varies with the re-
trieval approach. Sparse methods like BM25 and
SPLADE use inverted indexes, which store each
vocabulary term along lists of articles containing
the term and its frequency within those articles.
Single-vector dense models, such as DPRFR, mE5,
and BGE-M3, rely on flat indexes for brute-force
search, sequentially storing vectors on d× b× |C|
bits given d-dimensional representations of articles
from corpus C encoded in b bits (with b=32 in our
study).2 Meanwhile, ColBERT uses an advanced
centroid-based indexing to store late-interaction to-
ken embeddings, with a footprint comparable to
dense flat indexes (Santhanam et al., 2022b).

Retrieval latency. We then measure the retrieval
latency per query in seconds. We use a query batch
size of one to simulate streaming queries and com-
pute the average latency across all queries in the
LLeQA dev set. Measurements are conducted on a
single NVIDIA H100 for GPU search and an AMD
EPYC 7763 for CPU search.

Inference FLOPs. Finally, we estimate the num-
ber of floating point operations (FLOPs) per query
as a hardware-agnostic measure of compute usage.
Details of our estimation methodology across the
different systems are provided in Appendix A.4.

3 Zero-Shot Evaluation

In this section, we investigate the out-of-domain
generalization capabilities of modern retrieval mod-

2While ANNS indexes such as HNSW (Malkov et al.,
2014) enable more efficient retrieval, they introduce significant
overhead which makes flat indexes generally preferable for
smaller datasets like LLeQA (Milvus, 2022; Redis, 2024).

els trained on a budget and explore the efficacy
of their fusion in the specialized domain of law.
Specifically, we explore the following question:
Assuming a lack of domain-specific labeled data
and limited computational resources, how effec-
tively can hybrid combinations of domain-general
retrieval models perform within the legal domain?
To address this, we train the supervised retrieval
models presented in Section 2 on the French seg-
ment of the domain-general mMARCO dataset. We
denote the resulting models with the FR-BASE sub-
script throughout the rest of the paper.

Main results. When evaluated on mMARCO-fr,
our learned French retrievers exhibit competitive,
and at times superior, in-domain performance com-
pared to leading multilingual retrieval models. This
is particularly notable given their relatively smaller
size and the constrained resources used during train-
ing, as shown in Table 1. For instance, DPRFR-BASE

surpasses BGE-M3DENSE with only one-fifth of its
parameters, 2400× fewer training samples, and sig-
nificantly less training compute. Additionally, our
cross-encoder consistently outperforms all other re-
trieval methods, corroborating prior findings on the
efficacy of cross-attention (Hofstätter et al., 2020).
However, results in Table 2 reveal that, when eval-
uated in the legal domain, our domain-general
French retrievers generally underperform against
the multilingual baselines, except for our cross-
encoder which remains competitive at smaller cut-
offs. This discrepancy is largely due to the base-
lines’ extensive (pre-)finetuning across diverse data
with large batch sizes – which proved beneficial
for enhanced contrastive learning (Qu et al., 2021).
Surprisingly, BM25 outperforms all neural models
in this specialized context, reaffirming its robust-
ness when dealing with out-of-distribution data.
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Model LLeQA Index Storage Latency (s/q) FLOPs
RP R@10 R@500 Disk✦ Ratio♣ GPU CPU

Baselines
1 BM25 (k1=2.5, b=0.2) 0.163 0.367 0.672 6.6MB ×0.2 – 0.142 1.7e+6
2 mE5SMALL 0.081 0.174 0.611 40.9MB ×1.5 0.013 0.028 6.6e+8
3 mE5BASE 0.074 0.157 0.653 81.9MB ×2.9 0.014 0.065 2.6e+9
4 mE5LARGE 0.074 0.194 0.695 109.1MB ×3.9 0.022 0.121 9.2e+9
5 BGE-M3DENSE 0.090 0.325 0.734 109.1MB ×3.9 0.023 0.113 9.2e+9

Learned models (ours)
6 DPRFR-BASE 0.046 0.146 0.590 81.9MB ×2.9 0.013 0.057 2.6e+9
7 SPLADEFR-BASE 0.045 0.107 0.596 30.2MB ×1.1 0.013 0.609 2.6e+9
8 ColBERTFR-BASE 0.047† 0.148† 0.517† 185.8MB† ×6.7 0.031† 0.142† 2.6e+11
9 monoBERTFR-BASE 0.102 0.290 0.536 – – 4.472⋆ 184.7⋆ 2.2e+13⋆

Hybrid combinations
10 NSFZ-SCORE(1, 7) 0.130 0.372 0.755 36.8MB ×1.3 – – 2.6e+9
11 NSFMIN-MAX(1, 8) 0.134 0.397 0.746 192.4MB ×6.9 – – 2.6e+11
12 NSFZ-SCORE(1, 6, 7) 0.092 0.354 0.742 118.7MB ×4.3 – – 5.2e+9
13 NSFZ-SCORE(1, 7, 8) 0.109 0.399 0.753 222.6MB ×8.0 – – 5.2e+9
14 NSFZ-SCORE(1, 6, 8) 0.139 0.407 0.750 274.3MB ×9.8 – – 2.6e+11
15 NSFZ-SCORE(1, 6, 7, 8) 0.125 0.388 0.736 304.5MB ×10.9 – – 2.7e+11
✦ Estimated with 32-bit precision for dense vectors. ♣ Ratio of index size to plain text size.

Table 2: Retrieval results on LLeQA test set (zero-shot). We report performance of the best hybrid configurations
obtained after extensive evaluation on LLeQA dev set (see Table 3).

Besides, BM25 is notably efficient at inference,
with an index up to 30× smaller and significantly
fewer FLOPs than neural retrievers. In contrast,
the full interaction mechanism of monoBERTFR-BASE

incurs substantial computational costs, resulting
in latencies up to 350× and 2350× higher on
GPU and CPU, respectively, than the other learned
French models – while assessed to re-rank 1,000
candidates only rather than the whole corpus.
ColBERTFR-BASE, with its token-to-token interac-
tion, achieves reasonable latencies on both GPU
and CPU due to the low-level optimization of
PLAID, but results in a larger index. Meanwhile,
SPLADEFR-BASE stands out among neural methods
by using an inverted index nearly 3× smaller than
that of its single-vector dense counterpart.

Finally, we observe that fusing BM25 with one
or more of our learned domain-general French
models consistently and significantly outperforms
all individual retrievers in the zero-shot setting
(except on RP where BM25 excels) yet at the
expense of increased memory – but comparable
latencies when using parallelization. This fu-
sion markedly enhances recall at large cutoffs
compared to standalone BM25. On recall@10,
most fusions improve upon BM25; notably, the
BM25+DPRFR-BASE+ColBERTFR-BASE fusion shows a
4% enhancement and surpasses both DPRFR-BASE and
ColBERTFR-BASE by around 26%. Surprisingly, the
BM25+SPLADEFR-BASE fusion is the most effective
on R@500 while standing out for its efficiency due
to both methods’ use of inverted indexes.

How do score distributions vary across models?
Figure 2 depicts the score distributions of end-to-
end retrievers, normalized using both traditional
techniques and our proposed percentile normaliza-
tion. We find that traditional scaling methods lead
to misaligned distributions among retrievers, partic-
ularly under min-max scaling. Such misalignment
impacts score fusion as identical scores may convey
different levels of relevance across systems. For ex-
ample, a min-max normalized score of 0.35 approx-
imates the median for DPRFR-BASE, but corresponds
to the 95th percentile for BM25. When these scores
are equally combined, the higher relevance indi-
cated by BM25’s score is therefore negated. To ad-
dress this, we explore a new scaling approach that
maps scores to their respective percentiles within
each system’s overall score distribution, estimated
using around 5.6 million data points per system.
This way, a score of 0.35 is adjusted to 0.5 for
DPRFR-BASE and 0.95 for BM25, leading to a rela-
tively higher fused score that favors high relevance
signals. This method requires pre-computing each
retriever’s score distribution, ideally with a volume
matching the corpus size to avoid score collisions.
Despite its intuitive appeal, our empirical findings
reveal that this percentile-based scaling does not
surpass traditional methods, as shown in Table 3.

How complementary are distinct retrievers?
We select the two systems that showed the best hy-
brid sparse-dense performance in Table 3, namely
BM25+ColBERTFR-BASE, and analyze their min-max
scaled scores across 18.6K query-article pairs from
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Figure 2: Score distributions of domain-general end-to-end retrievers, normalized using min-max, z-score, and
percentile scaling. The distributions are derived from ranking all 27,942 articles in LLeQA’s knowledge corpus
against the 201 development set queries, resulting in approximately 5.6 million scores per system.
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Figure 3: Illustration of the complementary relationship between a sparse (BM25) and a dense (ColBERTFR-BASE)
system on out-of-distribution data. Scores have been min-max normalized and categorized into four distinct regions
based on each system’s global distribution, depicted in Figure 2.

LLeQA, balanced between positive and negative
instances. We examine four scenarios: (A) BM25
scores high (above the third quartile of its distri-
bution, depicted in Figure 2) while ColBERTFR-BASE

scores low (below the first quartile of its distribu-
tion); (B) BM25 scores low while ColBERTFR-BASE

scores high; (C) both systems score high; (D) both
systems score low. Our findings, shown in Figure 3,
reveal that when one system scores high while the
other does not, the higher-scoring system generally
provides the correct signal, effectively compensat-
ing for the other’s error. Conversely, when both sys-
tems concur on the relevance assessment, whether
high or low, they are predominantly correct.

Does fusion always help for OOD data? We
conduct an exhaustive evaluation across all possi-
ble combinations of our learned retrievers (exclud-
ing the monoBERTFR-BASE re-ranker due to its high
inefficiency for end-to-end retrieval) and BM25,
using the fusion methods presented in Section 2.

For NSF, we test both conventional min-max and
z-score scaling, as well as our proposed percentile
normalization, with either equal or tuned weights.
This results in a total of 88 different configurations,
whose results are presented in Table 3. Of these,
we find that 72 (i.e., 82%) improve performance
compared to using the retrievers from the respec-
tive combinations individually. Remarkably, nine
combinations outperform the extensively trained
BGE-M3DENSE model, which demonstrates the best
individual performance by far on LLeQA dev set.
Overall, our findings indicate that fusion almost al-
ways enhances performance on out-of-distribution
data, regardless of the fusion technique or normal-
ization approach used – though tuned NSF with
z-score scaling seems to deliver optimal results.

4 In-Domain Evaluation

We now investigate the performance enhancement
given by specialized retrievers trained in the le-
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Method BCF RRF NSFMIN-MAX NSFZ-SCORE NSFPERCENTILE

Equal Tuned Equal Tuned Equal Tuned
Si

ng
le

ba
se

lin
es

BM25 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232
DPRFR-BASE 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184
SPLADEFR-BASE 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180
ColBERTFR-BASE 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232

Sp
ar

se
/d

en
se BM25 + SPLADEFR-BASE 0.262 0.279 0.295 0.295 0.286 0.300† 0.282 0.286

DPRFR-BASE + ColBERTFR-BASE 0.219 0.230 0.229 0.243 0.227 0.243 0.206 0.228

D
en

se
+

sp
ar

se
w

.2
sy

st
em

s BM25 + DPRFR-BASE 0.233 0.262 0.268 0.276 0.265 0.286 0.257 0.257
BM25 + ColBERTFR-BASE 0.249 0.269 0.293 0.303† 0.262 0.294 0.261 0.266
SPLADEFR-BASE + DPRFR-BASE 0.188 0.203 0.196 0.217 0.197 0.218 0.195 0.210
SPLADEFR-BASE + ColBERTFR-BASE 0.238 0.220 0.225 0.249 0.229 0.243 0.229 0.234

D
en

se
+

sp
ar

se
w

.3
sy

st
em

s BM25 + SPLADEFR-BASE + DPRFR-BASE 0.228 0.267 0.297 0.301† 0.296 0.310† 0.263 0.287
BM25 + SPLADEFR-BASE + ColBERTFR-BASE 0.260 0.281 0.308† 0.308† 0.300† 0.314† 0.266 0.282
BM25 + DPRFR-BASE + ColBERTFR-BASE 0.238 0.289 0.302† 0.308† 0.287 0.314† 0.257 0.263
SPLADEFR-BASE + DPRFR-BASE + ColBERTFR-BASE 0.226 0.232 0.229 0.250 0.229 0.249 0.212 0.233

A
ll BM25 + SPLADEFR-BASE + DPRFR-BASE + ColBERTFR-BASE 0.254 0.275 0.307† 0.315† 0.300† 0.323† 0.260 0.277

Table 3: Out-of-domain recall@10 results on LLeQA dev set. We report performance of normalized score fusion
using both equal and tuned weights between systems. Hybrid combinations that improve over each of their
constituent systems are highlighted in green , while those that underperform compared to one or more of their
systems are marked in red . † indicates competitive performance with state-of-the-art BGE-M3DENSE (30.6% R@10).

gal domain and assess the effectiveness of fusion
techniques in this in-domain context. Specifically,
we explore the following question: Assuming a
limited amount of domain-specific labeled data,
to what extent can specialized retrievers and their
fusion enhance performance within the legal do-
main? To address this question, we fine-tune our
domain-general neural retrievers, initially trained
on mMARCO-fr, on the 1.5K training questions
from LLeQA. We denote the resulting models with
the FR-LEX subscript in the remainder of the paper.

Main results. Table 4 presents the in-domain per-
formance of our specialized retrieval models. In
line with previous findings (Karpukhin et al., 2020;
Khattab and Zaharia, 2020; Formal et al., 2021b;
Nogueira et al., 2019), we note substantial improve-
ments across all models compared to the zero-shot
setting, with each now significantly outperforming
the robust BM25 baseline. Interestingly, our single-
vector dense retriever, DPRFR-LEX, surpasses all the
other approaches, including the more computation-
ally demanding monoBERTFR-LEX cross-encoder on
smaller recall cutoffs. These results underscore the
effectiveness of neural methods when trained in-
domain, even with relatively limited sample sizes.

Is task-adaptive pre-finetuning beneficial?
Here, we study the hypothesis that performing
an intermediary finetuning step on a task-related
dataset before finetuning on the target dataset can
help enhance downstream performance (Dai and

Callan, 2019; Li et al., 2020), especially when train-
ing samples in the target domain are scarce (Zhang
et al., 2020). We therefore compare two learning
strategies: the first directly finetunes the pretrained
CamemBERT backbone on the specialized LLeQA
dataset, while the second (which we adopted as our
default approach) incorporates a pre-finetuning step
on the domain-general mMARCO-fr dataset. We
find this intermediary phase to consistently improve
in-domain performance at higher recall cutoffs
across all bi-encoder models, as shown in Table 5.
However, at lower recall cutoffs, pre-finetuning
benefits dense bi-encoders only, with SPLADEFR-LEX

experiencing diminished performance. This strat-
egy does not appear to yield improvements for the
monoBERTFR-LEX cross-encoder.

Does fusion still help with specialized retrievers?
Table 6 highlights the in-domain performance of
hybrid combinations previously assessed in a zero-
shot setting. We now observe a very distinct pattern:
around 70% of these combinations lead to deterio-
rated performance compared to using one of their
constituent systems only. Among the 27 (out of
88) configurations that do show improvement, 23
leverage NSF with weights tuned in-domain, while
only four combinations (i.e., 5% in total) achieve
superior performance without prior tuning. Fur-
thermore, the performance gap between individual
systems and their hybrid combinations is consider-
ably narrower within this in-domain context. While
a two-system hybrid fusion can yield up to a 7.1%
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Model R@1k R@500 R@100 R@10 RP
D

ev

BM25 0.634 0.577 0.457 0.232 0.122
SPLADEFR-LEX 0.925 0.889 0.792 0.535 0.334

DPRFR-LEX 0.948 0.927 0.855 0.595 0.462
ColBERTFR-LEX 0.892 0.852 0.747 0.434 0.255

monoBERTFR-LEX 0.967 0.942 0.805 0.430 0.219

Te
st

BM25 0.742 0.672 0.537 0.367 0.163
SPLADEFR-LEX 0.903 0.857 0.687 0.434 0.102

DPRFR-LEX 0.937 0.916 0.801 0.558 0.244
ColBERTFR-LEX 0.841 0.800 0.679 0.432 0.125

monoBERTFR-LEX 0.980 0.939 0.746 0.473 0.143

Table 4: In-domain performance on LLeQA dev and
test sets. We train each model five times with different
seeds and report the best based on the dev set results.

Model Recall at cut-off k ∆ Avg.

@1000 @500
DPRFR-LEX 0.925 / 0.933 0.888 / 0.905 +1.3%
SPLADEFR-LEX 0.863 / 0.878 0.817 / 0.821 +1.0%
ColBERTFR-LEX 0.806 / 0.835 0.777 / 0.806 +2.9%
monoBERTFR-LEX 0.967 / 0.967 0.928 / 0.927 -0.1%

@50 @10
DPRFR-LEX 0.685 / 0.706 0.526 / 0.541 +1.8%
SPLADEFR-LEX 0.617 / 0.596 0.402 / 0.403 -1.0%
ColBERTFR-LEX 0.593 / 0.599 0.388 / 0.416 +1.7%
monoBERTFR-LEX 0.632 / 0.629 0.353 / 0.335 -1.2%

Table 5: In-domain recall@k performances on LLeQA test
set without / with pre-finetuning on mMARCO-fr. We
report the means across 5 runs with different seeds.
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Figure 4: Effect of weight tuning in normalized score fusion between BM25 and DPRFR-{LEX,BASE} on LLeQA dev set.

R@10 improvement over the best single system in
zero-shot scenarios, this enhancement does not ex-
ceed 1.4% once the models are trained in-domain.
Appendix C.1 further discusses that degradation.

How does α in paired NSF affect performance?
Finally, we evaluate the impact of weight tuning on
the in-domain performance of NSF in a paired con-
figuration, where one system is assigned a weight
α and the other 1−α. We select the best per-
forming two-system combination from Table 6, i.e.,
BM25+DPRFR-LEX. For comparison, we also report
performance of this combination in a zero-shot con-
text and that of RRF in both scenarios, as depicted
in Figure 4. We find that integrating BM25 of-
fers minimal benefits once DPRFR is domain-tuned,
with equal weighting between both systems consis-
tently leading to worse performance. This finding
contrasts starkly with the out-of-distribution set-
ting, where combining both systems consistently
improves performance compared to using one of
them alone, regardless of the α weight assigned.

5 Related Work

Statute law retrieval. Returning the relevant leg-
islation to a short legal question is notably chal-

lenging due to the linguistic disparity between the
specialized jargon of legal statutes (Charrow and
Crandall, 1978) and the plain language typically
used by laypeople. Research on statute retrieval
has traditionally focused on text-level similarity
between queries and candidate documents, with
earlier methods employing lexical approaches such
as TF-IDF (Kim and Goebel, 2017; Dang et al.,
2019) or BM25 (Wehnert et al., 2019; Gain et al.,
2021). With advancements in representation learn-
ing techniques (Vaswani et al., 2017; Devlin et al.,
2019), attention has shifted towards dense retrieval
to enhance semantic matching capabilities. For
instance, Louis and Spanakis (2022) demonstrate
that supervised single-vector dense bi-encoders sig-
nificantly outperform TF-IDF weighting schemes.
Su et al. (2024) explore various dense bi-encoder
models trained on different domains and reached
similar conclusions. Santosh et al. (2024) further
push performance of dense bi-encoders by introduc-
ing a dynamic negative sampling strategy tailored
to law. In parallel, some studies have begun incor-
porating legal knowledge into the retrieval process.
For example, Louis et al. (2023) propose a graph-
augmented dense retriever that uses the topological
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Method BCF RRF NSFMIN-MAX NSFZ-SCORE NSFPERCENTILE

Equal Tuned Equal Tuned Equal Tuned

BM25 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232
DPRFR-LEX 0.595 0.595 0.595 0.595 0.595 0.595 0.595 0.595
SPLADEFR-LEX 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535
ColBERTFR-LEX 0.434 0.434 0.434 0.434 0.434 0.434 0.434 0.434

BM25 + SPLADEFR-LEX 0.385 0.457 0.417 0.570 0.350 0.561 0.369 0.450
DPRFR-LEX + ColBERTFR-LEX 0.546 0.541 0.577 0.609† 0.592 0.608† 0.464 0.555

BM25 + DPRFR-LEX 0.391 0.485 0.398 0.619† 0.326 0.618† 0.351 0.452
BM25 + ColBERTFR-LEX 0.363 0.412 0.360 0.470 0.288 0.473 0.383 0.437
SPLADEFR-LEX + DPRFR-LEX 0.573 0.586 0.582 0.613† 0.586 0.612† 0.587 0.604
SPLADEFR-LEX + ColBERTFR-LEX 0.514 0.509 0.537 0.557 0.543 0.553 0.464 0.519

BM25 + SPLADEFR-LEX + DPRFR-LEX 0.431 0.606† 0.533 0.629† 0.447 0.625† 0.395 0.472
BM25 + SPLADEFR-LEX + ColBERTFR-LEX 0.427 0.535 0.505 0.575 0.402 0.578 0.412 0.475
BM25 + DPRFR-LEX + ColBERTFR-LEX 0.429 0.564 0.481 0.624† 0.372 0.623† 0.402 0.468
SPLADEFR-LEX + DPRFR-LEX + ColBERTFR-LEX 0.548 0.579 0.579 0.617† 0.587 0.620† 0.480 0.560

BM25 + SPLADEFR-LEX + DPRFR-LEX + ColBERTFR-LEX 0.457 0.603† 0.561 0.628† 0.485 0.627† 0.418 0.477

Table 6: In-domain recall@10 results on LLeQA dev set. The red region highlights hybrid combinations that
perform worse than one or more of their systems, while the green region emphasizes combinations that outperform
each of their constituent systems. † indicates improved performance over DPRFR-LEX alone.

structure of legislation to enrich article content in-
formation. Meanwhile, Qin et al. (2024) develop
a generative model that learns to represent legal
documents as hierarchical semantic IDs before as-
sociating queries with their relevant document IDs.
Despite this progress, no studies have explored the
potential of combining diverse retrieval approaches
in the legal domain, especially in zero-shot settings
using domain-general models, which may individ-
ually struggle due to the specialized nature of law.

French language representation. Existing re-
search in NLP predominantly focuses on English-
centric directions (ARR, 2024). In French, ef-
forts have been made in developing monolingual
pretrained language models in various configura-
tions: encoder-only (Martin et al., 2020; Le et al.,
2020; Antoun et al., 2023), seq2seq (Eddine et al.,
2021), and decoder-only (Louis, 2020; Simoulin
and Crabbé, 2021; Müller and Laurent, 2022; Lau-
nay et al., 2022). Despite these advancements, spe-
cialized models for French remain scarce, largely
due to the limited availability of high-quality la-
beled data. This scarcity is particularly pronounced
in the field of retrieval, with few exceptions (Ar-
barétier, 2023). As a result, practitioners typically
rely on larger multilingual models (Wang et al.,
2024; Chen et al., 2024) that distribute tokens and
parameters across various languages, often leading
to sub-optimal downstream performance due to the
curse of multilinguality (Conneau et al., 2020).

6 Conclusion

Our work explores the potential of combining dis-
tinct retrieval methods in a non-English specialized
domain, specifically French statute laws. Our find-
ings reveal that supervised domain-general mono-
lingual models, trained with limited resources, can
rival leading multilingual retrieval models, though
are more vulnerable to out-of-distribution data.
However, combining these monolingual models
almost consistently enhances their zero-shot per-
formance, regardless of the fusion technique em-
ployed, with certain combinations achieving state-
of-the-art results in the legal domain. We show
the complementary nature of these models and find
they can effectively compensate for each other’s
mistakes, explaining the performance boost. More-
over, we confirm that in-domain training signifi-
cantly enhances the effectiveness of neural retrieval
models, while pre-finetuning can help with dense
bi-encoders. Finally, our results indicate that fusion
generally does not benefit specialized retrievers and
only improves performance when scores are fused
with carefully tuned weights, as equal weighting
consistently leads to reduced performance. Over-
all, these insights suggest that for specialized do-
mains, finetuning a single bi-encoder generally
yields optimal results when (even limited) high-
quality domain-specific data is available, whereas
fusion should be preferred when such data is not
accessible and domain-general retrievers are used.
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Limitations

We identify three core limitations in our research.
Firstly, our analysis specifically targets two un-

derexplored areas – the legal domain and the
French language – and is therefore confined to the
only dataset available in this niche (LLeQA; Louis
et al., 2024). This raises questions about the gen-
eralizability of our findings across broader French
legal resources, such laws from different French-
speaking jurisdictions (e.g., France, Switzerland,
or Canada) or across legal topics beyond those cov-
ered in LLeQA.

Secondly, our study focuses solely on end-to-
end retrievers – i.e., systems that identify and fetch
all potentially relevant items from an entire knowl-
edge corpus – as opposed to ranking methods that
take the output of retrievers and sort it. Specifi-
cally, we deliberately omit the monoBERTFR ranker
due to its prohibitive inference costs for end-to-end
retrieval – a brute-force search across all 28K ar-
ticles in LLeQA requires about two minutes per
query on GPU, a latency 9500× higher than that
of single-vector retrieval, making it impractical for
real-world retrieval. We let the exploration of fu-
sion with re-rankers for future work.

Lastly, although beyond the scope of our work, it
remains an open question whether the present find-
ings are applicable to other non-English languages
within different highly specialized domains.

Ethical Considerations

The scope of this work is to drive research forward
in legal information retrieval by uncovering novel
insights on fusion strategies. We believe this is an
important application field where more research
could improve legal aid services and access to jus-
tice for all. We do not foresee major situations
where our methodology and findings would lead to
harm (Tsarapatsanis and Aletras, 2021). Neverthe-
less, we emphasize that the premature deployment
of prominent retrieval models not tailored for the
legal domain poses a tangible risk to laypersons,
who may uncritically rely on the provided informa-
tion when faced with a legal issue and inadvertently
worsen their personal situations.
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A Methodology Details

Formally speaking, a statutory article retrieval sys-
tem takes as input a question q along with a corpus
of law articles C, and returns a ranked list Rq ⊂ C
of the supposedly relevant articles, sorted by de-
creasing order of relevance.

A.1 Retrieval Models
BM25 (Robertson et al., 1994) is an unsuper-
vised probabilistic weighting scheme that estimates
relevance based on term-matching between high-
dimensional sparse vectors using statistical prop-
erties such as term frequencies, document frequen-
cies, and document lengths. Specifically, it calcu-
lates a relevance score s(q, a) : V |q| × V |a| → R+

between query q and article a as a sum of contri-
butions of each query term t from vocabulary V
appearing in the article, i.e.,

sBM25(q, a) =
∑
t∈q

log

( |C| − df(t) + 0.5

df(t) + 0.5

)
· tf(t, a)·(k1+1)

tf(t, a)+k1·
(
1−b+b · |a|

avgal

) ,
(1)

where the term frequency tf(t, a) : V1×V |a| → Z+

is the number of occurrences of term t in article a,
the document frequency df(t) : V1 → Z+ is the
number of articles within the corpus C that contain
term t, k1 ∈ R+ and b ∈ [0, 1] are constant param-
eters, and avgal is the average article length.
BM25 remains widely used due to its balance be-
tween simplicity and robustness, often compet-
ing with modern retrieval methods (Thakur et al.,
2021) while being extremely efficient and requiring
no training. However, its reliance on exact-term
matching restricts its ability to understand seman-
tics, capture contextual relationships, and handle
synonyms or rare terms.

DPRFR-{BASE,LEX} are based on the widely-adopted
siamese bi-encoder architecture (Gillick et al.,
2018), which consists of a learnable text embed-
ding function E(i;Ω) : Vn 7→ Rn×d that maps an
input text sequence i of n terms from vocabulary
V to d-dimensional real-valued term vectors, i.e.,

E(i;Ω) = Hi = [hi,CLS,hi,1, · · · ,hi,n] , (2)

and calculates a relevance score between query q
and article a by operating on their independently
computed bags of contextualized term embeddings
Hi ∈ Rn×d. Our single-vector dense representa-
tion models obtain this score by performing

sSINGLE(q, a) = h∗
q · h∗

a, (3)

where h∗
i ∈ Rd is the global representation of se-

quence i, derived by mean pooling across the se-
quence term embeddings, i.e.,

h∗
i = AvgP(Hi) =

1

|i|H
T
i 1|i|. (4)

The models are trained via optimization of the con-
trastive NT-Xent loss (Chen et al., 2020; Gao et al.,
2021b), which aims to learn a high-quality embed-
ding function so that relevant query-article pairs
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Figure 5: High-level illustration of the four prominent neural retrieval architectures explored in this study.

achieve higher similarity than irrelevant ones. Let
B = {(qi, a+i , a−H,i)}Ni=1 be a batch of N training
instances, each comprising a query qi associated
with a positive article a+i and a hard negative ar-
ticle a−H,i. By considering the articles paired with
all other queries within the same batch, we can en-
rich each training triple with an additional set of
2(N−1) in-batch negatives A−

IB,i = {a+j , a−H,j}Nj ̸=i.
Given these augmented training samples, we con-
trastively optimize the negative log-likelihood of
each positive article such that

LNT-XENT = − log
es(qi,a

+
i )/τ∑

a∈{a+i ,a−H,i}∪A
−
IB,i

es(qi,a)/τ
,

(5)
where τ ∈ R+ is a temperature hyper-parameter
that controls the concentration level of the distribu-
tion (Hinton et al., 2015). We enforce ∥h∗

i ∥ = 1
via a ℓ2-normalization layer such that Equation (3)
computes the cosine similarity.
Single-vector dense models proved to effectively
model language nuances and contextual infor-
mation (Karpukhin et al., 2020). Furthermore,
the independent encoding enables offline pre-
computation of article embeddings, resulting in
low latency query-time retrieval. However, its ef-
fectiveness can be limited by the quality and di-
versity of its training data, potentially leading to
sub-optimal performance with out-of-distribution
content (Thakur et al., 2021).

SPLADEFR-{BASE,LEX} follow SPLADE-max (For-
mal et al., 2021a), which uses the same single-
vector scoring mechanism as its dense represen-
tation counterpart, outlined in Equation (3), but
operates on different global sequence representa-
tions derived as follows:

h∗
i = MaxP

(
sat

(
transf(Hi)W

T
MLM+bMLM)

))
,

(6)

where transf(·;γ) : Rn×d → Rn×d first trans-
forms the contextualized term embeddings using

transf(·;γ) = LayerNorm(GELU(Linear(·))),
(7)

preparing them for subsequent projection onto the
vocabulary space via the MLM classification head
WMLM ∈ R|V|×d, with bias bMLM ∈ R|V|. The
function sat(·) : Rn×|V| → Rn×|V| then applies
ReLU to ensure positive token activations, before
performing log-saturation to maintain sparsity and
prevent some tokens from dominating:

sat(·) = log (1+ReLU(·)) . (8)

Finally, a max pooling operation MaxP(·) :
Rn×|V| → R|V| is applied to distill the global se-
quence representation. The model is trained by
jointly optimizing the contrastive NT-Xent objec-
tive, presented in Equation (5), and the FLOPS
regularization loss (Paria et al., 2020), which aims
to impose sparsity on the produced embeddings
while encouraging an even distribution of the non-
zero elements across all the dimensions to ensure
maximal speedup. This is achieved by minimiz-
ing a smooth relaxation of the average number of
floating-point operations necessary to compute the
dot product between two embeddings (as outlined
in Equation (3)), defined as follows:

ℓFLOPS =

|V|∑
j=1

p̄2j =

|V|∑
j=1

 1

|B|

|B|∑
i=1

h∗
ij

2

(9)

where p̄j ≈ |B|−1
∑|B|

i=1 1[h
∗
ij ̸=0] is the empirical

estimation of the activation probability for token
tj ∈ V over a batch B. The overall loss is given by

LSPLADE = LNT-XENT + λqℓ
q
FLOPS + λaℓ

a
FLOPS, (10)

where λi controls the strength of the regulariza-
tion, with higher values typically encouraging the
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model to learn sparser representations, therefore
enhancing efficiency yet often at the expense of
effectiveness. By applying separate regularization
weights for queries and articles, greater emphasis
can be placed on sparsity for queries, which is crit-
ical for fast inference with inverted indexes.
As its representations are grounded in the encoder’s
vocabulary, SPLADE enhances interpretability and
facilitates explanations of observed rankings. It
also exhibits strong generalization capabilities on
out-of-distribution data and the sparsity of its vec-
tors enables the use of inverted indexes for fast
inference. Nevertheless, learning sparse represen-
tations in high-dimensional spaces poses specific
challenges: factors such as the tokenization type or
the initial distribution of MLM weights can lead to
model divergence (Formal, 2023).

ColBERTFR-{BASE,LEX} use the fine-granular late in-
teraction scoring mechanism of ColBERT (Khattab
and Zaharia, 2020), which calculates the similar-
ity across all pairs of query and article token em-
beddings, applies max-pooling across the resulting
scores for each query term, and then sum the maxi-
mum values across query terms to derive the overall
relevance estimate, i.e.,

sMULTI(q, a) =

|q|∑
i=1

|a|
max
j=1

hq,i · ha,j . (11)

We train the model by jointly optimizing two con-
trastive objectives, namely the pairwise softmax
cross-entropy loss used in ColBERTv1, defined as

LPAIRSM-CE = − log
es(qi,a

+
i )

ea(qi,a
+
i ) + es(qi,a

−
H,i)

, (12)

and the NT-Xent loss, added as an enhancement for
optimizing ColBERTv2 (Santhanam et al., 2022b).
ColBERT’s fine-grained late interaction between
term embeddings demonstrates greater effective-
ness and robustness to out-of-distribution data com-
pared to single-vector dense bi-encoders (Thakur
et al., 2021), while enabling result interpretability.
However, its computational complexity requires
sophisticated engineering schemes and low-level
optimizations for efficient large-scale deployment
(Santhanam et al., 2022a).

monoBERTFR-{BASE,LEX} exploit the encoder-only
cross-attention model structure (Nogueira and Cho,
2019), which uses a text embedding model simi-
lar to the one defined in Equation (2) to perform

all-to-all interactions across terms from concate-
nated query-article pairs, before deriving a rele-
vance score through binary classification on the
pair representation, i.e.,

sMONO(q, a) = σ
(
transf

(
h∗
[q;a]

)
WT

out+bout

)
,

(13)

where h∗
[q;a] ∈ Rd is obtained through a first token

pooling operation FirstP(·) : Rn×d → Rd, which
extracts the special CLS token representation of the
concatenated sequence:

h∗
[q;a] = FirstP

(
H[q;a]

)
= h[q;a],CLS. (14)

The CLS token embedding is then transformed with
transf(·;θ) : Rd → Rd such that

transf(·;θ) = tanh(Linear(·)), (15)

before being projected to a real-valued score via
a linear layer Wout ∈ R1×d with bias bout ∈ Rd.
Finally, the sigmoid function σ bounds the resulting
score to the interval [0, 1]. The model is optimized
via the binary cross-entropy training objective

LBCE =− yi · log (s(qi, ai))
− (1− yi) · log (1− s(qi, ai)) ,

(16)

where yi is the ground-truth relevance label for
query-article pair (qi, ai).
The rich interaction mechanism of such a model
allows to capture complex relationships and often
achieve state-of-the-art performance in retrieval
tasks (Hofstätter et al., 2020). However, its high
computational complexity makes it impractical for
large-scale or real-time retrieval scenarios, limiting
its use to re-ranking small candidate sets only.

A.2 Late Fusion Techniques
A late fusion function f(q, a,M) : V |q| × V |a| ×
M → R+ computes a relevance score between
query q and article a by combining the ranked lists
of articles Rm ⊂ C returned separately by a set of
retrieval models M.

Borda count fusion (BCF) uses a straightfor-
ward approach – originally developed as a voting
mechanism (de Borda, 1781) – which combines
the ranks from different systems linearly (Ho et al.,
1994) such that

fBCF(q, a,M) =
∑
m∈M

|Rm|−πm(q, a)+1, (17)
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where πm(q, a) ∈ [1, |Rm|] denotes the rank of
article a in the list of results returned by model m
for query q, i.e.,

πm(q, a) = 1 +
∑
ai∈C

1[sm(q, ai) > sm(q, a)].

(18)

Reciprocal rank fusion (RRF) refines the previ-
ous approach by introducing a non-linear weight-
ing scheme that gives more emphasis to top-ranked
documents (Cormack et al., 2009), i.e.,

fRRF(q, a,M) =
∑
m∈M

1

k + πm(q, a)
, (19)

where k > 0 is a constant set to 60 by default.

Normalized score fusion (NSF) linearly com-
bines the output relevance scores from distinct re-
trieval models (Lee, 1995) such that

fNSF(q, a,M) =
∑
m∈M

αmŝm(q, a), (20)

where the scalars αm, controlling the relative im-
portance of each model m in the fused score, are
non-negative and sum to one. These weights can be
varied or uniformly distributed, as in CombSUM
(Shaw and Fox, 1994). Given that the original
model-specific scores can be unbounded, they are
generally normalized prior to fusion, using either
min-max scaling where

ŝm(q, a) =
sm(q, a)−min

|C|
i=1 sm(q, ai)

max
|C|
i=1 sm(q, ai)−min

|C|
i=1 sm(q, ai)

,

(21)
or z-score scaling such that

ŝm(q, a) =
sm(q, a)− µm(q)

σm(q)
, (22)

where µm(q) is the mean score across all candidate
articles in the ranked list for query q returned by
model m, and σm(q) denotes the standard devia-
tion of these scores. Beyond these conventional
scaling methods, we also investigate a percentile-
based normalization, the rationale and specifics of
which are elaborated in Section 3.

A.3 Evaluation Metrics
Let rel(q, a) : Vm × Vn → {0, 1} be a binary
relevance function, indicating whether an article a
from the corpus C is relevant to a query q. Assume
that Rq = {(i, a)}ki=1 denotes the ranked list of
articles returned by a retrieval system, truncated at
the top-k results. We define the metrics mentioned
in Section 2.3 as follows.

Recall@k. The metric quantifies the proportion of
relevant articles retrieved within the top-k ranked
results for query q, compared to the total number
of relevant articles in the corpus C, i.e.,

R@k(q,Rq) =

∑
(i,a)∈Rq

rel(q, a)∑
a∈C rel(q, a)

. (23)

Reciprocal rank@k. The metric takes the inverse
of the position at which the first relevant article
appears within the top-k results for query q, i.e.,

RR@k(q,Rq) = max
(i,a)∈Rq

rel(q, a)

i
. (24)

R-precision. The metric computes the ratio of
relevant articles within the top-N retrieved results
for query q, where N represents the total number
of relevant articles for that query, i.e.,

RP(q,Rq) =

∑
(i,a)∈{Rq}Ni=1

rel(q, a)

N
. (25)

For all metrics, we report the average scores over a
set of Q queries.

A.4 Counting FLOPs
Below, we detail our methodology to estimate the
inference complexity per query in terms of floating
point operations (FLOPs). Except for BM25, the
main computational cost derives from the Trans-
former encoder’s forward pass, executed once with
bi-encoder models to encode the query and repeat-
edly in cross-encoders to process each query-article
pair. We leverage DeepSpeed’s profiler to mea-
sure the forward pass cost of each neural retriever.3

Queries are assumed to be 15 tokens and articles
157 tokens, as per their respective average lengths
in LLeQA.

BM25. In the BM25 scoring formula, outlined
in Equation (1), several elements can be pre-
computed and cached to streamline computations
during inference. These include the inverse docu-
ment frequency (IDF) for each term, the normal-
ized document lengths adjusted by the parameters
k1 and b, and the constant (k1+1). For each query
term and candidate document, the process involves
four primary operations. First, the term frequency
(TF), retrieved via a simple lookup, is multiplied
by the pre-computed IDF and (k1+1). The result
is then added to the stored normalized document

3https://www.deepspeed.ai/tutorials/
flops-profiler/

https://www.deepspeed.ai/tutorials/flops-profiler/
https://www.deepspeed.ai/tutorials/flops-profiler/
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French PLM Backbone #Params Architecture #L Pre-training MRR@10 R@100 R@500

DistilCamemBERT (Delestre and Amar, 2022) 68.1M BERT 6 MLM+KL+COS 0.268 0.764 0.879
ELECTRA-frBASE (Schweter, 2020) 110.0M BERT 12 RTD 0.234 0.690 0.816
CamemBERTBASE (Martin et al., 2020) 110.6M BERT 12 MLM 0.285 0.778 0.891
CamemBERTaBASE (Antoun et al., 2023) 111.8M DeBERTa 12 RTD 0.248 0.696 0.822

Table 7: In-domain retrieval performances on mMARCO-fr small dev set (Bonifacio et al., 2021) for single-vector
dense representation models trained using various French pretrained autoencoding language models as their text
embedding backbone. MLM, RTD, KL, and COS denote the masked language modeling (Devlin et al., 2019),
replaced token detection (Clark et al., 2020), Kullback-Leibler divergence (Radford et al., 2018), and negative
cosine embedding (Sanh et al., 2019) training objectives, respectively. #L indicates the number of encoder layers.

length. Finally, this sum is used as the denominator
in dividing the product of TF, IDF, and (k1+1).
These four operations – two multiplications, one ad-
dition, and one division – per term-article pair lead
to an overall computational cost of 4|q||C| FLOPs
for searching across the whole corpus.

SPLADEFR-BASE. At indexing time, this model cre-
ates a pseudo-TF for each token t in the vocabulary
by scaling and rounding the corresponding activa-
tion weights in sparse article representations. This
enables the construction of a pseudo text collection
where each term t is repeated TF(t, a) times for ar-
ticle a. During inference, obtaining the query repre-
sentation requires a single forward pass. For each
non-zero term in that representation, the search
process involves three core steps: accessing the
inverted list for the term (a negligible lookup oper-
ation), multiplying the query term weight by each
article term weight from that list, and adding each
result to the corresponding article’s score accumu-
lator. Consequently, for each term-article pair, the
operations include one multiplication and one ad-
dition. With CFW representing the cost of the en-
coder’s forward pass, |h+

q | the average number of
non-zero terms in the query representation, and
|LIV| the average length of the inverted lists for
these terms, the total computational complexity is
estimated as CFW + 2|h+

q ||LIV| FLOPs.4

Single-vector dense bi-encoders. With these
models, a brute-force search across all articles
from corpus C necessitates |C| inner products be-
tween d-dimensional article representations – each
involving d multiplications and d− 1 additions.
Consequently, the total inference cost amounts to
CFW + (2d−1)|C| operations.

4On LLeQA, the FR-BASE model activates an average
of 178 tokens per query, and the associated index features
inverted lists of 378 elements on average.

ColBERTFR-BASE. For each candidate article, this
model computes Equation (11) with the query and
candidate token representations of d dimensions.
For each query term, this computation requires
2d|q||a| operations for token-level inner products,
|q||a| to identify the row-wise max, and |q| for the
final average. When performing brute-force search
across the entire corpus, the inference complexity
is estimated as CFW + |q|2(2d|a|+|a|+1)|C| FLOPs.

monoBERTFR-BASE. This model requires one for-
ward pass per article to assess, incurring a high
computational cost that typically limits their use to
re-ranking a set of candidates returned by a cheaper
retrieval model. To reflect that practice, we report
the number of operations needed to score a fixed
set of 1000 articles, resulting in 103CFW FLOPs.

B Implementation Details

B.1 Embedding Backbone

To ensure a fair comparison between the differ-
ent matching paradigms detailed in Section 2.1,
irrespective of the underlying text embedding
model’s capacity, we choose to exploit the same
pretrained autoencoding language model across
all our neural retrievers. To explore the efficacy
of existing French embedding models for text re-
trieval, we finetune four prominent pretrained mod-
els on mMARCO-fr, including CamemBERTBASE

(Martin et al., 2020), ELECTRA-frBASE (Schweter,
2020), DistilCamemBERT (Delestre and Amar,
2022), and CamemBERTaBASE (Antoun et al., 2023).
We limit our investigation to the performance
of single-vector dense bi-encoders to minimize
environmental impact. Table 7 presents the re-
sults on the mMARCO-fr small dev set, revealing
that CamemBERTBASE significantly outperforms the
other French text encoders. Following these find-
ings, we select this model as the common backbone
encoder for all our neural retrievers.
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Training data (→) mMARCO-fr LLeQA

Learned model (→) DPRFR-BASE SPLADEFR-BASE ColBERTFR-BASE monoBERTFR-BASE DPRFR-LEX SPLADEFR-LEX ColBERTFR-LEX monoBERTFR-LEX

Configuration
Max query length 128 32 32 - 512 64 64 -
Max article length 128 128 128 256− |q| 512 512 512 512− |q|
Pooling strategy mean max - cls mean max - cls
Similarity function cos cos cos - cos cos cos -

Hyperparameters
Steps 66k 100k 200k 20k 1k 2k 1k 2k
Batch size 152 128 128 128 64 32 64 64
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Weight decay 0.01 0.01 0.0 0.01 0.01 0.01 0.0 0.01
Peak learning rate 2e-5 2e-5 5e-6 2e-5 2e-5 2e-5 5e-6 2e-5
Learning rate decay linear linear linear constant constant constant constant constant
Warm-up ratio 0.01 0.04 0.1 0.0 0.0 0.0 0.0 0.0
Gradient clipping 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Softmax temperature 0.05 0.05 1.0 - 0.05 0.05 1.0 -

Energy
Hardware V100 H100 H100 H100 H100 H100 H100 H100
Thermal design power (W) 300 310 310 310 310 310 310 310
Training time (h) 14.1 12.9 18.4 1.5 0.22 0.30 0.18 0.17
Power consumption (kWh) 4.2 4.0 5.7 0.5 0.07 0.09 0.06 0.05
Carbon emission (kgCO2eq) 1.8 1.7 2.5 0.2 0.03 0.04 0.03 0.02

Table 8: Implementation details for our learned domain-general (FR-BASE) and domain-specific (FR-LEX) retrievers.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scaled spladefr-lex scores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
d

d
p
r

f
r
-l

e
x

sc
or

es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scaled colbertfr-lex scores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
d

sp
l
a
d
e

f
r
-l

e
x

sc
or

es

Positive pairs Negative pairs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scaled dprfr-lex scores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
d

c
o
l
b
e
r
t

f
r
-l

e
x

sc
or

es

Figure 6: Distribution of paired relevance scores from our learned specialized retrievers on around 3,000 query-
article pairs from the LLeQA dev set, evenly balanced between positive and negative instances.

B.2 Optimization

Table 8 provides details on our models’ configu-
ration, training hyperparameters, and energy con-
sumption. Training and GPU-based experiments
are conducted on a single 80GB NVIDIA H100,
while CPU-based evaluations are performed on
a server with a 64-core AMD EPYC 7763 CPU
at 3.20GHz and 500GB of RAM. We implement,
train, tune, and monitor our models using the
following Python libraries: pytorch (Paszke
et al., 2019), transformers (Wolf et al.,
2020), sentence-transformers (Reimers
and Gurevych, 2019), colbert-ai (Khattab and
Zaharia, 2020), and wandb (Biewald, 2020).

C Additional Results

C.1 Complementarity of Specialized Models

To understand why fusion does not enhance the
performance of specialized retrievers, we examine

the complementarity of their relevance signals in
Figure 6. We sample approximately 1,500 positive
query-article pairs from the LLeQA dev set, along
with an equal number of random negatives, and
gather the scores assigned by the different mod-
els to each pair. Contrary to the zero-shot context,
we find that the output scores from the special-
ized models align closely, as shown by the linear
distribution of paired scores in Figure 6. Pairs
that receive high relevance scores from one system
typically receive similar scores from others, and
the same applies to lower scores. We hypothesize
that since all retrieval models were trained on a
limited number of the exact same domain-specific
data with the same primary contrastive learning
objective, they converged towards learning similar
relevance signals, with some models like DPRFR-LEX

developing more nuanced ones. Consequently, fus-
ing models that have learned related signals, but
with varying levels of accuracy, generally results in

https://github.com/pytorch/pytorch
https://github.com/huggingface/transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/stanford-futuredata/ColBERT
https://github.com/wandb/wandb
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# BM25 DPRFR-BASE SPLADEFR-BASE ColBERTFR-BASE

Min-max scaling
5 .50 0 .50 0
6 0 .25 0 .75
7 .40 .60 0 0
8 .40 0 0 .60
9 0 .70 .30 0
10 0 0 .20 .80
11 .25 .25 .50 0
12 .35 0 .40 .25
13 .35 .25 0 .40
14 0 .10 .20 .70
15 .30 .35 .10 .25

Z-score scaling
5 .40 0 .60 0
6 0 .25 0 .75
7 .30 .70 0 0
8 .25 0 0 .75
9 0 .80 .20 0
10 0 0 .20 .80
11 .20 .40 .40 0
12 .20 0 .40 .40
13 .20 .30 0 .50
14 0 .40 .10 .50
15 .15 .45 .10 .30

Percentile scaling
5 .60 0 .40 0
6 0 .05 0 .95
7 .50 .50 0 0
8 .40 0 0 .60
9 0 .85 .15 0
10 0 0 .20 .80
11 .45 .05 .50 0
12 .55 0 .35 .10
13 .50 .40 0 .10
14 0 .05 .70 .25
15 .50 .05 .40 .05

Table 9: Optimally tuned weights for the normalized
score fusion results presented in Table 3 (zero-shot).

# BM25 DPRFR-LEX SPLADEFR-LEX ColBERTFR-LEX

Min-max scaling
5 .15 0 .85 0
6 0 .85 0 .15
7 .10 .90 0 0
8 .15 0 0 .85
9 0 .70 .30 0
10 0 0 .85 .15
11 .05 .60 .35 0
12 .15 0 .75 .10
13 .10 .80 0 .10
14 0 .60 .25 .15
15 .05 .60 .30 .05

Z-score scaling
5 .10 0 .90 0
6 0 .65 0 .35
7 .05 .95 0 0
8 .05 0 0 .95
9 0 .70 .30 0
10 0 0 .75 .25
11 .05 .55 .40 0
12 .05 0 .75 .20
13 .05 .80 0 .15
14 0 .60 .25 .15
15 .05 .80 .05 .10

Percentile scaling
5 .05 0 .95 0
6 0 .95 0 .05
7 .05 .95 0 0
8 .10 0 0 .90
9 0 .85 .15 0
10 0 0 .95 .05
11 .05 .45 .50 0
12 .05 0 .90 .05
13 .05 .75 0 .20
14 0 .85 .10 .05
15 .05 .40 .50 .05

Table 10: Optimally tuned weights for the normalized
score fusion results presented in Table 6 (in-domain).

degraded performance compared to using the best
model alone.

C.2 Weight Tuning in NSF
Table 9 an Table 10 present the optimal weights
assigned to each retrieval system in zero-shot and
in-domain contexts, respectively, when using nor-
malized score fusion (NSF). These weights were
meticulously determined through extensive tuning
on the LLeQA dev set. Additionally, Figures 7 to
11 illustrate the variation in performance based on
the weights assigned to pairs of retrieval systems.
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Figure 7: Effect of weight tuning in NSF between BM25 & ColBERTFR-{LEX,BASE} on LLeQA dev set.
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Figure 8: Effect of weight tuning in NSF between BM25 & SPLADEFR-{LEX,BASE} on LLeQA dev set.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

αsplade

0

10

20

30

40

50

60

70

80

90

100

R
ec

al
l@

50
0

(%
)

+0.1 +0.2 +0.1 +0.8 +0.8 +0.7 +0.7 +0.8 +0.7 +0.3 +0.1 -0.2 -0.4 -0.7 -1.2
-2.5 -2.7 -3.4 -3.4 -3.9

+1.6
+3.6

+5.6 +6.1
+7.5 +8.3 +8.2 +8.7 +8.5 +9.1 +9.6 +9.6+10.0+10.0+9.4 +9.2 +9.0 +9.1 +8.8 +8.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

αsplade

0

10

20

30

40

50

60

70

80

90

100

R
ec

al
l@

10
(%

)

+0.2 +0.8 +1.1 +0.7 +1.8 +1.8 +1.2
-0.7 -0.6 -1.3 -1.6 -2.4 -2.3 -2.9 -3.4 -3.9 -4.8 -5.2 -5.2 -6.0

+0.8 +1.3 +2.0 +1.8 +2.9 +3.2 +2.5 +2.5 +1.9 +1.1 +0.2 -0.1 +0.1 +0.0 +0.3 +0.1 -0.2 -0.1 +0.0 -0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

αsplade

0

10

20

30

40

50

60

70

80

90

100

R
-p

re
ci

si
on

(%
)

+0.8 +0.3
+2.3 +2.1 +2.3 +1.8 +2.1

+0.5 +0.4 +0.0 +0.1 -1.1 -2.2
-3.5

-5.4
-6.8 -7.6

-9.2
-11.5

-12.9

+1.0 +2.0 +2.1 +2.3 +2.1 +2.3 +2.8 +2.5 +3.4 +3.4 +3.2 +3.3 +3.2 +3.7 +3.3 +3.1 +1.9 +1.8 +1.8 +1.6

Figure 9: Effect of weight tuning in NSF between SPLADEFR-{LEX,BASE} & DPRFR-{LEX,BASE} on LLeQA dev set.
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Figure 10: Effect of weight tuning in NSF between DPRFR-{LEX,BASE} & ColBERTFR-{LEX,BASE} on LLeQA dev set.
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Figure 11: Effect of weight tuning in NSF between ColBERTFR-{LEX,BASE} & SPLADEFR-{LEX,BASE} on LLeQA dev set.


