
Proceedings of the 31st International Conference on Computational Linguistics, pages 4359–4369
January 19–24, 2025. ©2025 Association for Computational Linguistics

4359

Fusion meets Function: The Adaptive Selection-Generation Approach in
Event Argument Extraction

Guoxuan Ding1,2, Xiaobo Guo1, Xin Wang1, Lei Wang1, Tianshu Fu1*, Nan Mu1, Daren Zha1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China,
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{dingguoxuan,guoxiaobo,wangxin,wanglei,futianshu,munan,zhadaren}@iie.ac.cn

Abstract

Event Argument Extraction is a critical task of
Event Extraction, focused on identifying event
arguments within text. This paper presents a
novel Fusion Selection-Generation-Based Ap-
proach, by combining the precision of selec-
tive methods with the semantic generation ca-
pability of generative methods to enhance ar-
gument extraction accuracy. This synergistic
integration, achieved through fusion prompt,
element-based extraction, and fusion learning,
addresses the challenges of input, process, and
output fusion, effectively blending the unique
characteristics of both methods into a cohe-
sive model. Comprehensive evaluations on
the RAMS and WIKIEVENTS demonstrate
the model’s competitive performance and ef-
ficiency.

1 Introduction

Event Argument Extraction (EAE) is a critical sub-
task in the field of Event Extraction, aiming to iden-
tify arguments of known events in text (Li et al.,
2022). For instance, in the sentence “Bryant de-
bated against Torres’s statement that tax reforms
were not benefitting the middle class in Florida.”
Here, debated serves as the trigger word, indicat-
ing a CONTACT.NEGOTIATE event. This event
involves multiple arguments such as Bryant (par-
ticipant), Torres (participant), tax reforms (topic),
and Florida (place), with the terms in parenthe-
ses representing their respective argument roles.
The challenge of EAE lies in accurately extracting
corresponding event arguments from texts under a
given event theme.

Traditional EAE methods are based on selective
models that focused on recognizing or tagging ex-
isting elements or patterns in texts (Yang et al.,
2019a), such as the paradigm of Sequence Label-
ing and Token Classification (Wang et al., 2020; Lu
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Bryant debated against Torres's statement that tax reforms
were not benefitting the middle class in Florida.

Selective models Generative models

Where is the place？

Florida 

What is the topic?

The topic is

tax reform.

event type: Contact.Negotiate

Figure 1: Difference Between Selective and Generative
Methods in Event Argument Extraction: Selective meth-
ods identify tokens in text for answer selection, while
generative methods employ natural language generation
to produce exhaustive answer sequences.

et al., 2021; Shi and Lin, 2019). While these meth-
ods utilize model structural complexity to adapt to
training data, their reliance on rote learning limit
their effectiveness in leveraging semantic informa-
tion, thus constraining their ability to uncover un-
known knowledge.

The advent of Pre-Trained Models (PTMs) has
led to a paradigm shift (Sun et al., 2022) in EAE,
emphasizing their advanced text generation and se-
mantic understanding. This shift is marked by a
move from traditional selective methods to Ma-
chine Reading Comprehension (Du and Cardie,
2020; Ma et al., 2022; Liu et al., 2020) for ex-
tracting answer spans within text through question
formulation. Simultaneously, there is a growing in-
clination towards generative methods, exemplified
by the Sequence-to-Sequence paradigm (Lu et al.,
2021; Li et al., 2021), which redefines EAE as a
sequence generation task.

Despite this progress, both selective and gener-
ative methods continue to face distinct challenges.
Selective methods, while precise and mature in
identifying specific text elements, often fall short
in deep semantic processing, a critical aspect for
comprehending intricate textual nuances. In con-
trast, generative methods excel in producing de-
tailed and nuanced outputs, but face hurdles in ac-
curately extracting pertinent information from their
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extensive, generated sequences. These challenges
highlight the need for balanced methodologies in
EAE, where the complementary strengths of se-
lection and generation methods work together to
enhance model performance.

Since both methods exhibit distinct input, pro-
cess, and output characteristics, we focus on the
following key questions to explore their integra-
tion:

• How can we effectively blend the unique in-
put characteristics of both methods within the
fusion model?

• In what ways can the distinct processing tech-
niques of each method be integrated to opti-
mize the overall workflow?

• What methods can be employed to harmonize
the differing output formats of these methods
within the unified model framework?

In this paper, we introduce a Fusion Selection-
Generation-Based Approach for EAE, synergizing
the capabilities of both selective and generative
methods. To solve the questions mentioned above,
we propose three key technologies: diversified ele-
ment fusion prompts, independent element-based
extraction parts and a cohesive fusion learning pro-
cess.

The fusion prompt is designed as an integrative
structure, encompassing various elements such as
argument roles, event arguments, and masks, each
aligning with specific extraction parts. Element-
based extraction parts comprises two distinct com-
ponents: the selection part, which utilizes argument
roles combined with trigger knowledge for precise
identification of argument positions; and the gen-
eration part, which prompts the model to gener-
ate argument sequences based on event arguments.
These two parts are trained in parallel, each with
distinct loss calculations. This dual-learning fosters
an initial integration of the methodologies within
model. As training progresses, a dynamic mask-
ing mechanism within the fusion prompts subtly
incorporates the generative part into the selection
framework. This fusion learning process leads to a
unified approach in loss computation, harmonizing
the strengths of both parts to ensure consistent and
optimized outcomes.

Our experiments on the RAMS and
WIKIEVENTS demonstrate that our fusion
model achieves competitive performance, ex-
celling in various metrics while also showcasing

superior efficiency, including enhanced extraction
efficiency and reduced memory usage. To study
how our model functions, we delve into analyses
based on ablation studies and fusion strategies,
uncovering insights into the effective integration of
selection and generation parts. This comprehensive
approach reinforces our model’s adaptability in the
field of EAE.

In summary, the main contributions of this paper
include:

• We present a novel Fusion Selection-
Generation-Based Approach that effectively
combines the strengths of both selective and
generative methods, enhancing the accuracy
of event argument extraction.

• Our model utilizes fusion prompts and a fu-
sion learning process to promote the fusion
of two distinct element-based extraction parts,
encompassing both selection and generation.

• The fusion model achieves competitive per-
formance, showcasing high accuracy and ef-
ficiency. We present in-depth analyses of ab-
lation studies and fusion strategies to demon-
strate the model’s effective integration.

2 Methodology

2.1 Problem Formulation

For an EAE task, consider a text collection T =
{Xi|i = 1, . . . , |T |} and a set of event types E =
{ei|i = 1, . . . , |E|}. Each sample X is a token
sequence that corresponds to an event type e, along
with the trigger xt in the text for that event. Each
event type is associated with a set of argument
roles R, and an event theme is defined by an event
type e and its corresponding Re. The task of EAE
involves extracting all (r, a) pairs from the text
X under a given event theme, where r in R is an
argument role in the event theme, and a is the event
argument corresponding to r, specifically the text
span in X .

Given an event type and its associated argu-
ment roles, we can create a corresponding prompt
Pt (Qin and Eisner, 2021; Liu et al., 2023). To
leverage the generative model’s capabilities, we
use a Manual Template (Li et al., 2021), closely re-
sembling natural language, for input concatenation
in the encoder and integration in the decoder.
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2.2 Model Overview

In this paper, we introduce a novel Fusion
Selection-Generation-Based Approach. Our model
comprises three connected components: fusion
prompt, element-based extraction, and fusion learn-
ing. Central to this approach is fusion prompt, in
which elements guide the computations in element-
based extraction containing both the selection and
generation parts.

As depicted in Figure 3a, the selection and
generation parts operate independently and simul-
taneously. The selection part focuses on accu-
rately identifying argument positions within the
text, while the generation part is tasked with creat-
ing the corresponding argument sequences. These
two processes, though distinct, are seamlessly in-
tegrated through fusion learning, as illustrated in
Figure 3b. This integration unifies the training
procedure and harmonizes the outputs of both com-
ponents.

2.3 Preparations

The model adopts an encoder-decoder architec-
ture (e.g., BART (Lewis et al., 2020), T5 (Raf-
fel et al., 2020)). We concatenate the text and
original prompt as input Xpt to the encoder, rep-
resented as <s> X̃ [SEP] Pt </s>, where X̃ is
the text X annotated with the trigger, i.e., X̃ =
[. . . , x,<t>, xt,</t>, . . .]. The encoder’s autoen-
coder model (Vaswani et al., 2017) facilitates com-
prehensive self-attention computation on the input,
effectively embedding the text with prompt-derived
role information. We obtain the text representation
infused with prompt information from the encoder:

HT = Encoder(Xpt) (1)

The prompt Pt is designed as a versatile fu-
sion structure, capable of incorporating various ele-
ments such as argument roles r, event arguments
a, argument masks <mask>, and natural language
connectives:

... with participant about ... (original role)

... with participant Torres about ... (role with argument)

... with participant <mask> about ... (role with mask)

The entire fusion process is illustrated in Fig-
ure 2. We utilize the fused Pt as the input for the
decoder, whose autoregressive model (Yang et al.,
2019b) with strong generative capabilities aids in
processing the prompt to generate event arguments

within Pt. We obtain the fusion prompt representa-
tion from the decoder:

HPt = Decoder(Pt;HT ) (2)

To describe the process of obtaining targeted
element representation from HT and HPt, we in-
troduce the following definition: Given the textual
element xe, with its start position i and end position
j in the input X , the formula is given by:

Xe = Retrieve(xe;H) (3)

where Xe represents the embedding vectors corre-
sponding to positions i to j in H , the output of the
encoder or decoder, based on the input X .

2.4 Selection Part
In the Selection Part, our approach embraces the
MRC paradigm, focusing on pinpointing the start
and end positions of arguments within the text.
The method facilitates the interaction between role
representations and their corresponding textual
contexts. This process leverages the combined
strengths of both the encoder and the decoder to
acquire comprehensive representations:

HX = Retrieve(X̃;HT ) ∈ Rh×L

hr = Retrieve(r;HPt) ∈ Rh

ht = Retrieve(xt;HT ) ∈ Rh

(4)

where h and l respectively represent the dimension
of hidden layer and the maximum length of the text,
and r encapsulates all the argument roles within
Pt. In instances where the textual elements r and
xt comprise multiple tokens, the representations of
these tokens are averaged to form a unified vector
respectively, encapsulating the collective character-
istics of all tokens within the textual element.

To integrate more text information, we adopt
an embedding interactions method (Zhou et al.,
2020) to merge triggers into the roles, denoted by
hr,t = [hr,ht,hr ⊙ ht,hr − ht], where [·, ·] de-
notes a vector concatenation, and ⊙ is the element-
wise Hadamard product. Then this fusion repre-
sentation undergoes attention computation with the
text representations, resulting in text-sized proba-
bility distribution of positions:

p(sel_start) = Softmax(hT
r,tVsHX) ∈ RL

p(sel_end) = Softmax(hT
r,tVeHX) ∈ RL

(5)

where Vs,Ve ∈ R4h×h are learnable parameter
matrices shared across all roles. They encapsulate
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Fusion Prompt with Arguments and Masks

Contact.Negotiate
participant communicated

with participant about topic at place.

participant Bryant communicated... 

...with participant Torres...

...about topic <mask>...

...at place Florida.

Bryant debated against Torres's

statement that tax reforms were not

benefitting the middle class in Florida.

<mask>

<mask>

tax reforms 

<mask>

Event Type Original Prompt with Roles tagged

Input Text

1-σ 
1-σ 

1-σ 

σ 

debated

Event Trigger

Figure 2: Fusion Prompt: Given an input text and its event type, the original prompt is obtained. Under the current
probability σ, event arguments and masks are randomly integrated after argument roles, creating the final fused Pt.
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(a) Selection and Generation Parts are trained concurrently,
utilizing roles and arguments from the fusion prompt sepa-
rately.
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(b) Selection and Generation Parts are integrated by using
<mask> from the fusion prompt and a dynamic masking
mechanism.

Figure 3: Learning Process of the Fusion Model: (a) Element-based Extraction: For the currently queried argument
roles, when followed by event arguments, they are trained separately using selection and generation parts, primarily
in the initial stages of model training. (b) Fusion Learning: When the queried training roles are followed by masks,
the generation part leverages learned knowledge to align with the the selection part, facilitating their integration.

key information about the argument positions of
roles.

For the current query role k, we have a selective
loss function:

Lsel(k) = −
(
sk log p

(sel_start)
k

+ ek log p
(sel_end)
k

)
(6)

where sk, ek represent the true labels for the start
and end positions of the argument span in text for
the current role.

2.5 Generation Part
In the Generation Part, we adopt a specialized
generation technique inspired by BART-Gen (Li
et al., 2021), which leverages the decoder’s hid-
den layers along with text embeddings to generate
a vocabulary-sized probability distribution. Dis-
tinct from BART-Gen, our method is specifically

tailored to bypass the generation of complete sen-
tences. Instead, it concentrates on learning and
accurately generating the specific event arguments,
thereby refining the efficiency of the extraction pro-
cess.

To accurately represent the event arguments in
our model, we utilize the decoder to derive their
representations and apply the embedding layer to
encode the tokens from the input text. Specifically,
the process is defined as follows:

Ha = Retrieve(a;HPt) ∈ Rh×d

EX = Embedding(X̃) ∈ Rh×L
(7)

Here, a encapsulates all the event arguments within
X̃ . Considering that a might comprise multiple
tokens [a1, . . . , ad], the representation Ha is thus a
sequence of token embeddings, with each hi

a ∈ Rh

serving as the representation of the token ai. In line
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with the BART-Gen approach, we perform a dot
product operation between ha and EX , generating
an initial probability distribution. To extend this
distribution to encompass the full vocabulary, we
append zeros for the vocabulary words absent in
the text X . For each token ai in a, the probability
distribution is given by:

p
(vocab)
ai =

{
hi
a
TRetrieve(w;EX), w ∈ X

0, w /∈ X
(8)

where w denotes every word in the vocabulary.
For the current role k, we have a generative loss

function:

Lgen(k) = −
d∑

ki=1

vk log p
(vocab)
ki

(9)

where vk indicates the true label for the position of
the current event argument in the vocabulary.

2.6 Fusion Learning
In the Fusion Learning, our model employs a dy-
namic masking mechanism to integrate selection
and generation parts. Throughout the training pro-
cess, event arguments within Pt are randomly
masked, with the likelihood of this masking op-
eration increasing incrementally across training it-
erations. This probability, denoted as σ, is defined
as:

σ =
current training times

max training times
∈ (0, 1) (10)

For each role r, the corresponding event argu-
ment a is retained with a probability of 1− σ for
generation part, while the mask token <mask> is
applied with a probability of σ, thereby facilitating
the integration with the selection part. The repre-
sentation of <mask>, derived from the decoder, is
given by:

hm = Retrieve(m;HPt) ∈ Rh (11)

where m represents the <mask> following the role.
To achieve fusion of both parts, we adopt a loss
function analogous to that used in the selection
part:

p(gen_start) = Softmax(hT
mEX ⊙ws) ∈ RL

p(gen_end) = Softmax(hT
mEX ⊙we) ∈ RL

(12)

where ws,we ∈ RL are learnable parameter vec-
tors.

For the current role k, we define a mask loss
function:

Lmsk(k) = −
(
sk log p

(gen_start)
k

+ ek log p
(gen_end)
k

)
(13)

where sk and ek serve the same roles as in Lsel.
Subsequently, to achieve an effective balance be-
tween the selection and generation parts within our
fusion model, we compute the fusion loss function
as:

Lfus(k) = λLsel(k) + (1− λ)Lmsk(k) (14)

where fusion ratio λ is a weighting factor that mod-
ulates the contribution of selection and generation
parts to the overall fusion loss, optimizing the syn-
ergy between these two parts for enhanced model
performance.

2.7 Overall Loss
For the current sample t, let Rt be the set of roles
corresponding to the event in this sample. In the
current training iteration, n roles have their corre-
sponding arguments replaced by <mask>, forming
the subset Rmask. The overall loss function for the
current sample is given by:

L =
∑

k∈(Rt−Rmask)

(Lsel(k) + Lgen(k))

+
∑

k∈Rmask

Lfus(k)
(15)

During the testing phase, we use a prompt where
all the arguments corresponding to the roles are
masked. For any role k in the current sample, its
start and end positions are computed as follows:

kstart = argmax(λpsel_start
k + (1− λ)p

gen_start
k )

kend = argmax(λpsel_end
k + (1− λ)p

gen_end
k )

(16)

3 Experiments

3.1 Setup
Datasets We utilize two document-level event
argument extraction datasets: RAMS (Ebner et al.,
2020) and WIKIEVENTS (Li et al., 2021). RAMS
comprises 9,124 news examples with 139 event
types and 65 argument roles. WIKIEVENTS, ex-
tracted from English Wikipedia articles, includes
246 documents with 50 event types and 59 argu-
ment roles. The detailed statistics of two datasets
are listed in Appendix A.1.
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Evaluation Metrics In evaluating our model, we
adopt F1 score as the key metric across three pri-
mary aspects: Argument Identification (Arg-I), Ar-
gument Classification (Arg-C), and Head Classifi-
cation (Head-C):

• Arg-I: Argument Identification focuses on the
accurate prediction of offsets for any given
role’s event arguments.

• Arg-C: Argument Classification involves cor-
rectly identifying both the position and type
of argument roles.

• Head-C: Specifically used for
WIKIEVENT (Li et al., 2021), Head
Classification assesses the accuracy of
predicting the headwords of arguments.

Each of these metrics plays a crucial role in as-
sessing the overall performance of our model, of-
fering a comprehensive view of its capabilities in
various dimensions of EAE.

Baselines We assess the performance of our
model against a range of established models in
EAE: (1) Selective Models: BERT-CRF (Shi and
Lin, 2019), EEQA (Du and Cardie, 2020) and PAIE
(Ma et al., 2022). (2) Generative Models: BART-
Gen (Li et al., 2021) and Retrieval-augmented (Ren
et al., 2023). These baseline models are selected
to represent both selective and generative methods,
providing a comprehensive overview of current
EAE techniques. The detailed of these models are
outlined in Appendix A.2.

Experimental Configuration Our experiments
leverage the encoder-decoder architecture of the
pretrained BART model, obtained in two model
sizes, base and large, containing respectively 139M
and 406M parameters, from the Hugging Face
repository1. This choice is guided by our inten-
tion to investigate the impact of model size on
performance in our fusion model. We do not use
concatenated input text on the RAMS. For each
training iteration, we use random seeds [13, 21, 44,
88, 100] and three learning rates [2e-5, 3e-5, 5e-5].
The highest learning rate result for each seed is
averaged to produce the final training result (Ren
et al., 2023). We list other important hyperparame-
ters in Appendix A.3.

1https://github.com/huggingface/transformers

To investigate the relative impact of selection
and generation parts within fusion model, we im-
plement three fusion model configurations: Fusion
Generatively Biased, Fusion Balanced, and Fusion
Selectively Biased, corresponding to fusion ratios
λ of 0.2, 0.5, and 0.8. This experimental design
allows us to systematically explore how varying
degrees of bias towards either selection or gener-
ation parts influence the overall performance and
characteristics of the model in EAE tasks.

3.2 Overall Performance
Table 1 presents the performance of all baselines
and fusion models on RAMS and WIKIEVENTS.
From the results, we can conclude that:

(1) Compared to selective models, the fusion
model demonstrates considerable competitiveness,
achieving strong performance with efficient re-
source usage. On the WIKIEVENTS, for instance,
our model demonstrates exceptional performance,
securing best and second best results in Head-
C. This trend of excellence is mirrored in both
the RAMS and WIKIEVENTS, where our model
achieves SOTA results in Arg-C.

While the improvement in metrics may not
appear overwhelming at first glance, the model
demonstrates clear advantages in both extraction
efficiency and computational efficiency:

(i) Extraction efficiency, reflecting in the ratio
of argument classification to identification, under-
scores the model’s ability to minimize unnecessary
span identifications while maintaining a balanced
performance across both metrics. As shown in Ta-
ble 2, on the BART-base, it achieves the best and
second best results, while on BART-large, it sur-
passes the PAIE by 0.9% and 0.7%, indicating a
more efficient use of the model’s inherent semantic
capabilities.

(ii) Moreover, our fusion model showcases a
distinct advantage in terms of computational ef-
ficiency. The PAIE model, for example, necessi-
tates the use of an encoder once and a decoder
twice, leading to substantially higher memory con-
sumption. In contrast, our fusion approach utilizes
the complete encoder-decoder components only
once, resulting in a more streamlined and resource-
efficient process. To illustrate, as shown in Table 3,
the PAIE model requires 136% of the GPU memory
needed by our fusion model. This comparison high-
lights our model’s ability to deliver comparable or
superior performance while significantly reducing
computational load and memory usage.

https://github.com/huggingface/transformers
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Models RAMS WikiEvents PLM
Arg-I Arg-C Arg-I Arg-C Head-C

Selective Models

BERT-CRF (Shi and Lin, 2019)∗ - 40.3 - 32.3 43.3 BERT-base
EEQA (Du and Cardie, 2020)∗ 46.4 44.0 54.3 53.2 56.9 BERT-base

48.7 46.7 56.9 54.5 59.3 BERT-large
PAIE (Ma et al., 2022)∗ 54.7 49.5 68.9 63.4 66.5 BART-base

56.8 52.2 70.5 65.3 68.4 BART-large

Generative Models

BART-Gen (Li et al., 2021)∗ 50.9 44.9 47.5 41.7 44.2 BART-base
51.2 47.1 66.8 62.4 65.4 BART-large

Retrieval-augmented (Ren et al., 2023)∗ 53.3 46.3 61.4 46.1 62.5 T5-base
54.6 48.4 69.6 63.4 68.4 T5-large

Fusion Selection-Generation-Based Models

Fusion Generatively Biased 53.0 47.8 68.7 63.7 67.8 BART-base
56.1 51.7 70.1 65.4 68.5 BART-large

Fusion Balanced 53.6 48.6 68.3 63.9 67.7 BART-base
56.6 52.5 69.9 64.7 68.8 BART-large

Fusion Selectively Biased 53.5 48.4 68.7 63.3 67.5 BART-base
56.9 52.6 69.9 64.4 68.1 BART-large

Table 1: Performance (%) of Arg-I and Arg-C on the RAM and WIKIEVENTS. ∗ means the results from Ren et al.
(2023). Best results are marked in bold, and the second best results are underlined. In the respective paradigms, the
SOTA models are marked in italics.

Models BART-base BART-large
RAMS WikiEvents RAMS WikiEvents

PAIE (Ma et al., 2022) 90.5 92 91.9 92.6
BART-Gen (Li et al., 2021) 88.2 87.8 92 93.4

Fusion Generatively Biased 90.2 92.7 92.2 93.3
Fusion Balanced 90.7 93.6 92.8 92.6
Fusion Selectively Biased 90.5 92.1 92.4 92.1

Table 2: Comparison of the Ratio (Arg-C/Arg-I) Across
Models on RAMS and WIKIEVENTS.

Models BART-base BART-large
PAIE (Ma et al., 2022) 7340 17000
BART-Gen (Li et al., 2021) 4453 10021

Fusion 5352 12518

Table 3: Comparison of GPU Memory Usage (MB)
across different models.

(2) Compared to generative models, our fu-
sion model effectively guides outcome generation
through the selection part, significantly boosting
extraction performance. As illustrated in the Ta-
ble 1, our model outperforms generative counter-
parts across various metrics. Notably, when pit-
ted against the SOTA generative model Retrieval-
augmented, our model attains an improvement of
3.3%~4.2% and 1%~2%, reinforcing the notion
that the integration of selective methods can lead
to more accurate and precise outcomes.

Selection Generation Fusion Arg-I Arg-Csel msk
✓ ✓ ✓ ✓ 53.6 48.6
✓ ✓ ✓ 52.0 47.3
✓ ✓ ✓ 24.8 22.8
✓ ✓ 50.7 45.7

✓ ✓ 29.7 26.3

Table 4: Ablation studies are conducted on the RAMS
dataset using the Fusion Balanced model based on
BART-base.

3.3 Analysis

Ablation Study We perform ablation studies on
key components of the model, including the Selec-
tion Part, Generation Part, and the selection logits
and mask logits in the Fusion Learning. As shown
in Table 4, the full configuration, which includes
all components, achieves the best results across all
evaluation metrics.

The experiments reveal that the selection part
establishes a strong performance baseline. How-
ever, incorporating the generation part improves
the model’s ability to capture complex semantic
relationships, resulting in overall better perfor-
mance. This demonstrates that combining the two
approaches harnesses their respective strengths: the
precision of the selection part and the semantic rich-
ness of the generation part, ultimately leading to a
more robust and adaptable model.
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Figure 4: Performance of different fusion strategies on RAMS

Fusion Strategy Our approach to constructing
the fusion model involves a progressively unified
learning strategy, where we discover that the dy-
namic nature of the loss function necessitates a sim-
ilarly adaptive learning rate strategy. The loss func-
tion is not static but evolves with training iterations,
shifting the model’s convergence point. In this con-
text, we employ a Cosine with Hard Restarts (Got-
mare et al., 2019) learning rate scheduling strategy,
assessing its impact on the fusion model’s perfor-
mance by varying the cycle lengths. Experiments
on the RAMS with different learning rate strategy
cycles on the BART-base model reveal significant
trends. As depicted in Figure 4, longer cycles lead
to more dispersed performance distributions, sug-
gesting that increased cycle lengths are not always
beneficial at these settings. Particularly, under cy-
cle 2 settings, the model not only shows higher
stability but also reaches a relatively higher perfor-
mance mean. In contrast, the single-cycle learning
strategy (cycle 1) performs worse in accuracy com-
pared to cycle 2, indicating that traditional single-
cycle learning rate adjustments may not be suitable
for fusion models. A more adaptive, multi-cycle
learning rate strategy could be crucial for optimiz-
ing performance in such models.

4 Related Work

Event Argument Extraction Event Argument
Extraction (EAE) focuses on identifying and ex-
tracting arguments from texts, related to specific
events (Zheng et al., 2019). EAE operates un-
der four primary paradigms: (1) Sequence Label-
ing (Wang et al., 2020; Shi and Lin, 2019), which
annotates event-related arguments in texts, marking
relevant segments; (2) Token Classification (Lin
et al., 2020; Xu et al., 2021; Ding et al., 2023; Yang
et al., 2021), categorizing each word by argument
type for targeted extraction; (3) Machine Reading
Comprehension (MRC) (Du and Cardie, 2020;
Liu et al., 2020; Wei et al., 2021; Liu et al., 2021;

Ma et al., 2022), formulating questions related to
the event to extract specific text spans as answers;
and (4) Sequence to Sequence (Lu et al., 2021;
Paolini et al., 2021; Li et al., 2021), a newer ap-
proach that treats EAE as a sequence generation
task, focusing on serializing text outputs to identify
precise event-related information. Each paradigm
offers distinct methods for dissecting and under-
standing event-themed texts.

Hybrid Model Pointer-Generator Net-
works (See et al., 2017) effectively bridge
the gap between extractive and abstractive text
summarization methods (Qiu and Yang, 2022).
Extractive summarization involves selecting
significant sentences, while abstractive summa-
rization focuses on generating concise, coherent
summaries. The Pointer-Generator Network
model, building on pointer networks (Vinyals
et al., 2015), innovatively addresses challenges
in both approaches. It combines direct copying
from source texts to enhance accuracy and manage
out-of-vocabulary words with the generation
of new content. Our model is inspired by this
approach. However, we integrate the two methods
differently by leveraging pre-trained models to
further enhance their combination.

5 Conclusion

In conclusion, our research presents a Fusion
Selection-Generation-Based Approach for Event
Argument Extraction, merging selective and gen-
erative methods. Empirical evaluations on the
RAMS and WIKIEVENTS indicate improved per-
formance and efficiency. This study contributes
to the EAE field by demonstrating the practical-
ity of integrating different approaches. In future
work, we plan to design a more suitable fusion
method and adapt our fusion model to other do-
mains, thereby exploring broader applications and
achieving deeper integrations in information extrac-
tion.
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Limitations

Firstly, the generation part treats event arguments
of varying lengths as a single mask, leading to
substantial information loss. While our fusion ap-
proach has shown benefits, there remains a need
for a more effective method to minimize this loss
of information.

Second, our experiments reveal that different
datasets exhibit varying biases towards selection
and generation parts. This implies a significant re-
liance on adjusting the fusion parameter λ, requir-
ing multiple modifications to optimize performance
for different datasets. Such dependency indicates
the need for a more adaptive approach in balancing
the strengths of both selection and generation parts
across diverse data contexts.

Furthermore, extracting multiple arguments for
the same role in complex sentences remains a chal-
lenge. Although the number of extracted arguments
can be increased by modifying the reserved argu-
ment slots in the prompt, a more flexible approach
is still needed to address this issue effectively.
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A Dataset and Model

A.1 Dataset Statistics

In this study, two significant datasets are utilized for
document-level event argument extraction. RAMS
includes 9,124 news examples, covering 139 event
types and 65 argument roles, offering a broad per-
spective on real-world events. WIKIEVENTS is
compiled from 246 English Wikipedia articles and
features 50 event types and 59 argument roles. This
dataset provides a unique view into encyclopedic
events. Both datasets are essential for understand-
ing the complexity and diversity of event argument
extraction in different contexts. Table 5 shows their
detailed statistics.

Dataset #Doc #Event #Argument Split

RAMS
3,194 7,329 17,026 Train
399 924 2,188 Dev
400 871 2,023 Test

WikiEvents
206 3,241 4,542 Train
20 345 428 Dev
20 365 566 Test

Table 5: Statistics of RAMS and WIKIEVENTS
datasets.

A.2 Details of Baseline Models

We compare our model with following previous
models. (1) BERT-CRF (Shi and Lin, 2019): This
model employs a BERT-based model employing
BIO-styled sequence labeling for multi-label clas-
sification. The model’s architecture synergizes the
robust contextual embeddings of BERT with the se-
quence decoding capabilities of a Conditional Ran-
dom Field (CRF), aiming to enhance the precision
of classification. (2) EEQA (Du and Cardie, 2020):
Pioneering the application of Question Answer-
ing (QA) mechanisms to the sentence-level EAE
task, EEQA diverges from traditional classification-
based approaches. By reframing EAE as a QA

problem, it seeks to capitalize on the innate capa-
bility of QA systems to discern fine-grained infor-
mation within a text. (3) PAIE (Ma et al., 2022):
Extending from EEQA, this model introduces a
prompt tuning strategy specifically for EAE. It
reimagines the multi-label classification challenge
by embedding prompts that guide the model to gen-
erate more contextually relevant and precise argu-
ments. (4) BART-Gen (Li et al., 2021): This model
approaches EAE through a sequence-to-sequence
lens, utilizing the BART-large framework. The
objective is to produce arguments that not only
align with the predefined format but also encap-
sulate the nuances of the events being modeled.
The BART-Gen demonstrates a significant stride
in generating coherent and contextually accurate
arguments. (5) Retrieval-augmented (Ren et al.,
2023): A novel adaptive hybrid retrieval augmen-
tation paradigm that adaptively samples pseudo
demonstrations from continuous space for each
training instance to improve the analogical capabil-
ity of the model.

A.3 Implementation Details

Hyperparameter Value

Batch size 4
Weight decay 0.01
Training steps 10,000

Optimizer AdamW
Scheduler Cosine with Hard Restarts

Warmup steps 0.1
Number of cycles 2
Max span length 10

Max gradient norm 5.0
Max encoder seq length 500
Max decoder seq length 100

Table 6: Hyperparameters used in the experiments.
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