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Abstract
Recently, Large Vision-Language Models
(LVLMs) have demonstrated impressive capa-
bilities in multi-modal context comprehension.
However, they still suffer from hallucination
problems referring to generating inconsistent
outputs with the image content. To mitigate
hallucinations, previous studies mainly focus
on retraining LVLMs with custom datasets. Al-
though effective, they inherently come with
additional computational costs. In this paper,
we propose a training-free framework, MVP,
that aims to reduce hallucinations by mak-
ing the most of the innate capabilities of the
LVLMs via Multi-View Multi-Path Reason-
ing. Specifically, we first devise a multi-view
information-seeking strategy to thoroughly per-
ceive the comprehensive information in the im-
age, which enriches the general global infor-
mation captured by the original vision encoder
in LVLMs. Furthermore, during the answer
decoding, we propose multi-path reasoning for
each information view to quantify and aggre-
gate the certainty scores for each potential an-
swer among multiple decoding paths and fi-
nally decide the output answer. By fully grasp-
ing the information in the image and carefully
considering the certainty of the potential an-
swers when decoding, our MVP can effectively
reduce hallucinations in LVLMs. The exten-
sive experiments verify that our proposed MVP
significantly mitigates the hallucination prob-
lem across four well-known LVLMs. Further-
more, MVP is plug-and-play and can integrate
with other decoding methods for more perfor-
mance boosts. The source code is available at:
https://github.com/GasolSun36/MVP.

1 Introduction

Large Vision-Language Models (LVLMs) have be-
come indispensable and marked a significant mile-
stone in the field of Artificial Intelligence. These

*Equal contribution.
†Corresponding author.

Is there a backpack in the image?

No, there is no backpack.

How many people in the image?

There is one people in the image.

Figure 1: Given an image, LVLM fails to recognize
objects or miscounts the quantity.

LVLM models, owing to their ability to generate
contextually relevant textual renditions of visual
inputs, are being extensively employed across a
diverse spectrum of applications, such as health-
care (Liu et al., 2023b; Li et al., 2024; Bazi et al.,
2023), autonomous systems (Cui et al., 2024; Tian
et al., 2024; Park et al., 2024b), and robotics (Liu
et al., 2024c; Shah et al., 2023; Kelly et al., 2024).

Despite substantial advancements (Sun et al.,
2024; Liu et al., 2025), LVLMs suffer from a sig-
nificant challenge termed “hallucination”, whereby
the models produce semantically plausible but fac-
tually inaccurate text, misaligned with the ground-
truth content of the associated image. As shown in
Figure 1, LVLMs fail to recognize “backpack” and
incorrectly identify the number of people in the im-
age. In applications where precision and reliability
of generated content are paramount, such hallucina-
tions can trigger a cascade of erroneous decisions.
Consequently, addressing the hallucination issue is
indispensable for strengthening the trustworthiness
of LVLMs across practical applications.

To tackle hallucination, most recent studies fo-
cusing on retraining the LVLMs with constructed
hallucination-related datasets by supervised fine-
tuning (SFT) (Chen et al., 2023; Wang et al., 2024b;

https://github.com/GasolSun36/MVP
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Park et al., 2024a; Liu et al., 2023a), or Reinforce-
ment Learning from Human Feedback (RLHF) (Yu
et al., 2023; Yan et al., 2024; Sun et al., 2023). Al-
though these methods for alleviating hallucination
in LVLMs have shown effectiveness, they acquire
a substantial number of high-quality examples for
training and are quite time-consuming and labor-
intensive. Recently, there are also works explor-
ing training-free paradigms to mitigate the hallu-
cinations. Woodpecker (Yin et al., 2023) pick out
and correct hallucinations from the generated text.
MARINE (Zhao et al., 2024) employs classifier-
free guidance to incorporate the additional ob-
ject grounding features to improve the precision
of LVLMs’ generations. However, most of them
heavily rely on external complicated tools, such as
Grounding DINO (Liu et al., 2023c), or BLIP-2-
FlanT5X (Li et al., 2023a).

In this work, to alleviate hallucinations in
LVLMs, we focus on maximizing the innate ability
of LVLMs without introducing additional training
costs or external tools. To this end, we propose a
novel training-free framework MVP, namely Multi-
View Multi-Path Reasoning. Different from previ-
ous works, our MVP is grounded in an analysis of
the key factors underlying hallucination, including
the incomplete comprehension of image content
and low certainty when decoding answer tokens
in original LVLMs. First, if the vision encoder
of LVLMs can not fully capture the information
from the input image, language models may gener-
ate outputs based on this incomplete content, thus
resulting in hallucinatory descriptions. Second, dur-
ing the answer decoding, hallucinations occur more
frequently when the certainty of answer tokens is
low. In this scenario, the model is uncertain about
multiple candidate tokens, leading to potentially
inaccurate outputs.

Thus, our MVP proposes to fully capture the
information in the image and carefully consider
the certainty of the potential answers when de-
coding. Specifically, we first devise a multi-view
information-seeking strategy, which involves an
exhaustive perception of the image from varying
dimensions: a “top-down” look captures overar-
ching scene context, a “regular” view addresses
elementary visual information, and a “bottom-up”
perspective zooms in on intricate details. Instead
of using tools, the captured information from these
diversified views is generated by the LVLMs, and
effectively reinforces the global image context cap-
tured by the original vision encoder of LVLMs,

thereby reducing the hallucinations from misun-
derstanding the image’s information. In addition,
during the answer decoding stage, we further in-
troduce multi-path reasoning for each information
view by explicitly quantifying the certainty score of
the potential answers and then aggregating the over-
all certainty among multiple paths. Then, the an-
swer with the highest certainty score will be chosen
as the final answer, thus effectively alleviating the
hallucinations caused by low certainty. To verify
the effectiveness of MVP, we conduct experiments
on four widely-used LVLMs. The promising re-
sults demonstrate that our framework significantly
outperforms recent training-free methods.

To sum up, our contributions are summarized as:

• We propose a training-free framework to al-
leviate hallucinations with Multi-view Multi-
path Reasoning. Our framework focuses on
maximizing the innate ability of LVLMs with-
out introducing additional training costs or
external tools.

• To comprehensively grasp the image, we seek
information from multi-view perspectives, in-
cluding “bottom-up”, “regular”, and “top-
down” views. During decoding, we introduce
multi-path reasoning to quantify and compare
the certainty of each potential answer.

• Through comprehensive experiments, we
demonstrate the superior performance of our
MVP in alleviating hallucinations across four
LVLMs. Moreover, our framework is plug-
and-play and can integrate with other decod-
ing methods for further improvement.

2 Method

2.1 Overall of the MVP Framework
As shown in Figure 2, given that hallucinations
commonly arise due to incomplete comprehension
of image content, we propose to seek complemen-
tary information from the input image with three
different views. Subsequently, the acquired infor-
mation is leveraged to augment the global vision in-
formation from the vision encoder for LLM reason-
ing. For each view, considering different decoding
paths have different certainty for potential answers,
we introduce certainty-driven multi-path reasoning,
which quantifies and aggregates the certainty score
for each potential answer among multiple decod-
ing paths. In this stage, we maximize the inherent



4430

Input Image

        LLM 

Vision Information
Query 

Information

Bottom-up View

Regular View

Top-down View

1. There is four cars. 

... 
2. Based on the ... three ... 

1. … The total car is four  …

... 
2. In the image ... four ...

1. There is three car ... 

2. It is a small car in ... four ...

... 

Answer:
Four.

Certainty
Score (0.85)

Top-down Regular Bottom-Up

Seeking Image Information

Token Probs

... A train can 
also be seen 

in the 
background ...

... Three large 
city buses are 
prominently 

visible ...  

... with a stop 
sign and plant 
also visible in 

the area ...

Certainty
Score (0.35)

Certainty
Score (0.03)

Certainty
Score (0.65)

Certainty
Score (0.35)

Certainty
Score (0.55)

Vision 
Encoder
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Figure 2: An overview of our Multi-View Multi-Path Reasoning. (1) Seeking image information from multiple
perspectives including top-down, regular, and bottom-up views. (2) Augmenting the global vision information with
each view information. (3) The certainty-driven decoding corresponding to each view quantifies and aggregates
certainty scores for each potential answer among multiple decoding paths. The final results are obtained by
comparing certainty scores among all candidates.

reasoning ability of the model. Finally, with the
multi-view information and multi-path reasoning,
we achieve superior performance for alleviating
hallucinations.

2.2 LVLMs Input and Decoding

The input of LVLMs contains both image and text.
The image is first processed by a vision encoder
(e.g. CLIP (Radford et al., 2021), BLIP (Li et al.,
2022)) to obtain visual tokens. Then, the image
tokens are mapped to the input space of LLMs
for decoding. We denote the visual tokens as
xv = {xv1, xv2, . . . , xvN}. Here N is the length of
the visual tokens. Correspondingly, the input query
is tokenized with the tokenizer. We denote it as
xq = {xq1, x

q
2, . . . , x

q
M} with length M . The im-

age and text tokens are concatenated as the final
input sequence X with length N +M .

X = [xv : xq] = [xv1, x
v
2, . . . , x

v
N , xq1, x

q
2, . . . , x

q
M ],
(1)

After feeding the input tokens X to the LVLMs,
the model outputs answers in an auto-regressive
manner which predicts the next token based on
previous tokens, formally:

p(Ot|O<t) = SoftMax[LV LM([{Oi}t−1
i=1)], (2)

where we omit the input query X and {Oi}t−1
i=1 are

decoding tokens from the previous t-1 rounds and
the first decoding token O1 is decoded with the
input X in Eq. 1. At time step t, the token with
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Figure 3: Comparison of the number of objects between
regular and multi-view caption. The statistic is obtained
in MSCOCO popular part of the POPE benchmark.

the highest probability is chosen from the vocab-
ulary. During the decoding period, hallucinations
arise when probabilities are improperly attributed
to tokens that fail to correlate with the presented
visual image.

2.3 Multi-view Image Information Seeking

Previous LVLM research, utilizing a CLIP for
global image representation, may neglect intricate,
object-specific details and background components,
consequently leading to hallucinations precipitated
by a partial grasp of the input image (Zhang et al.,
2024a,b). For instance, when querying the detailed
information that is not captured by the video en-
coder, the LVLMs tend to hallucinate. Thus, it is
imperative to master comprehensive information
about the image before responding to the input
query. Naturally, a wealth of visual information
exists in images and can be located by various meth-
ods, such as invoking external visual detection tools
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(Liu et al., 2023c; He et al., 2017).
In this paper, we resort to maximizing using

the innate ability of the LVLMs and design three
perspectives for extracting comprehensive informa-
tion: “bottom-up”, “regular”, and “top-down”. To
accomplish it, we use the given LVLM to gener-
ate captions by designing dedicated prompts, thus
eliminating the need for external tools or the de-
sign of specific networks. For example, to extract
the information from a top-down perspective, we
use the prompt: “Given the overall scene depicted
in the image, taking into account the context, en-
vironmental factors, and any relevant visual cues,
describe this image in details.” (Please see Sec-
tion 4.3 for more prompts). To demonstrate the
effectiveness of multi-view information-seeking
strategy, we conduct a statistical analysis of the vi-
sual richness of multi-view captions. As shown
in Figure 3, the LLaVA-1.5 model captures an
average of 16.43 objects per image using only
regular perspective caption, while an average of
36.66 objects can be recognized when three per-
spectives are adopted. Formally, the captions from
a specific perspective can be tokenized and de-
noted as xc = {xc1, xc2, . . . , xcK} with length K
and c ∈ {Top-down,Bottom-up,Regular}. Subse-
quently, the caption is integrated with the input for
LLM decoding:

X ′ = [xv1, . . . , x
v
N , xc1, . . . , x

c
K , xq1, . . . , x

q
M ],

(3)

2.4 Multi-path Certainty-driven Reasoning

Decoding strategies are important in guiding how
LVLMs produce textual answer. Previous decoding
strategies commonly consider each output token
with the same level of importance, thus ignoring
the unique importance of the answer token. How-
ever, we observe that the answer tokens present
different certainty during diverse decoding paths.
In Figure 2, for the question (How many cars are
in this image), the first decoding path of “Bottom-
up” and “Regular” perspectives produce different
answers “four” and “three” but their certainty is
significantly different (0.65 and 0.03, respectively).
This phenomenon indicates that hallucinations oc-
cur more frequently when the certainty of answer
tokens is low and inspires us with certainty-driven
reasoning to alleviate hallucinations. Formally, we
quantify the Centainty Score S, which is the differ-
ence between the probabilities of the two tokens

Input Image

Query: Is there a cup in the image? 
Please answer with Yes or No.

Decoding
Paths

Yes         

… (More decoding path)

Based 

(Score: 
0.02)

The 

(Score: 0.92)

(Score: 0.45)

,there is a cup in the image.

on the image, there is no cup in the scene.

answer is Yes.

Candidate First Tokens

Figure 4: An illustration of certainty-driven multi-path
reasoning. The correct answer is “No”. “Score” denotes
the certainty score of the answer token. “Yes”, ‘Based”,
“The” are candidate decoding tokens at first place. The
three decoding paths are greedy decoding with these
candidate tokens.

with the highest probabilities at time step t:

S = p(x1t | v, x<t)− p(x2t | v, x<t) (4)

where x1t and x2t represent the post-softmax
probabilities of top-two tokens at each decoding
step t. It is worth noting that we only consider the
probability disparity of the answer tokens.

2.4.1 Multi-Path Certainty-driven Reasoning
To illustrate certainty-driven reasoning, we first
consider a basic situation where only one greedy
decoding paths exist. As shown in Figure 5, given
the input query, we observe that LVLMs tend to hal-
lucinate when a low certainty score occurs, where
greedy decoding mistakenly takes the bottle for a
cup and outputs the wrong answer: “Yes, there is
a cup in the image”, while the certainty score of
the answer token “Yes” is only 0.02. With further
investigation, when decoding the first token, be-
sides “Yes", there are many other candidates (i.e.
“Based”, “The”), which are displayed by underline
in Figure 4 and sorted by probability from high
to low. Instead of introducing complex methods
to building multiple decoding paths, we simply
inspect more top-K paths starting from relatively
lower probability tokens, namely decoding from
the second word “Based”, the third word “The”,
and so on. Notably, the second path leads to the
correct answer “no” with a significantly higher cer-
tainty score of 0.92.

Thus, we introduce a multi-path reasoning which
explicitly considers the certainty of the answer to-
kens. Specifically, to build multiple paths, we con-
sider the top-K candidates in the decoding process
of the first token, and then continue decoding based
on each candidate to generate the K paths with dif-
ferent answers. Formally, each path corresponds to
an answer Ak. Here the answers can be identified
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by the question type or specified prompt format.
For instance, we can search for numbers in the out-
put to answer the question in Figure 2, or identify
“yes” or “no” in Figure 4. Then, we aggregate the
certainty score for same Âk from K paths:

SÂk
=

K∑
j=1

Mj(p(A
1
j | v,A<t)−p(A2

j | v,A<t))

(5)
where A<t denotes the sequence before generat-

ing answer Aj . Here Mj is an optional parameter
denoting the probability of the first token in the
K-th path and we will explore it in the experiment.
Thus, we can obtain the certainty score for each
potential answer.

2.4.2 Multi-View Multi-Path Reasoning
In Section 2.3, we seek image information from
three perspectives c ∈ {Top-down,Bottom-up,
Regular}. Considering that each view captures
different information from the input image, the
corresponding reasoning paths also present specific
preference, thus we can further aggregate certainty
scores for multi-view multi-path:

SÂc,k
=

c∑
i=1

αi

K∑
j=1

Mij(p(A
1
xij

| v,A<t)−p(A2
xij

| v,A<t))

(6)

where αi is a hyperparameter denoting the im-
portance of a specific perspective. Finally, the an-
swer with the highest certainty score is selected as
our final answer:

Afinal = argmax(SÂc,k
) (7)

3 Experiment

3.1 Evaluation Benchmarks
Following previous works (Leng et al., 2023;
Huang et al., 2023), we use the following two
benchmarks POPE and MME.
POPE the Polling-based Object Probing Evalua-
tion (Li et al., 2023b). In this benchmark, LVLMs
are queried to determine whether a specific object
is present in the provided image. It encompasses
three distinct settings: random, popular, and adver-
sarial, each differing in the construction of negative
samples. The POPE benchmark aggregates data
from three distinct sources: MSCOCO (Lin et al.,
2014), A-OKVQA (Schwenk et al., 2022), and
GQA (Hudson and Manning, 2019). It involves

500 images from each dataset under each sampling
setting. The performance is gauged using four key
metrics: Accuracy, Precision, Recall, and F1.
MME (Fu et al., 2024) acts as a comprehensive
benchmark designed to evaluate LVLMs across
a range of dimensions. It is composed of ten
perception-related subtasks and four cognition-
focused ones. In the experiments, we evaluate the
full dataset. In addition, we take into account the
existence and count subsets for the inspection of
object-level hallucination, along with the position
and color subsets for attribute-level hallucination
evaluation. The combined metric of accuracy and
accuracy+ is used to quantify the performance as
per the official implementation.

3.2 Evaluation LVLM and Baselines
LVLMs. To comprehensively evaluate our model
and have a fair comparison with previous works, we
experiment with our proposed MVP on four state-
of-the-art LVLMs, including LLaVA1.5, Qwen-VL,
InstructBLIP, and mPLUG-Owl2. All four LVLMs
are based on 7B LLM backbone models.
Baselines. To verify the effectiveness of our frame-
work, we compare MVP with the vanilla LVLMs
and two recent training-free methods, including
VCD and OPERA. In our main experiments, for
fair comparison, vanilla, VCD, and our MVP all
adopt the decoding strategy of direct sampling. In
addition, OPERA introduces a penalty term on the
model logits during the beam-search decoding to
mitigate the over-trust issue.

3.3 Experiment Results
Results on POPE. Table 1 summarizes the exper-
imental results on the MSCOCO part of POPE
benchmark, including experiments under random,
popular, and adversarial settings. The results of
A-OKVQA and GQA are presented in the Ap-
pendix. Specifically, under different settings, our
method significantly surpasses the vanilla model’s
performance across all LVLMs. For example, with
LLaVA1.5, MVP achieves an average improve-
ment of 15.9 in Accuracy and 21.84 in F1 score
across random, popular, and adversarial settings.
For LLaVA1.5, Qwen-VL, and InstructBLIP, the
improvement in F1 scores is mainly due to an in-
crease in recall, while in mPLUG-Owl2, the in-
crease comes from the simultaneous improvement
of precision and recall. Furthermore, compared to
VCD and OPERA, our method still achieves better
results in most cases. These results demonstrate
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Setting Model Decoding Accuracy↑ Precision↑ Recall↑ F1 Score↑

Random

LLaVA1.5

Vanilla 83.29(±0.35) 92.13(±0.54) 72.80(±0.57) 81.33(±0.41)

VCD 87.73(±0.40) 91.42(±0.55) 83.28(±0.42) 87.16(±0.41)

OPERA 89.17(±0.15) 93.21(±0.21) 85.20(±0.37) 89.03(±0.11)

Ours 91.10(±0.17) 93.69(±0.25) 88.13(±0.40) 90.82(±0.16)

Qwen-VL

Vanilla 84.36(±0.48) 95.65(±0.43) 72.00(±0.32) 82.16(±0.51)

VCD* 86.03(±0.13) 95.92(±0.35) 75.26(±0.13) 84.34(±0.10)

OPERA 86.13(±0.21) 97.54(±0.37) 74.13(±0.18) 84.24(±0.22)

Ours 86.33(±0.25) 95.95(±0.16) 75.86(±0.22) 84.74(±0.25)

InstructBLIP

Vanilla 80.71(±0.73) 81.67(±0.67) 79.19(±1.14) 80.41(±0.80)

VCD 84.53(±0.38) 88.55(±0.54) 79.32(±0.44) 83.68(±0.40)

OPERA 89.86(±0.24) 94.46(±0.30) 85.33(±0.47) 89.66(±0.16)

Ours 90.30(±0.41) 92.54(±0.28) 87.66(±0.31) 90.04(±0.19)

mPLUG-Owl2

Vanilla 86.70(±0.18) 91.73(±0.45) 80.66(±0.33) 85.84(±0.56)

VCD 88.13(±0.24) 93.93(±0.12) 81.53(±0.45) 87.29(±0.31)

OPERA 86.90(±0.26) 91.90(±0.39) 80.93(±0.17) 86.07(±0.43)

Ours 91.13(±0.26) 92.49(±0.14) 89.53(±0.36) 90.98(±0.24)

Popular

LLaVA1.5

Vanilla 81.88(±0.48) 88.93(±0.60) 72.80(±0.57) 80.06(±0.05)

VCD 85.38(±0.38) 86.92(±0.53) 83.28(±0.42) 85.06(±0.37)

OPERA 86.00(±0.33) 84.09(±0.18) 88.80(±0.44) 86.38(±0.17)

Ours 87.06(±0.27) 84.84(±0.13) 90.27(±0.45) 87.47(±0.39)

Qwen-VL

Vanilla 84.06(±0.18) 94.20(±0.43) 72.60(±0.45) 82.00(±0.23)

VCD* 85.80(±0.07) 94.82(±0.10) 75.73(±0.19) 84.21(±0.09)

OPERA 85.73(±0.21) 96.52(±0.15) 74.13(±0.11) 83.86(±0.14)

Ours 85.96(±0.38) 94.40(±0.11) 76.46(±0.46) 84.49(±0.21)

InstructBLIP

Vanilla 78.22(±0.84) 77.87(±1.03) 78.85(±0.52) 78.36(±0.76)

VCD 81.47(±0.42) 82.89(±0.64) 79.32(±0.44) 81.07(±0.39)

OPERA 83.43(±0.12) 81.21(±0.46) 87.00(±0.35) 84.00(±0.24)

Ours 79.93(±0.23) 76.01(±0.25) 87.46(±0.37) 81.34(±0.49)

mPLUG-Owl2

Vanilla 83.66(±0.37) 85.51(±0.25) 81.06(±0.48) 83.23(±0.19)

VCD 84.00(±0.29) 80.57(±0.13) 89.60(±0.45) 84.85(±0.21)

OPERA 84.53(±0.15) 87.59(±0.38) 80.46(±0.49) 83.87(±0.22)

Ours 86.30(±0.03) 90.12(±0.28) 81.53(±0.14) 85.61(±0.47)

Adversarial

LLaVA1.5

Vanilla 78.96(±0.52) 83.06(±0.58) 72.75(±0.59) 77.57(±0.57)

VCD 80.88(±0.33) 79.45(±0.29) 83.29(±0.43) 81.33(±0.34)

OPERA 79.13(±0.31) 74.41(±0.23) 88.80(±0.41) 80.97(±0.14)

Ours 81.50(±0.20) 78.20(±0.44) 87.33(±0.42) 82.51(±0.33)

Qwen-VL

Vanilla 82.66(±0.30) 90.49(±0.33) 73.00(±0.50) 80.81(±0.37)

VCD* 83.30(±0.39) 89.17(±0.45) 75.80(±0.39) 81.94(±0.39)

OPERA 83.93(±0.45) 92.55(±0.22) 73.80(±0.37) 82.12(±0.18)

Ours 84.23(±0.39) 92.89(±0.12) 74.13(±0.43) 82.46(±0.28)

InstructBLIP

Vanilla 75.84(±0.45) 74.30(±0.63) 79.03(±0.68) 76.59(±0.40)

VCD 79.56(±0.41) 79.67(±0.59) 79.39(±0.50) 79.52(±0.38)

OPERA 80.73(±0.32) 77.31(±0.46) 87.0(±0.15) 81.87(±0.23)

Ours 80.82(±0.24) 81.23(±0.18) 82.91(±0.38) 82.06(±0.15)

mPLUG-Owl2

Vanilla 81.73(±0.44) 82.82(±0.33) 80.06(±0.18) 81.42(±0.29)

VCD 80.70(±0.30) 75.94(±0.17) 89.87(±0.41) 82.33(±0.24)

OPERA 82.43(±0.35) 83.48(±0.28) 80.86(±0.41) 82.15(±0.14)

Ours 84.40(±0.08) 86.49(±0.37) 81.53(±0.19) 83.94(±0.61)

Table 1: Results on MSCOCO source of POPE. The best performances are bolded. VCD and OPERA are two
recently proposed training-free methods in CVPR24. * denotes our reproduced VCD results with Qwen-VL.
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Figure 5: MME full set results on LLaVA-1.5, Qwen-VL, InstructBLIP, and mPLUG-Owl2 on 14 subtasks. The
orange lines represent the vanilla model and the blue lines denotes our MVP model.

Model Decoding Object-level Attribute-level Total Scores↑Existence↑ Count↑ Position↑ Color↑

LLaVA1.5

Vanilla 175.67 124.67 114.00 151.00 565.33
VCD 184.66 138.33 128.67 153.00 604.66
OPERA 185.00 108.33 111.67 145.00 550.00
Ours 195.00 158.33 120.00 165.00 638.33

Qwen-VL

Vanilla 155.00 127.67 131.67 173.00 587.33
VCD 156.00 131.00 128.00 181.67 596.67
OPERA 165.00 145.00 133.33 180.00 623.33
Ours 175.00 150.00 128.00 180.00 633.00

InstructBLIP

Vanilla 141.00 75.33 66.67 97.33 380.33
VCD 168.33 92.33 64.00 123.00 447.67
OPERA 156.00 78.33 55.00 95.00 384.33
Ours 195.00 98.33 65.00 105.0 456.67

mPLUG-Owl2

Vanilla 160.00 130.00 68.33 123.33 481.66
VCD 170.00 155.00 71.67 141.67 538.34
OPERA 173.33 150.00 85.00 138.33 546.66
Ours 195.00 153.33 71.67 170.00 589.99

Table 2: Results on the hallucination subset of MME. The best performances within each setting are bolded.

Regular Bottom Top Accuracy Precision Recall F1
- - - 79.33 74.88 88.26 81.02
✓ 80.36 78.09 84.40 81.13

✓ 80.60 78.15 84.93 81.40
✓ 80.73 78.35 84.93 81.51

✓ ✓ 80.60 78.06 85.13 81.44
✓ ✓ 80.86 78.26 85.47 81.71

✓ ✓ 80.90 77.80 86.46 81.91
✓ ✓ ✓ 81.50 78.20 87.33 82.51

Table 3: Performance comparison of different views.
Here “Bottom” means bottom-up perspective, and “Top”
indicates top-down view. The experiments are con-
ducted on “Adversarial” MSCOCO part of POPE using
LLaVA1.5 model.

the effectiveness of our MVP.
Results on MME Hallucination Subset. We fur-
ther evaluate our method on a subset of MME,
which includes object-level hallucinations and
attribute-level hallucinations. The results in Ta-
ble 2 demonstrate that our method significantly
improves the performance of all LVLMs in address-
ing object-level and attribute-level hallucinations.
Additionally, we compare our method with the re-
cent strong methods VCD and OPERA, and our
approach still exhibits better overall performance.
Results on MME Full Set. As depicted in Figure

5, we test our method on the complete MME set to
assess the overall capability of models. Four mod-
els with our MVP (blue lines) present significant
improvement compared to the vanilla models on
most evaluation subsets. This can be attributed to
our method’s introduction of multi-view informa-
tion and multi-path reasoning, allowing LVLMs
to comprehensively understand visual elements in
the images and carefully consider the certainty of
potential answers, thereby enhancing the LVLMs’
capabilities in downstream tasks.

3.4 Ablation Study

3.4.1 Effectiveness of Multi-view Caption

Table 3 presents the performance from different per-
spectives. The first row presents the performance
without using any additional caption information,
while rows 2-4 respectively use a single perspec-
tive. The improvement is more pronounced with
more perspectives involved. These results have con-
firmed that multi-view information can contribute
to more comprehensive image understanding, thus
mitigating the hallucinations in LVLMs. Notably,
more views lead to greater performance improve-
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Model Caption Accuracy Precision Recall F1

LLaVA1.5
✗ 91.10 93.69 88.13 90.82
✓ 92.36 94.04 90.46 92.22

(+1.26) (+0.35) (+2.33) (+1.40)

Qwen-VL
✗ 86.33 95.95 75.86 84.74
✓ 86.56 95.97 76.33 85.03

(+0.23) (+0.02) (+0.47) (+0.29)

InstructBLIP
✗ 90.30 92.54 87.66 90.04
✓ 91.33 92.80 89.73 91.24

(+1.03) (+0.26) (+2.07) (+1.20)

mPLUG-Owl2
✗ 91.13 92.49 89.53 90.98
✓ 91.26 92.98 89.85 91.39

(+0.13) (+0.49) (+0.32) (+0.41)

Table 4: With captions from LLaVA1.6, our models
achieve further improvement.

ment, with the cost of efficiency. Actually, our
multi-view information-seeking strategy is flexible,
indicating the number of views can be adaptively
chosen in practical scenarios, thus achieving a bal-
ance between performance and efficiency.

3.4.2 The transferability of captions.
Intuitively, the quality of the captions has a direct
impact on the model performance. Therefore, in
this study, we explore the transferability of cap-
tions. Specifically, we employ a more powerful
open-source model LLaVA1.6 (Liu et al., 2024b)
to generate three-perspective captions for images
in the random part of POPE MSCOCO, and use
these captions for our model. As depicted in Table
4, with better captions, our method provides further
improvements across four LVLMs. These results
also confirm the significance of the multi-view in-
formation for alleviating hallucinations, as well as
the plug-and-play flexibility of our method.

3.4.3 Multi-path Reasoning
To investigate the multi-path decoding, in this study,
we only adopt the regular perspective. We exper-
iment on the random and adversarial part of the
POPE MSCOCO benchmark, as shown in Figure 6.
We first conduct experiments on Top-K in Equation
5. As K increases from 1 to 5, peak performance is
observed at K equals 3. When K becomes larger,
the performance does not improve. This is due to
the decoding path extending from the first tokens
with minuscule probabilities do not provide any
beneficial information.

Secondly, we explore a new aggregation strat-
egy MVP-Max. Instead of accumulating the cer-
tainty scores in Equation 5, the potential answer
with maximum certainty score among all paths is
chosen as the final answer. It can be seen that af-
ter using MVP-Max, the final performance of the
model decreases significantly. This demonstrates
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Figure 6: The ablation study of multi-path variants.

Setting Decoding Accuracy↑ Precision↑ Recall↑ F1 Score↑

Random

Greedy 91.16 93.63 88.31 90.89
Nucleus 91.10 93.69 88.13 90.82
Beam Search 92.36 94.04 90.46 92.21
VCD 89.73 95.77 83.13 89.01
OPERA 89.90 96.15 83.17 89.19

Adversarial

Greedy 81.63 78.34 87.39 82.62
Nucleus 81.50 78.20 87.33 82.51
Beam Search 81.86 77.63 89.53 83.16
VCD 82.56 82.20 83.13 82.66
OPERA 82.65 82.31 83.22 82.86

Table 5: Ablation of different decoding strategies us-
ing LLaVA1.5. Experiments are performed on the
MSCOCO source of the POPE benchmark.

the effectiveness of our aggregation strategy.
Finally, we explore removing Mj in Equation

5, we found that relying solely on the certainty of
tokens will damage the stability and effectiveness
of our model.

3.5 Decoding Strategy

In this section, we analyze the impact of different
decoding strategies on our method. Specifically,
we investigate five decoding methods. Notably, nu-
cleus sampling is used in our main experiments for
a fair comparison with recent methods. Our MVP
can further enhance the performance with training-
free decoding methods such as VCD and OPERA,
as shown in Table 5. We can observe that using
beam search as the decoding strategy performs the
best accuracy on the random setting, while OPERA
achieves the most significant accuracy on the ad-
versarial part. These results also imply that our
method is a novel plug-and-play approach, which
can be flexibly integrated with other techniques.

4 Conclusion

In this paper, we propose a novel training-
free framework MVP to reduce hallucinations in
LVLMs through Multi-View Multi-Path Reasoning.
Specifically, we devise a multi-view information-
seeking strategy to perceive the intricate details of
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the image information. Furthermore, we propose
multi-path reasoning to quantify and aggregate the
certainty scores for each potential answer and fi-
nally decide the output answer. With the multi-
view multi-path reasoning, our method effectively
alleviates hallucinations in LVLMs.

Limitations

There are still some limitations in our work, which
are listed below:

Latency Due to the introduction of the multi-
view image information seeking, our method may
have a higher reasoning time than trivial methods.
However, the number of views can be flexibly de-
cided, thus achieving a balance between perfor-
mance and efficiency.

Applicability Our method mainly applies to
question answering tasks and is not specifically
designed for image captioning tasks. However, it
is possible to extend our method to image caption-
ing. We have detailed additional experiments in the
Appendix.
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A Implementation Details

In our paper, we adopt three different views to
capture the information from the image. For
“Bottom-up” perspective, we use following prompt:

“Through a systematic examination of the image at
the pixel level and by analyzing various visual fea-
tures, such as shape, color, and texture, along with
employing object detection techniques, describe
this image in details.” In addition, we use “De-
scribe this image in details” for the regular caption.
The prompt for top-down perspective has been de-
scribed in Section 3.3. In addition, to generate
these multi-view captions, a temperature of 0.9 and
a top-p parameter of 0.95 are set to guarantee di-
versity. K in Equation 5 is set to 3. α in Equation
6 is set to 0.4, 0.2, and 0.4 for “bottom-up”, “reg-
ular”, and “top-down” perspectives, considering
that the “bottom-up” and “top-down” perspectives
bring more beneficial information. We do not tune
α much as the aggregation from multiple decoding
paths inherently presents certain robustness.

B Related Work

B.1 Hallucination in LVLMs

Recently, the potential hallucination (Qu et al.,
2024a,b; Liu et al., 2024a; Lu et al., 2024; Su et al.,
2024) problem in large models has garnered con-
siderable attention, mainly due to the direct impact
on the downstream applications (Liu et al., 2021a,b,
2020; Qu et al., 2020; Dong et al., 2022; Guo et al.,
2024). In LVLMs, the term “hallucination” refers
to models that generate seemingly plausible out-
puts inclusive of objects, attributes, or relations that
do not correspond with the images.

Regarding hallucination mitigation, the primary
focus of most current methods has been to en-
hance the quality of the supervised fine-tuning or
reinforcement learning data. VIGC (Wang et al.,
2024a) presents a component to correct visual in-
structions with the aim to minimize hallucinations
generated from lengthy sequences. LRV (Liu et al.,
2023a) attempt to alleviate hallucinations by de-
veloping expansive and diverse SFT data. For
methods based on reinforcement learning, LLaVA-
RLHF (Sun et al., 2023) is the pioneer in apply-
ing Reinforcement Learning with Human Feed-
back (RLHF) to mitigate hallucination in LVLMs.
RLHF-V (Yu et al., 2023) further develops a fine-
grained correctional human feedback. Considering
the instability and training difficulty of RLHF, Zhao

et al. (2023) employ Direct Preference Optimiza-
tion (DPO) and build a hallucination-aware dataset
for alleviating hallucination. Although these meth-
ods have achieved significant improvements, they
inevitably introduce a large training cost and are
prone to overfitting to the training data. Instead,
there are also training-free works aiming to solve
the hallucination without introducing training cost.
VCD (Leng et al., 2023) contrasts the output distri-
butions derived from original and distorted visual
inputs, aiming to recalibrate the model’s excessive
dependence on unimodal priors and statistical bi-
ases. OPERA (Huang et al., 2023) introduces a
penalty term to the model logits during the beam-
search decoding to alleviate the overconfidence
problem, complemented by a rollback strategy. In
this paper, we focus on the training-free paradigm
for mitigating hallucination in LVLMs.

B.2 Training-free Decoding Strategy

As the recent training-free methods for mitigating
hallucination focus on the decoding process, we de-
scribe several decoding strategies here. Decoding
strategies in language models are instrumental in
guiding how these models produce text. They are
a significant factor in influencing the quality, rele-
vance, and coherence of the output. Greedy decod-
ing takes the simplest approach, choosing the most
probable next word at every step. Despite its speed
and computational efficiency, this method often re-
sults in repetitive and monotonous text. Conversely,
beam search offers a more advanced technique that
maintains a predetermined number of hypotheses
at each step, elaborating on them to identify a more
optimum sequence. In nucleus sampling, a flexible
range of words is considered, which accumulate
to achieve the given probability p. More recently,
there are two methods specifically proposed for mit-
igating hallucinations. VCD adopts contrastive de-
coding to calibrate the model’s output distribution.
OPERA introduces a penalty term on the model
logits during the beam-search decoding to mitigate
the over-trust issue. In this paper, we focus on the
certainty of the answer token during the decoding
process, which does not conflict with designing dif-
ferent decoding paths. Thus, our MVP framework
is plug-and-play and can further combine with the
above decoding strategies.
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LLaVA-1.5 InstructBLIP
CS ↓ CI ↓ CS ↓ CI ↓

Nucleus 48.8 14.2 54.6 24.8
Ours 45.4 12.9 50.4 20.5

Table 6: CHAIR hallucination evaluation results.

C Additional Experiments

C.1 Results on POPE benchmark
To further demonstrate the effectiveness of our pro-
posed MVP, we conduct experiments on POPE
based on AOKVQA and GQA with random, pop-
ular, and adversarial settings, respectively. The
experiment settings are the same as the main ex-
periment in the MSCOCO. The results are shown
in Tables 8 and 9. It is obvious that our proposed
MVP has greatly improved from these two tables
compared with the baseline models. Specifically,
under different settings, our method significantly
surpasses the vanilla model’s performance across
all LVLMs. For example, with LLaVA1.5, MVP
achieves an average improvement of 4.38 in Ac-
curacy and 6.29 in F1 score across random, pop-
ular, and adversarial settings on AOKVQA. For
LLaVA1.5, InstructBLIP and mPLUG-Owl2, the
improvement in F1 and Accuracy scores is mainly
due to an increase in precision, while in Qwen-VL,
the increase comes from the simultaneous improve-
ment of precision and recall. These results demon-
strate the effectiveness of our MVP in alleviating
hallucinations.

C.2 Results on Image Caption
In this paper, we mainly focus on the question-
answer task. However, it is possible to extend our
method to image captioning. For each view (eg.
bottom-up), we can perceive different kinds of ob-
jects and generate multiple captions with the top-K
path. Finally, all generated captions from different
views alongside the input image can be summa-
rized by the LVLM to obtain the final caption. In
this way, we can completely grasp the image infor-
mation and output accurate captions. We report the
image caption results of CHAIR metric (Rohrbach
et al., 2018) in Table 6. The maximum new tokens
of this experiment are 512. In the same setting,
we implement nucleus sampling and our MVP. As
shown in this table, our MVP obtains better perfor-
mance than the base method. Furthermore, we use
the official COCO evaluation toolkit and perform
textual quality evaluation on LLaVA 1.5. As shown

MS-COCO
BLUE-4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑ SPICE ↑

Base 22.3 28.0 50.9 75.3 22.1
Ours 22.6 28.4 52.3 79.6 22.5

Table 7: Text quality evaluation on MSCOCO dataset.

Question: Is there a chair in the 
image? 

LLaVA: No.

VCD: No, there is no chair in the 
image.

OPERA: No, there is no chair.

Ours: Yes, there is a chair in the image. 

Question: Are there six people appear 
in this image?

LLaVA: No, there are not six people 
in this image. There are four people 
in the image.

VCD: No, there are only five people 
in this image.

OPERA: No, there are five people in the image, all of them are seated at 
the same wooden dining table working on their laptop computers.

Ours: Yes, there are six people appear in this image.

Figure 7: Two representative examples from POPE and
MME datasets. The qualitative results of LLaVA 1.5,
VCD, OPERA, and our proposed MVP.

in Table 7, our method can also effectively improve
the textual quality of the generation.

D Qualitative Results

To qualitatively verify the effectiveness of our
method on downstream tasks, we presented two
examples from the MSCOCO POPE and MME
datasets. As illustrated in Figures 7, in both ex-
amples, MVP is able to accurately address ques-
tions. In the top figure where the chair is in the top
right corner and not fully visible, our MVP com-
prehensively captures multi-view information, thus
contributing to identifying this chair. In the bottom
figure where distant people appear blurry, our MVP
effectively decides the accurate number of people
with multi-path reasoning. Through these two di-
rect comparisons, our method answers questions
more precisely than the currently existing strong
baselines, significantly reducing hallucinations in
LVLM models.
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Setting Model Decoding Accuracy↑ Precision↑ Recall↑ F1 Score↑

Random

LLaVA1.5
Vanilla 83.45(±0.48) 87.24(±0.68) 78.36(±0.54) 82.56(±0.50)

Ours 91.20(±0.48) 89.06(±0.68) 93.93(±0.54) 91.43(±0.50)

Qwen-VL
Vanilla 86.67(±0.48) 93.16(±0.55) 79.16(±0.59) 85.59(±0.53)

Ours 88.16(±0.45) 94.34(±0.26) 81.20(±0.19) 87.28(±0.06)

InstructBLIP
Vanilla 80.91(±0.34) 77.97(±0.59) 86.16(±0.88) 81.86(±0.32)

Ours 88.60(±0.16) 90.95(±0.32) 85.73(±0.50) 88.26(±0.07)

mPLUG-Owl2
Vanilla 77.63(±0.14) 70.46(±0.29) 95.13(±0.42) 80.96(±0.11)

Ours 90.30(±0.33) 88.92(±0.44) 92.07(±0.11) 90.47(±0.28)

Popular

LLaVA1.5
Vanilla 79.90(±0.33) 80.85(±0.31) 78.36(±0.54) 79.59(±0.37)

Ours 84.60(±0.23) 79.19(±0.37) 93.87(±0.08) 85.91(±0.49)

Qwen-VL
Vanilla 85.56(±0.35) 90.44(±0.56) 79.53(±0.84) 84.63(±0.42)

Ours 87.30(±0.15) 92.48(±0.33) 81.20(±0.27) 86.47(±0.40)

InstructBLIP
Vanilla 76.19(±0.80) 72.16(±0.69) 85.28(±0.79) 78.17(±0.73)

Ours 78.16(±0.80) 74.90(±0.69) 84.73(±0.79) 79.51(±0.73)

mPLUG-Owl2
Vanilla 72.06(±0.15) 65.16(±0.30) 94.80(±0.05) 77.24(±0.33)

Ours 83.30(±0.28) 78.56(±0.47) 91.60(±0.13) 84.58(±0.22)

Adversarial

LLaVA1.5
Vanilla 74.04(±0.34) 72.08(±0.53) 78.49(±0.38) 75.15(±0.23)

Ours 74.70(±0.12) 67.75(±0.45) 94.27(±0.36) 78.84(±0.09)

Qwen-VL
Vanilla 79.57(±0.31) 79.77(±0.34) 79.23(±0.73) 79.50(±0.38)

Ours 81.60(±0.22) 81.85(±0.38) 81.20(±0.07) 81.53(±0.54)

InstructBLIP
Vanilla 70.71(±0.76) 65.91(±0.74) 85.83(±0.80) 75.56(±0.57)

Ours 75.03(±0.16) 73.75(±0.31) 85.25(±0.08) 79.08(±0.29)

mPLUG-Owl2
Vanilla 55.13(±0.14) 53.26(±0.42) 83.73(±0.24) 65.11(±0.33)

Ours 73.43(±0.19) 67.32(±0.48) 91.07(±0.11) 77.42(±0.37)

Table 8: Results on AOKVQA source of POPE benchmark. The best performances are bolded.

Setting Model Decoding Accuracy↑ Precision↑ Recall↑ F1 Score↑

Random

LLaVA1.5
Vanilla 83.73(±0.27) 87.16(±0.39) 79.12(±0.35) 82.95(±0.28)

Ours 90.20(±0.17) 87.64(±0.29) 93.60(±0.38) 90.52(±0.07)

Qwen-VL
Vanilla 80.97(±0.32) 88.07(±0.34) 71.64(±0.57) 79.01(±0.40)

Ours 83.57(±0.24) 91.10(±0.35) 74.40(±0.10) 81.91(±0.44)

InstructBLIP
Vanilla 79.65(±0.24) 77.14(±0.43) 84.29(±0.36) 80.56(±0.18)

Ours 85.67(±0.28) 90.65(±0.33) 79.53(±0.19) 84.73(±0.22)

mPLUG-Owl2
Vanilla 80.43(±0.26) 75.01(±0.30) 91.26(±0.15) 82.34(±0.39)

Ours 89.00(±0.23) 90.18(±0.41) 87.53(±0.12) 88.84(±0.45)

Popular

LLaVA1.5
Vanilla 78.17(±0.17) 77.64(±0.26) 79.12(±0.35) 78.37(±0.18)

Ours 79.43(±0.32) 72.94(±0.25) 93.61(±0.40) 81.99(±0.07)

Qwen-VL
Vanilla 75.99(±0.33) 78.62(±0.41) 71.40(±0.38) 74.84(±0.34)

Ours 79.80(±0.29) 83.40(±0.37) 74.40(±0.12) 78.65(±0.45)

InstructBLIP
Vanilla 73.87(±0.58) 69.63(±0.54) 84.69(±0.68) 76.42(±0.52)

Ours 73.98(±0.26) 78.08(±0.33) 78.08(±0.18) 78.08(±0.23)

mPLUG-Owl2
Vanilla 71.96(±0.20) 66.01(±0.40) 90.53(±0.15) 76.35(±0.48)

Ours 77.87(±0.35) 73.46(±0.47) 87.27(±0.10) 79.77(±0.22)

Adversarial

LLaVA1.5
Vanilla 75.08(±0.33) 73.19(±0.49) 79.16(±0.35) 76.06(±0.24)

Ours 77.53(±0.21) 67.81(±0.34) 93.13(±0.43) 78.48(±0.08)

Qwen-VL
Vanilla 75.46(±0.63) 77.92(±0.73) 71.07(±0.97) 74.33(±0.71)

Ours 79.20(±0.25) 82.30(±0.36) 74.40(±0.14) 78.15(±0.47)

InstructBLIP
Vanilla 70.56(±0.53) 66.12(±0.32) 84.33(±1.05) 74.12(±0.58)

Ours 74.71(±0.28) 70.37(±0.32) 85.31(±0.17) 77.12(±0.23)

mPLUG-Owl2
Vanilla 54.86(±0.22) 53.36(±0.39) 77.13(±0.13) 63.08(±0.41)

Ours 75.26(±0.30) 71.17(±0.33) 84.93(±0.16) 77.44(±0.37)

Table 9: Results on GQA source of POPE benchmark. The best performances are bolded.
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