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Abstract

We present a deep investigation of encoder-
based Language Models (LMs) on their abil-
ities to detect text coherence across four lan-
guages and four text genres using a new evalua-
tion benchmark, TEXT-CAKE. We analyze
both multilingual and monolingual LMs with
varying architectures and parameters in differ-
ent finetuning settings. Our findings demon-
strate that identifying subtle perturbations that
disrupt local coherence is still a challenging
task. Furthermore, our results underline the
importance of using diverse text genres dur-
ing pre-training and of an optimal pre-traning
objective and large vocabulary size. When con-
trolling for other parameters, deep LMs (i.e.,
higher number of layers) have an advantage
over shallow ones, even when the total number
of parameters is smaller.

1 Introduction & Motivations

A text is a semantic unit made of meanings convey-
ing knowledge (Halliday and Hasan, 1976). Under
this perspective, text coherence is “the mutual ac-
cess and relevance within a configuration of con-
cepts and relations” (De Beaugrande and Dressler,
1981). The “mutual access” and the “configura-
tion of relations”, however, identify features that
relate more to the perception of a text rather than
a text itself (Wang and Guo, 2014). This vision
highlights the nature of text as a process, where
coherence emerges from the interaction between
the producer and the receiver requiring mutual ef-
fort. While Linguistics considers coherence as one
of the “standards of textuality” (De Beaugrande
and Dressler, 1981, 3), coherence is inherently a
psychological construct.

Given the role of coherence as an essential com-
ponent of text as well as its use in application-
oriented scenarios, from healthcare (Parola et al.,
2023; Elvevåg et al., 2007; Iter et al., 2018) to au-
tomatic essay scoring in language learning (Lai

and Tetreault, 2018; Mesgar and Strube, 2018)
and readability assessment (Pitler and Nenkova,
2008; Feng et al., 2009), modeling (text) coher-
ence is an essential task. The rise of pre-trained
LMs has revitalized this area of research, offer-
ing new avenues for exploration with the emer-
gence of two key trends. The first involves adapt-
ing established coherence modeling frameworks by
leveraging deep neural networks to enhance perfor-
mance on various downstream tasks (Muangkam-
muen et al., 2020; Tien Nguyen and Joty, 2017).
The second focuses on interpretability, investigat-
ing how neural representations capture discourse
phenomena beyond sentence level. As detailed in
§ 2, these interpretability studies share common-
alities in evaluation, often using tasks that act as
proxies for coherence assessment, such as recog-
nizing original versus sentence-shuffled texts or
detecting an intruder sentence (Chen et al., 2019;
Shen et al., 2021).

Our work builds upon existing research by inves-
tigating LMs’ ability to distinguish coherent from
artificially created incoherent text. To this end,
we introduce a novel and language-independent
method to gradually disrupt the local coherence
within a text and evaluate the performance of
transformer-based encoders on this task through
a set of extensive experiments across different
text genres and languages. Specifically, our study
makes the following main contributions:1

• we present TEXT-CAKE, a new multilin-
gual and multigenre dataset specifically con-
ceived for the task of local discourse coher-
ence detection in written text;

• we conduct an extensive investigation of mul-
tiple enconder-based models to assess their
ability to identify coherence at various levels

1Data and code https://github.com/lucadinidue/
coherence_text_cake

https://github.com/lucadinidue/coherence_text_cake
https://github.com/lucadinidue/coherence_text_cake
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of granularity and their sensitivity to different
types of textual perturbations;

• we evaluate how models’ architectures and
parameters impact their performance when
finetuned on this task to gain better insights
on which combinations work best as well as
to identify directions for further development.

The remainder of this paper is structured as fol-
lows: in § 2 we discuss previous work, highlighting
differences with our approach. In § 3 we introduce
our dataset and approach for its creation. Exper-
iments design, results on finetuned LMs are dis-
cussed in § 4 and § 5 respectively. Conclusions and
recommendations are in § 6.

2 Related Work

LMs have shown impressive abilities when it
comes to functional linguistic skills (Mahowald
et al., 2024). Yet, many challenges are still pending
when it comes to discourse phenomena beyond the
sentence level, such as detecting the coherence of
a text. A task which is even more relevant in light
of the advancements of generative models (Laban
et al., 2021).

A requirement for such evaluations is the devel-
opment of benchmarks designed to target various
nuances of discourse related to coherence. Exist-
ing benchmarks range from more linguistically-
informed tasks, such as labeling the type of dis-
course relations or determining the most appropri-
ate discourse markers (Koto et al., 2021; Godunova
and Voloshina, 2024; Pandia et al., 2021; Nie et al.,
2019; Farag et al., 2020), to tasks that ask models to
classify a text as coherent or not, or identifying the
original order of sentences within a shuffled text
(Barzilay and Lapata, 2008; Elsner and Charniak,
2011; Laban et al., 2021; Shen et al., 2021; Koto
et al., 2021). Our work is more in line with this
latter set of contributions, although we introduce
major differences to address some limitations. First,
we combine in a single benchmark two coherence
tests: the Shuffle Test (Barzilay and Lapata, 2008;
Laban et al., 2021) and the Insertion Test (Elsner
and Charniak, 2011); second, we challenge models
to identify the specific perturbation class against
the original text, thus making this a multi-class clas-
sification task; third, we focus on local coherence,
i.e., coherence in passages of four sentences.

Beyond the formulation of specific tasks, several
perspectives have been explored in the literature,

aiming at understanding generalization abilities of
LMs, the impact of pre-training objectives and mod-
els’ size, and which layers best capture discourse
information. Shen et al. (2021) tested LMs to rec-
ognize an intruder sentence in in-domain and out-
domain setting. Their results indicate limited gener-
alization capabilities when applied out-of-domain.
Focusing on cross-lingual generalization, Kurfalı
and Östling (2021) evaluated sentence encoders
on a range of discourse-level tasks. Their findings
revealed a performance gap between evaluation
in the training language and zero-shot evaluation
in unseen languages. In contrast, Godunova and
Voloshina (2024) did not report a significant drop
between high- and low-resourced languages, sug-
gesting that pre-trained encoders may capture some
language-independent aspects of discourse struc-
ture. A distinguishing feature of our contribution
is that we address all these aspects in a comprehen-
sive analysis.

3 TEXT-CAKE: Data & Task Setting

To robustly investigate local coherence in written
text, we have developed a new multilingual and
multigenre benchmark. We selected four Indo-
European languages belonging to two subgroups
(English and Dutch for Germanic; Spanish and
Italian for Romance). We chose these languages
because of i.) the availability of public reposito-
ries for all genres; ii.) the presence of these lan-
guages in the pre-training data of selected multi-
lingual LMs; and iii.) the presence of compara-
ble sets of grammatical (e.g., anaphoric reference,
conjunction, verb tense, among others) and lexical
(e.g., synonymy, repetition, collocation) cohesive
devices marking the expression of coherence (Hall-
iday and Hasan, 1976; Tanskanen, 2006).

We selected four text genres ranging from highly
controlled text types (news articles and Wikipedia
pages) to speech transcripts (TED talks) and fic-
tional stories (fanction). These genres show sig-
nificant variations in style, writing conventions,
and consequently, ways in which coherence is ex-
pressed and realized. Furthermore, two of them
(Wikipedia and news articles) are common pre-
training data for LMs. Conversely, according to the
official documentation of available encoder-based
LMs, none of them has been directly exposed to
fanfictions or TED Talks.

Data sources For Wikipedia and TED Talks,
we used existing data repositories. In particu-
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lar, for Wikipedia, we used Wikimedia dumps
from September 20, 2023.2 The transcriptions
of TED Talks were sourced from the TED2020
dataset (Reimers and Gurevych, 2020). For the
news articles, we resorted to language specific
resources. For English, we used the New York
Times portion of the English Gigaword Corpus
v5.0 (Graff et al., 2003); for Dutch, the DpgMe-
dia2019 corpus (Yeh et al., 2019)3; for Spanish
we have been obtained data from the Spanish por-
tion of the DACSA corpus (Segarra Soriano et al.,
2022) and for Italian, we used the news corpus
from Mattei et al. (2020).

We have extracted fanfiction stories from the
GOLEM project collection.4 We selected only fan-
fiction whose audience is indicated as “General
Audience” and, among them, we have chosen those
with only one chapter. This choice has been dic-
tated by technical reasons. Since in the GOLEM
collection there is currently a lack of a standardized
way of indicating the change from one chapter to
the other, we would risk considering as coherent
text passages of sentences from different chapters.

Task Settings & Data Split Contrary to other
tasks (Mostafazadeh et al., 2016; Chambers and Ju-
rafsky, 2009; Granroth-Wilding and Clark, 2016),
our goal is not to predict “what comes next” (be-
ing it the logical end of a short story or an event),
but to investigate the abilities of encoder-based
LMs to detect the internal coherence of a text pas-
sage. For each document in our data collection,
we thus extracted blocks of four consecutive sen-
tences, corresponding to minimal coherence pas-
sages (Brunato et al., 2023). For Wikipedia and
fanfictions, where paragraph boundaries are explic-
itly marked by blank lines, we further ensured that
the sentences composing the passages all belong to
the same paragraph. We further avoided the same
sentence to appear in multiple passages.

The creation process of the dataset has been
driven by the way we formulated the task of co-
herence detection. We have thus implemented
two different perturbations. The first, substitution
(Sub), breaks the internal coherence of a passage
by substituting one of the sentences with another
one from the same document but further away. On
the basis of a preliminary analysis of the dataset,

2https://dumps.wikimedia.org/backup-index.
html

3https://github.com/dpgmedia/
partisan-news2019

4https://golemlab.eu/about/

Dataset Split IT ES NL EN

Wikipedia Train 51.7% 64.0% 53.4% 66.7%
Test 53.4% 68.1% 28.7% 67.7%

News Train 31.6% 17.5% 14.8% 16.2%
Test 30.5% 16.5% 11.7% 16.5%

Ted Talks Train 3.6% 3.8% 3.4% 4.1%
Test 3.5% 3.8% 3.1% 4.4%

Fanfiction Train – – – 56.1%
Test – – – 54.8%

Table 1: Percentage of passages in train and test starting
with the first sentence of a paragraph. Lacking an inter-
nal division into paragraphs, for TED Talks and News it
indicates the percentage of paragraphs beginning with
the first sentence of the document. IT = Italian; ES =
Spanish; NL = Dutch; EN = English.

we have quantified this distance in the 10th follow-
ing sentence with respect to the one to be substi-
tuted. This perturbation can be applied to each of
the four sentences, originating four perturbation
classes: Sub_1, Sub_2, Sub_3 and Sub_4, where
the number indicates the substituted sentence.

The second perturbation, swapping (Swap), fo-
cuses on the internal structure of the text passages.
Similarly to the Shuffle Test (Barzilay and Lapata,
2008), we change the order of two sentences in
the passage. In our case, this results in six possi-
ble swapping perturbations: Swap_1_2, Swap_1_3,
Swap_1_4, Swap_2_3, Swap_2_4 and Swap_3_4,
where the numerical indices indicate which sen-
tences are swapped.

Considering our perturbations, we have auto-
matically generated multiple train and test splits
composed by four sentence passages for each of
the text genres and language in analysis. For all lan-
guages, we obtained data for Wikipedia, the news
articles, and the TED Talks. For the fanfictions, we
obtained data comparable in size only for English.
The number of extracted passages per language per
genre, before applying the perturbations, is 10,000.

Within this framework, we created two distinct
datasets: A coarse-grained dataset with three labels
—Orig (for unperturbed text passages), Swap, and
Sub. This dataset does not differentiate the posi-
tions of the perturbed sentences, and is designed
to evaluate model performance in a broader three-
class classification task. A fine-grained dataset,
which distinguishes between the 4 types of Sub per-
turbations and the 6 types of Swap perturbations.
In the coarse-grained dataset, the specific type of
Swap or Sub perturbation is randomly selected

https://dumps.wikimedia.org/backup-index.html
https://dumps.wikimedia.org/backup-index.html
https://github.com/dpgmedia/partisan-news2019
https://github.com/dpgmedia/partisan-news2019
https://golemlab.eu/about/
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from a uniform distribution. For each language
and genre, we generated 30,000 passages for each
language and genre, with 24,000 for training and
6,000 for testing, resulting in a total of 370,000 text
passages. For the fine-grained dataset, we applied
all possible perturbations to each of the 10,000 text
passages, producing a total of 1,430,000 text pas-
sages. This corresponds to 110,000 passages per
language and genre, with 88,000 passages allocated
for training and 22,000 for testing. We ensured no
contamination between the training and test data.

TEXT-CAKE is currently the largest bench-
mark for local text coherence. Table 1 reports the
number of passages starting with the first sentence
of a document to address potential biases. Notably,
only the Wikipedia and Fanfiction portions exhibit
a majority of passages with this property, an impor-
tant consideration when analyzing the results.

4 Experimental Settings

We have conducted two blocks of experiments.
First, we investigated multiple multi-lingual mod-
els with the same basic architecture but different
vocabulary size, pre-training objectives, total num-
ber of parameters, and pre-training data (size and
sources), using both versions of the datasets. In the
second set of experiments, we investigate which
other parameters - such as model’s depth (i.e., num-
ber of layers) and width (i.e., number of atten-
tion heads) - impact on the model’s performance
by keeping fixed the pre-training objective, pre-
training data, and size of the vocabulary. For this,
we used the fine-grained dataset and a set of mono-
lingual LMs for English presenting high variability
of models’ architectures, namely the DeBERTa fam-
ily. The choice English only has been dictated by a
lack of variability of models in the other languages.

Models Table B in Appendix C summarizes the
parameters of all the selected models.5 The three
multilingual models (mBERT, XML-RoBERTa, and
mDeBERTa-v3) share the same architecture and un-
derwent training on all languages considered in our
study. mBERT and XML-RoBERTa were both trained
using the Masked Language Modeling (MLM)
task, with mBERT also including the Next Sentence
Prediction (NSP) task. In contrast, mDeBERTa-v3
uses the Replaced Token Detection task. As for
their vocabulary, mDeBERTa-v3 is eight times larger
than those of XML-RoBERTa and mBERT. Lastly,

5All values have been obtained from the models’ official
documentation.

mDeBERTa-v3 is the smallest LM (86M), followed
by mBERT (110M), and XML-RoBERTa being the
largest (250M).

In the monolingual experiments we used
all versions of the English DeBERTa-V3 model,
i.e., DeBERTa-V3-XSmall, DeBERTa-V3-Small,
DeBERTa-V3-Base, and DeBERTa-V3-Large. Al-
though we can expect a better performance of larger
models (deeper and wider) (Kaplan et al., 2020;
Raffel et al., 2020), He et al. (2023) present an
interesting counterpoint for DeBERTa-V3-XSmall,
showing better results on the MNLI and SQuAD
v2.0 benchmarks than DeBERTa-V3-Small, de-
spite having only half the parameters (i.e., be-
ing narrower). The authors attribute this to
DeBERTa-V3-XSmall’s deeper architecture, sug-
gesting that a greater number of layers might be
crucial for encoding semantics. We want to investi-
gate the validity of this finding for coherence.

Coherence Detection as Classification We
frame coherence detection as a multi-class classifi-
cation task using finetuned models. Following our
perturbation settings, each model is challenged to
identify which of the classes in TEXT-CAKE is
correct given a specific text passage. Given the per-
fectly balanced nature of our benchmark, models
are evaluated using Accuracy.

Before running the main experiments, we con-
ducted trials to determine the optimal settings for
finetuning through cross-validation on the training
datasets. Details are reported in Table C in Ap-
pendix D. All models have been finetuned using
the transformers library from Hugging Face.6

The model input is constructed by concatenating
the sentences of the text passage, either original
or perturbed, and then fit the entire text passage
to the model. Class decision is done by adding
a classification head on top of the finetuned LMs.
As baseline, we have used a Linear SVM classi-
fier trained with uni- and bi-grams. Each passage
is represented as the union of the count of its n-
grams, with sentences kept distinct to preserve in-
formation on sentence order. Random performance
corresponds to an Accuracy of 0.33 for the coarse-
grained dataset and 0.09 for the fine-grained one.

5 Results

First, we will examine the experiments conducted
with the multilingual models (§ 5.1) and subse-
quently for the monolingual ones (§ 5.2).

6We used version 4.37.1
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Models
Dataset Language mBERT XML-RoBERTa mDeBERTa-v3 Baseline

Wikipedia

IT 0.59 0.51 0.62 0.35
ES 0.53 0.44 0.57 0.34
NL 0.58 0.53 0.63 0.34
EN 0.57 0.50 0.60 0.35

News

IT 0.55 0.55 0.61 0.35
ES 0.40 0.47 0.56 0.34
NL 0.49 0.51 0.58 0.33
EN 0.54 0.56 0.61 0.34

TED Talks

IT 0.42 0.48 0.52 0.33
ES 0.44 0.48 0.55 0.33
NL 0.46 0.47 0.54 0.33
EN 0.46 0.50 0.55 0.34

Table 2: Results of the multilingual LMs across datasets and languages on the coarse-grained datasets. Baseline is
the Linear SVM. Overall best results are in bold. IT = Italian; ES = Spanish; NL = Dutch; EN = English.

(a) Performance per dataset (b) Performance per language

Figure 1: Average performances of the multilingual models for each class of the coarse-grain dataset.

5.1 Multilingual Models

Coarse-grained Table 2, reports the models’ ac-
curacy in solving the three-labels classification task.
All LMs perform significantly better than random
prediction, while the baseline almost always aligns
with it. With few exceptions, Wikipedia and News
are easier to deal with than TED Talks. Unsurpris-
ingly, the best results - across all genres and all
languages - are obtained by mDeBERTa-v3. Figure
1 shows the LMs’ performance by class. Figure 1a
reports average performance across languages per
dataset, while Figure 1b shows results by language
across all datasets. The results clearly indicate that
the easiest passages to identify are always the un-
perturbed ones (Orig), followed by those perturbed
with Swap. On the contrary, passages perturbed
with Sub are the most challenging to detect. This
seems rather counter-intuitive as introducing sen-
tences from different text passages is expected to
have a major disruptive effect in breaking coher-
ence than simply swapping the order of sentences
belonging to the same local text passage. In terms
of languages, there is no consistent behavior across
language families. English is the easiest to han-
dle, while Spanish proves to be the most difficult.
Italian and Dutch are similarly challenging.

Fine-grained Table 3 reports the results on the
11-labesl classification. All LMs perform better
than random, while the baseline fails in almost all
cases. Yet, the fine-grained benchmark is highly
challenging, with the highest Accuracy being 0.39
on the Italian Wikipedia, making TEXT-CAKE
more difficult than previous benchmarks (Barzilay
and Lapata, 2008; Elsner and Charniak, 2011; La-
ban et al., 2021). In general, Wikipedia and News
are easier to deal with than TED Talks. These
results reveal an ideal coherence complexity con-
tinuum, where Wikpedia and TED Talks represent
the two opposite extremes, suggesting a relation-
ship between writing conventions (and style) and
the expression of coherence. Again, the best re-
sults - across all genres and all languages - are
obtained by mDeBERTa-v3. Figure 2 shows the
LMs’ average performance by class. Figure 2a
reports average performance across languages per
dataset, while Figure 2b shows results by language
across all datasets. In contrast to the coarse-grained
scenario, lack of coherence, especially in Swap
perturbations, is easier to detect than its presence
(Orig). The strongest coherence disruption occurs
when the first sentence is swapped or substituted,
breaking the logical order.

Overall, models with the same basic architec-
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Models
Dataset Language mBERT XML-RoBERTa mDeBERTa-v3 Baseline

Wikipedia

IT 0.36 0.30 0.39 0.10
ES 0.31 0.24 0.32 0.11
NL 0.26 0.25 0.37 0.08
EN 0.34 0.30 0.38 0.13

News

IT 0.24 0.21 0.33 0.11
ES 0.12 0.26 0.28 0.08
NL 0.22 0.25 0.31 0.08
EN 0.32 0.38 0.38 0.08

TED Talks

IT 0.18 0.24 0.26 0.07
ES 0.17 0.25 0.28 0.07
NL 0.17 0.24 0.25 0.07
EN 0.19 0.29 0.29 0.08

Table 3: Results of the multilingual LMs across datasets and languages. Baseline is the Linear SVM. Overall best
results are in bold.

(a) Performance per dataset (b) Performance per language

Figure 2: Average performances of the multilingual models for each class.

tures in terms of depth and width behave differently
mostly due to the pre-training objective and the vo-
cabulary size. Model’s size (i.e., total number of
parameters) seems to be less relevant than expected
or assumed. No model has balanced pre-training
data across all languages, yet the differences do
not seem to be due to varying sizes of the pre-
trainig materials. Interestingly, even with unbal-
anced pre-training data (e.g., Spanish having more
data in Wiki-100 and CC-100 datasets than Italian
and Dutch but performing worse), models perform
similarly on specific perturbed classes. This sug-
gests that inherent language-specific writing styles
influence model performance.

5.2 Monolingual Models

The monolingual experiments allow us to explore
in more detail the connection between model’s size,
depth, and width. Working only with English, we
also use the fanfictions dataset to investigate the
expression and detection of coherence in narrative

texts. We report the results on two sets of exper-
iments: in-domain and out-of-domain. This will
allows us to investigate generalization capabilities
of models (and their dependence from the model’s
properties) as well to gain better insights on the
relationship between coherence and text genres.
This section reports a detailed set of experiments
on the fine-grained dataset. For completeness, the
performance of monolingual models on the coarse-
grained dataset are reported in Appendix A.

In-domain Results An overview of the results
is presented in Table 4. While the Wikipedia
and News subsets remain the easiest to process,
the Fanfiction subset proves less challenging than
TED Talks. As expected, all models outperform
the baseline, and a clear pattern emerges linking
model size and depth (i.e., number of parameters
and layers) to performance. The Large model
consistently outperforms all others by at least 10
points. We would generally expect a linear rela-
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Figure 3: Overview of the results of the monolingual models on each class per dataset (in-domain). For each dataset
the scores correspond to the average of all models.

Models
Dataset XSmall Small Base Large BL

Wikipedia 0.41 0.37 0.46 0.58 0.13

News 0.41 0.39 0.46 0.57 0.08

TED Talks 0.35 0.31 0.39 0.50 0.08

Fanfiction 0.37 0.32 0.38 0.49 0.10

AVG 0.38 0.34 0.42 0.53 0.10

Table 4: In-domain results of the monolingual
DeBERTa-v3 LM family on each dataset. BL corre-
sponds to the Linear SVM. Best results are in bold.

tionship between model size, depth, and perfor-
mance. However, this trend is only partially ob-
served. While the Base model (the second largest)
achieves the second-best performance, the XSmall
model ranks third, outperforming the Small model,
which shows the worst performance, consistent
with findings from He et al. (2023). Scaling up
models does improve performance, extending co-
herence detection to a broader range of downstream
tasks impacted by larger models (Kaplan et al.,
2020; Rae et al., 2021). The XSmall model outper-
forms the Small model by an average of 4 points,
suggesting that model depth has a greater impact
on coherence detection than model width.

Figure 3 shows the average Accuracy of the LMs
for each dataset across all classes. Monolingual
models outperform multilingual ones (Figure 2a),
showing consistent trends in coherence modeling.
For the Wikipedia, News, and TED Talks subsets,
the behavior and patterns are the same as observed
in the multilingual experiments, with Accuracy be-
ing higher. In the case of Fanfiction, the trend

for Swap perturbations is similar to the other data
portions, highlighting the importance of the first
sentence in establishing coherence. For Sub per-
turbations, models perform worse when substitut-
ing all but the first sentence. Although the larger
number of passages starting with the first sentence
of a paragraph may have had an impact (see Ta-
ble 1), this suggests that, in narratives, coherence
is maintained throughout the text, unlike news ar-
ticles where the ending sections are less coherent
with the opening. As a result, the Accuracy for
Sub_4 and Sub_3 is higher than for Sub_1.

Comparing TED Talks and Fanfiction highlights
the impact of pre-training data. While these fanfic-
tions were not used to train the DeBERTa models,
similar text types (e.g., CC-STORIES and PG-19)
were. This sensitivity to pre-training material, ob-
served in multilingual experiments, emphasizes the
need for the NLP community to document the data
used to create LMs, thus facilitating the selection
of promising models and reducing unnecessary ex-
periments and resource consumption.

Out-of-domain Results To investigate general-
ization in out-of-domain settings, we finetuned
all DeBERTa models using three data subsets for
training and one left-out subset for testing. Ta-
ble 5 shows the average scores for three finetuned
models per dataset. The overall performance is
similar to in-domain experiments, but the XSmall
model, though narrow but with the same depth
as the Base model, suffers the most (average ∆
0.115 against in-domain). On the contrary, the
Base model (wider and nearly four times bigger),
minimizes losses across all subsets.
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Models
Dataset XSmall Small Base Large

Wikipedia 0.24 (∆ 0.17) 0.32 (∆ 0.05) 0.43 (∆ 0.03) 0.53 (∆ 0.05)

News 0.33 (∆ 0.08) 0.29 (∆ 0.10) 0.43 (∆ 0.03) 0.51 (∆ 0.06)

TED Talks 0.26 (∆ 0.09) 0.23 (∆ 0.08) 0.37 (∆ 0.02) 0.45 (∆ 0.05)

Fanfiction 0.25 (∆ 0.12) 0.22 (∆ 0.10) 0.31 (∆ 0.07) 0.38 (∆ 0.11)

Table 5: Out-of-domain results of the monolingual DeBERTa-v3 LMs’ family on each dataset. Best results are in
bold. In the parentheses, we report the deltas with respect to the in-domain results.

Genres have a less prominent impact on the per-
formance drop. On average, the loss across genres
ranges between 0.06 (News and TED Talks) and 0.1
(Fanfiction). Losses cannot be directly connected
to the presence of comparable text genres in the
pre-training. As a matter of fact, TED Talks, not
present in the pre-trainng data of all LMs, has a
lower drop that Fanfiction.

Generalization abilities are mostly affected by
model’s size. For instance, XSmall and Base have
the same depth, but XSmall is a quarter the size
of Base, leading to an average loss of 0.115 ver-
sus 0.03 for Base in out-of-domain experiments.
Width may also contribute, as XSmall has half the
attention heads of Base.
Classification Errors We further investigated
the errors of the finetuned models, focusing on
in-domain experiments. Detailed confusion matri-
ces are in Appendix B.

Identifying the original text passage is the
most challenging task, with frequent misclassi-
fications as Sub perturbations, especially Sub_1
and Sub_4. Errors rarely occur with Swap per-
turbations (all less than 1%). Models generally
make errors across perturbed classes, particularly
confusing adjacent sentences within Sub pertur-
bations, such as Sub_2 with Sub_1. Swap per-
turbations are often confused with Sub classes,
like Swap_1_2 with Sub_1 or Sub_2. Distinct er-
ror patterns are not evident across models, sug-
gesting minimal impact from size and parameter
variations. All models struggle with Swap_2_3
and Swap_3_4 perturbed classes. Specific errors
include DeBERTa-Small and DeBERTa-Base with
Swap_1_2, and DeBERTa-XSmall with Sub_4. Er-
ror patterns are consistent across datasets, with no
specific problematic cases per text genre.

6 Conclusions & Future Work

Coherence is a key textual property and essen-
tial for a variety of applications. We introduce

TEXT-CAKE, a new benchmark and method
to comprehensively investigate the sensitivity of
LMs to local text coherence across genres and lan-
guages. Our method, potentially replicable for any
language with diverse genre resources, reveals that
this task poses a significant challenge for all exam-
ined LMs, underlining the importance of rigorously
assessing LMs in discourse processing, especially
given the advancements of generative models.

In our evaluation setting, we aimed to under-
stand the connection between model architectures
and their effectiveness when finetuned on this task.
Not surprisingly, the granularity of the task has
an impact on the models’ performance. TEXT-
CAKE, however, clearly indicates that local text
coherence is more challenging to detect than at doc-
ument level (Laban et al., 2021).

The multilingual experiments highlight the im-
portance of pre-training objective and vocabulary
size over the overall size of LMs. Additionally,
the composition of pre-trained data significantly
impacts performance, with text genre variation
being more influential than language representa-
tions. Results from monolingual LMs, with fixed
pre-training objectives and vocabulary size, high-
light the impact of model depth and width on task-
solving capabilities. Scaling-up proves effective
in enhancing task performance, as larger models
show better generalization also in a out-domain set-
ting. When comparing models with varying depths,
deeper models resulting more efficient for this spe-
cific task. This aligns with findings by Petty et al.
(2023), who showed that while depth enhances gen-
eralization, its positive effects diminish if LM size
and width remain fixed.

Future research should explore directly training
language models for tasks related to local coher-
ence detection to potentially achieve comparable
or even better performance while bypassing the
computational costs associated with fine-tuning.
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Limitations

In this study, we focused exclusively on encoder-
based models to investigate the effect of different
parameters on coherence detection. This decision
was primarily motivated by the need for consis-
tency in the model architecture across different
dimensions. We chose the DeBERTa-v3 models
because it maintains a consistent structure and pre-
training objectives while being available in differ-
ent shapes and sizes, allowing us to study the ef-
fect of model width and depth in isolation. In
contrast, the available decoder-only or encoder-
decoder models vary both dimensions simultane-
ously, which only allows us to study the effect of
the number of parameters rather than the shape of
the model. However, this exclusion is a limitation
of our work, and future research could benefit from
incorporating these models to provide a more com-
prehensive understanding of coherence detection
across different model architectures.

The methodology used to create our dataset is
language and genre independent but it requires
sources with adequate size to ensure meaningful
analysis. This requirement may bias the dataset to-
wards certain types of sources that are more readily
available or easily accessible in larger volumes. As
a result, the findings of this study might not fully
generalize to sources with limited availability or
those not well-represented in the dataset. Address-
ing this limitation in future work could involve
developing techniques to effectively utilize smaller
or less conventional sources, thereby broadening
the applicability of the research outcomes.
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A Monolingual experiments on
coarse-grained dataset

Table A presents the performance of English mono-
lingual models on the coarse-grained dataset. All
models significantly outperform the SVM baseline.
As expected, the Large model achieves the best
results, followed by the Base model. Notably, on
this relatively easier dataset, the performance dif-
ference between the XSmall and Small models is
almost negligible. This suggests that in this case,
the model’s depth is less critical for solving the
task, with the Small model nearly closing the per-
formance gap due to its higher number of parame-
ters.

Models
Dataset XSmall Small Base Large BL

Wikipedia 0.61 0.60 0.66 0.72 0.35

News 0.61 0.61 0.68 0.73 0.35

TED Talks 0.56 0.55 0.62 0.69 0.34

Fanfiction 0.62 0.62 0.66 0.68 0.34

AVG 0.60 0.60 0.66 0.71 0.34

Table A: In-domain results of the monolingual
DeBERTa-v3 LM family on each coarse-grained dataset.
BL corresponds to the Linear SVM. Best results are in
bold.

B Results on classes

Figure A rdisplays the confusion matrices for the
classification on the fine-grained dataset, organized
by each monolingual model. Each confusion ma-
trix represents the average values computed across
all datasets. In contrast, Figure B presents the re-
sults for each dataset, averaged across all monolin-
gual models.

C Model’s parameters and sizes

Table B lists the number of parameters for all the
models used in our experiments, as specified in the
official documentation.

D Finetuning Hyperparamters

Table C presents the hyperparameters and GPUs
utilized to fine-tune all the models during our ex-
periments.
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Figure A: Confusion matrix for each model.
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Figure B: Confusion matrix for each dataset.
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